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Abstract
Nowadays, off-line robot trajectory generation methods based on pre-scanned target model are highly desirable for robotic
spray painting application. For actual implementation of the generated trajectory, the relative pose between the actual target
and the model needs to be calibrated in the first place. However, obtaining this relative pose remains a challenge, especially
from a safe distance in industrial setting. In this paper, a pose estimation system that is able to meet the robotic spray painting
requirements is proposed to estimate the pose accurately. The system captures the image of the target using RGB-D vision
sensor. The image is then segmented using a modified U-SegNet segmentation network and the resulting segmentation is
registered with the pre-scanned model candidates using iterative closest point (ICP) registration to obtain the estimated pose.
To strengthen the robustness, a deep convolutional neural network is proposed to determine the rough orientation of the target
and guide the selection of model candidates accordingly thus preventing misalignment during registration. The experimental
results are compared with relevant researches and validate the accuracy and effectiveness of the proposed system.

Keywords Pose estimation · Spray painting · RGB-D sensor · Deep neural network · ICP registration

1 Introduction

Spray painting is an indispensable procedure in the
manufacturing of a wide variety of products, such as
furniture, aircrafts, automobiles, and steel structures. In
recent years, in order to improve painting quality, promote
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the manufactural efficiency, and protect the health of
workers, robotic spray painting becomes more and more
prevalent in manufactural applications. At present, there are
numerous researches in robotic spray painting concerning
robot dynamic control [1], base position optimization [2],
trajectory planning [3], etc.

In robotic spray painting applications, the painting qual-
ity is largely dependent on the accuracy and effectiveness
of robot end effector (spray gun) path planning and the cor-
responding robot trajectory planning. Currently, one of the
most common trajectory planning methods in this indus-
try is traditional teaching method, which requires massive
amount of time to manually configure the specific trajectory
in advance, thus largely reducing the efficiency and uni-
versal applicability. Another commonly applied trajectory
planning method is off-line programming method which
utilizes the pre-scanned point cloud model or CAD model
of the target as guidance in generating the trajectory [4–
7]. This method is able to be applied on a larger variety
of targets and requires less manual intervention. Never-
theless, for model-based trajectory generation, the virtual
model and environment cannot always be precisely mapped
onto the real world. Therefore robot coordinates computed
off-line are often inaccurate in actual practice [8]. Hence,
a calibration of the relative pose between the actual target
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and model-based trajectory is a prerequisite for the robot
to precisely accomplish the spray painting task according
to the generated trajectory. Traditionally, this calibration is
accomplished manually by fixing the target to a specifically
appointed pose, making the procedure time-consuming and
not practical for the manufacture while unavoidably intro-
ducing some deviation. Thus, an automatic calibration sys-
tem that accurately estimates the relative pose is necessary.
For precise spray painting application, it is required that the
deviation of estimated pose given by the calibration system
is controlled within the spray radius of the spray gun.

In recent years, researchers carry out some researches
in determining the relative pose between the target and
model or model-based trajectory. In order to acquire 3D
representation of the target, structured light sensor or RGB-
D vision sensor is applied in these researches. Chen et al. [9]
presented a visual servo approach based on fringe pattern
projection for spray path planning. This method is able to
adjust the initial model-based path according to the actual
target to make the end effector perpendicular to the target
surface. However, the large sized visual system is installed
on the end effector of the robot and works at relatively
a short distance from the target, which would inevitably
hinder the painting operation of the spray gun and make it
hard to be integrated with existing model-based trajectory
generation method. Xu et al. [10] proposed a real-time
position and posture measurement device which is small
sized and lightweight, making it compact for the integration
into spray painting robots. Nevertheless, this system can
only detect one small patch of the target at a time and has
limited measuring range; thus, it cannot provide consistent
adjusting strategy for the whole trajectory. In addition, it
calculates the pose of target surface using the projection
of three spot lasers, which is inapplicable for complex
structures. Lin et al. [11] carried out a spray painting system
based on the point cloud model collected by Kinect RGB-
D sensor. In this system, the sensor is separated from the
spraying robot end effector. Yet it determines the relative
pose between the model and the actual object merely from
the type and orientation of the target conveying system, so
it overlooks the difference every time the target is put on
the conveyer thus introduces error. Lin et al. [12] proposed
a pose estimation pipeline for auto part painting robots
using a combination of iterative closest point (ICP) [13]
and genetic algorithm. However, this pipeline only uses
the depth information of the RGB-D sensor and adopts
RANSAC planar segmentation to segment the target point
cloud from the background. Thus, this pipeline is designed
under the assumption that the background mainly consists
of floor and wall, and its accuracy would decrease in the
cluttered industrial environment. Therefore, in robotic spray
painting application, it is required to develop an accurate
automatic pose estimation system which is able to be

easily integrated with the above mentioned model-based
trajectory generation methods and can meet the application
requirements.

Currently, there are a considerable number of object
pose estimation methods proposed by researchers [14–
17], although most of these methods have not yet been
applied to robotic spray painting applications. Among
them, the pose estimation methods based on model
registration algorithms such as iterative closest point
(ICP) registration [13] are widely accepted. The model
registration method is well suitable for spray painting
pose estimation system, since the pre-scanned target model
initially prepared for the trajectory generation could be
used directly as the referenced model in registration.
Recently, the model registration is integrated with deep
neural network and achieves meritorious performance in
pose estimation. Zeng et al. [18] applied fully convolutional
network (FCN) [19] for segmenting target from a scene
and then they aligned the segmented point cloud with
the CAD model using ICP registration to estimate the
pose of the target. Similarly, Wong et al. [20] integrated
SegNet network [21] and multi-hypothesis registration to
improve the estimation accuracy and efficiency. Lin et
al. [22] used semantic segmentation network to produce
segmented target, and the target point cloud features were
aligned with the model features using RANSAC and ICP
registration for pose estimation. Yang et al. [23] applied
integrated object detection network and ICP registration
method on life support robot in actual daily scenarios and
obtained increased pose estimation performance. Whereas,
in order to obtain favorable segmentation performance, the
deep neural networks of these methods generally require
large amount of precisely labelled training data, which
is inconvenient and inefficient to acquire in actual spray
painting application. The quantity of the data is directly
related to the preparation time of an applicable pose
estimation system and thus determines the productivity.
The data augmentation or self-annotation method based
on background subtraction is not well suited under dim
and unstable light conditions and in cluttered industrial
environment. Moreover, for ICP registration in these
methods, when two point clouds are relatively far apart and
out of range points (outliers) are included, the algorithm
might fall into a local minimum and the alignment might
become incorrect. In addition, these methods are mainly
designed for relatively short perception distance in the
laboratory setting. As a result, a pose estimation system
that requires relatively small amount of training data
while maintaining high accuracy from a relatively large
safe distance in the industrial setting is needed in this
scenario.

In this paper, a pose estimation system based on deep
neural network and ICP registration is presented. This
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system possesses three unique properties that guarantee
its effectiveness in spray painting applications. Firstly,
the sensor in the proposed system is separated from
the robot end effector and is placed at a safe distance
from the target, thus preventing the interference during
the spray painting operation and also protecting the
sensor lens from contamination of the paint. Secondly,
an orientation determination network based on VGG [25]
structure is introduced as well. This network determines
the rough orientation of the target to aid the selection of
model candidates in ICP registration, thus reducing the
misalignment caused by local minima. Furthermore, this
selected orientation could assist the spray painting system to
decide which generated trajectory to apply on the target in
the current pose, thus further improving the compatibility of
the proposed system in model-based trajectory generation
painting systems. Thirdly, the semantic segmentation
network is designed based on U-SegNet [24] structure,
which requires a relatively small amount of training data
and shows desirable segmenting performance in the poor
lighting condition of an industrial setting. This structure is
able to further lower the introduction of the out of range
points (outliers) in the model registration procedure and
improves the pose estimation accuracy.

In the remainder of this paper, the overall system
description and configuration are presented in Section 2.
The pose estimation framework and the detailed approaches
are presented in Section 3. Then, Section 4 presents
the dataset and experiment results. Finally, the paper is
concluded in Section 5.

2 System description

In a spray painting application, the pose of the unpainted
target, including its orientation and position, varies due to

the uncertainty of placement on the operation platform.
Hence, the proposed vision system captures the RGB-D data
of the target and outputs its pose as a calibration for the
robotic spray painting trajectory.

The hardware of the proposed system includes an RGB-
D sensor and a computer. As illustrated in Fig. 1, the sensor
is placed on a tripod by the side of the target at a certain
safe distance (1.5 m) in order to provide suitable interspace
for perception without interfering the spray painting end
effector. The RGB-D sensor is PERCIPIO FM810 camera,
which is an industrial-grade active stereo camera with two
IR (Infrared Radiation) cameras, an IR laser projector and
an RGB camera. The active stereo technology enables the
camera to collect depth data accurately even under the poor
lighting condition in an industrial setting. The depth range
of the sensor is 0.5 to 6 m, enough to cover the required
sensing distance.

The sensor is connected to the computer with a USB
cable. The RGB-D data collected by the sensor are saved
onto the computer as aligned RGB and depth images.
The images are then fed to the proposed pose estimation
program that runs on the computer and the estimated target
pose is output accordingly.

This system mainly deals with the rotationally asym-
metric target, upon which the robotic spray painting oper-
ation is conducted according to the target orientation. For
rotationally symmetric target, this system could only esti-
mate its actual position, because the definition of the ori-
entation of a rotationally symmetric profile tends to be
ambiguous.

For further integration with robotic spray painting
system, the estimated pose could be transformed to the pose
in the robot base frame using the coordinate transformation
between camera and robot base frame obtained from eye-
to-hand calibration. Thus, the deviation of the generated
trajectory could be rectified according to the pose.

Fig. 1 The relative position of
RGB-D sensor, robot end
effector, and the target
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3 Pose estimation framework
and approaches

3.1 Overview of the proposed framework

The proposed pose estimation framework is organized as
follows.

Firstly, a convolutional neural network is adopted to
determine the rough orientation of the target using the RGB
image as input. For the target which could horizontally
rotate on the platform, four basic orientations of the target
are defined as front, back, left, and right orientations. If the
azimuth of the target is in between two basic orientations,
the closest and second closest basic orientations are
designated as its primary and secondary orientations. The
primary and secondary orientations are determined from the
largest and the second largest probabilistic outputs of the
network, respectively.

Secondly, pixel-wise semantic segmentation based on
deep neural network is conducted on the RGB image.
The probabilistic mask of the target obtained from the
segmentation is binarized and then crops the aligned depth
image. Therefore, the segmented 3D point cloud of the
target could be generated from the cropped depth image and
the intrinsic matrix of the camera.

Finally, the results from the first and second steps are
integrated for the pose estimation based on ICP registration
algorithm. The pre-scanned point cloud model or CAD
model of the target is cropped and retrieved according to
the primary and secondary orientations derived from the
first step. Then, ICP is used to register the segmented point
cloud with the two cropped model candidates of primary
and secondary orientations, and the ICP fitness scores are
computed. The orientation with the optimal fitness score is
adopted as the final orientation and the corresponding pose
is output as the final estimated pose.

In the off-line preparation process, the abovementioned
deep neural networks are trained in advance with the target
dataset, which is discussed in detail in Section 4. The
complete proposed pose estimation framework is illustrated
in Fig. 2.

3.2 Determination of orientation

The accurate determination of rough orientation is funda-
mental in the proposed system, because the initially deter-
mined orientation is used to select the basic orientation of
pre-scanned model used in model registration. For ICP reg-
istration, if the orientation of target point cloud is largely
distinct from the model and large amount of out of range

Fig. 2 The proposed pose estimation framework. The off-line process refers to the preparation procedures before the actual application. The online
process refers to image processing and model registration procedures during application
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Fig. 3 Four basic orientations of
the target

points (outliers) are included, the algorithm is likely to fall
into a local minimum and gives inaccurate pose estimation.

As is shown in Fig. 3, the four basic orientations of
the target can be defined as right, front, left, and back
orientations, which correspond to four basic orientation
angles 0◦ (360◦), 90◦, 180◦, and 270◦. The angles within
plus minus 45◦ range of each basic angle are included
in corresponding category, as demonstrated in the formula
below. If the azimuth of the target is closest to one
of these basic orientation angles, this basic orientation
is designated as its primary orientation. If the target is
placed in the middle of two basic orientations, that is, the
azimuth angle is close to the lower or upper bound of each
category, the closest and second closest basic orientations
are designated as its primary orientation and secondary
orientation, respectively.

αright ∈ (315◦, 360◦) ∪ [0◦, 45◦], αfront ∈ (45◦, 135◦],
αleft ∈ (135◦, 225◦], αback ∈ (225◦, 315◦] (1)

To determine the basic orientation category of the target,
an orientation determination network based on VGG [25]
classification network structure is proposed. The excellent
classification performance achieved by VGG structure
derives from the larger depth of the network and the

use of convolution filters with a very small receptive
field. According to these characteristics, the orientation
determination network is devised based on VGG structure
with a modification in network depth and filter size to
further improve the classification performance. The network
structure consists of 15 convolutional layers and 3 fully
connected layers as shown in Fig. 4. The input of the
network is 224 × 224 RGB image resized from the original
image and the output is a probability distribution of four
orientation categories.

The primary orientation corresponds to the largest prob-
abilistic output of the network. The secondary orientation
is determined by the second largest probability if it is over
a certain threshold. Otherwise, there is no secondary ori-
entation. Because the softmax layer enlarges the difference
tremendously between the largest and second largest prob-
abilities, in order to attenuate the suppression of the non-
maximum value in the comparison, the output of the last
fully connected layer in front of the softmax layer is adopt to
calculate the largest and second largest probabilities. These
probabilities are determined as follows:

p = argmax
i

(vi) i ∈ {1, 2, 3, 4} (2)

s = argmax
i

(vi) i ∈ {1, 2, 3, 4}\{p} if vs ≥ 0.5vp (3)

Fig. 4 The network structure of orientation determination network. The height, width and channel of the layers are denoted for each group of
convolution layers and fully connected layers
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where p and s are the largest and second largest probability
indexes and vi is the output value of the last fully connected
layer.

This proposed network can be trained directly using the
small quantity of data from industrial setting to provide
an accurate determination of rough orientation without
the need of any pre-trained model parameters, which is
validated in the experiment.

3.3 Semantic segmentation

In order to obtain an appropriate mask for the segmentation
of depth data and produce a point cloud representation of
the target with few out of range points (outliers), a modified
U-SegNet semantic segmentation network is adopted to
segment the image. This network requires a relatively small
amount of training data and shows desirable segmenting
performance in poor lighting conditions.

U-SegNet [24] network is an incorporation of two widely
applied segmentation architectures SegNet [21] and U-
Net [26]. SegNet is an encoder-decoder architecture that
transfers pooling indices from the encoder to the decoder
thus achieving more accurate segmentation on the edge
of the target while reducing training parameters. U-Net is
a fully convolutional network that adopts skip connection
between the contracting path and expansive path; thus, it
captures multilevel information and can be trained using
small quantity of data. The U-SegNet network combines
the advantages of the both networks by applying the skip
connection from U-Net to the SegNet architectures. This
integrated structure reduces the reliance on massive amount
of training data and converges faster during training, while

achieving a fairly good segmentation performance. This
network is first adopted in medical image segmentation
domain where the labelled image data are costly to obtain.

In this paper, as is shown in Fig. 5, the U-SegNet
structure is modified for the application to the proposed
system. In order to improve the perception ability of
multilevel information, a skip connection is added between
each pair of encoder and decoder layers that shares the
pooling indices, adding up to three skip connections in total,
while in the original structure, only one skip connection is
introduced at the uppermost layer. The skip connections in
the proposed modified structure concatenate three encoder
layers to the decoder layers respectively thus exploiting
the image features of three different scales. Additionally,
the input of the network is a 256 × 256 RGB image
resized from the original image and the output is a
grayscale probabilistic mask of the same size, identifying
the target region and the environment. In the spray painting
application, the proposed system is designed to estimate the
pose of one kind of target at a time. Therefore, the softmax
layer designed for multi-class output in the original structure
is replaced by a sigmoid function which is designed for
binary output. In this paper, we explore several different
segmentation networks, including FCN, SegNet, U-net,
original U-SegNet, Mask R-CNN [27], and our proposed
modified U-SegNet, and find that our proposed U-SegNet is
the best selection for RGB image segmentation in this study
under the industrial setting.

From the segmentation network, a grayscale probabilistic
mask of the target is generated. The gray value of each
pixel is in proportion to its probability of belonging to
the target region. Hence, the threshold that determines

Fig. 5 The modified network structure of U-SegNet network in the proposed system. The major modification is that skip connection is added
between each pair of encoder and decoder layers that shares the pooling indices
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whether the pixel belongs to the region of interest is
also important for the accurate segmentation. Generally, as
the threshold increases, the precision rate of segmentation
becomes higher and the recall rate becomes lower.

In the proposed system, the RGB image segmentation
mask is used to crop the aligned depth image and produce
3D point cloud of the target, given the intrinsic matrix of
the camera. If the mask is larger than the target (larger
recall), the points from the surrounding objects such as
operation platform and robot end effector might be included
in the point cloud, thus causing incorrect model registration.
On the contrary, if the mask is smaller than the target
(larger precision), though a small part of the target is not
represented by the point cloud, there are few outliers in the
point cloud and the model is fitting with actual part of the
target. Therefore, the registration accuracy is not affected
if the mask is slightly smaller than the target region. So a
slightly higher threshold that favors the increase of precision
is adopted in the binarization procedure of the probabilistic
mask.

3.4 Model registration

The results from orientation determination and semantic
segmentation are integrated for the model registration based
on ICP algorithm to provide the pose estimation of the
target.

Before the model registration, the pre-scanned model
needs to be preprocessed. The model of the target is cropped
from four basic orientations defined above and only the
front face of the model in corresponding orientation is
saved. Hence, four model candidates are provided. This
operation largely diminishes the model points that are
imperceptible for the sensor in certain orientation, thus
reducing the redundant points in the model and preventing
ICP registration from converging into a local minimum. In
addition, if the model is a CAD model, it should be sampled
and converted into a point cloud model for the registration
with the segmented target point cloud. The initial model
position is set at a reference position of sensor coordinate.

Next, the model is retrieved and two final model candi-
dates corresponding to primary and secondary orientations
given by the orientation determination network are selected.
The model candidates and segmented target point cloud are
downsampled to reduce computational cost. Then ICP is
used to register the segmented point cloud with the two
model candidates of different orientations, and the ICP
fitness score S is a squared error of Euclidean distance
computed as follows:

S(R, t) = 1

N

N∑

i=1

‖mi − Rci − t‖2 (4)

where mi and ci is the model points and target point
cloud points, R is the relative rotation and t is the relative
translation between model and target. N denotes the total
number of successfully aligned points.

From the fitness score, it can be observed that if a
large amount of points in the model and the target are
not precisely aligned, the score would be fairly high, as is
shown in Fig. 6. Hence, the orientation with the smallest
fitness score is adopted as the closet orientation and its
corresponding pose matrix of rotation and translation is
output as the final estimated pose. The introduction of
model candidates of primary and secondary orientation
gives an alternative model candidate when the target point
cloud pose is seriously deviated from the model and a large
fitness score is presented indicating incorrect registration.
Therefore, this procedure further lowers the possibility of
trapping into a local minimum and improves the robustness
of the model registration.

4 Experiments and analysis

A series of experiments on estimating the target pose
in industrial spray painting setting were conducted to
validate the accuracy and effectiveness of the proposed
system and algorithms. In these experiments, a wooden
chair frame, a common target with rotationally asymmetric
figure in spray painting industry as shown in Fig. 7, was
adopted as the target. In this section, the initial setup
and performance of orientation determination network and

Fig. 6 The fitness score for correct and incorrect registration
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Fig. 7 The target: an unpainted wooden chair frame

semantic segmentation network are introduced individually,
and then the overall performance of the pose estimation
system is exhibited and discussed. Moreover, a novel
dataset made for training the network and validating the
performance of the proposed system in industrial setting is
described in this section.

4.1 Dataset

To train the deep neural networks and verify the effec-
tiveness of the proposed system, an RGB-D dataset with
following requirements is needed. First, it should contain
sufficient labelled RGB images of unpainted target in indus-
trial spray painting setting for training the classification and
segmentation networks. However, the existing large-scale
datasets such as ImageNet [28] and Pascal VOC [29] are
mainly collected from Internet photos, which contain dif-
ferent targets and are located in different environment from
the industrial setting. Second, the dataset requires depth
data along with annotation of the target pose for the val-
idation of final pose estimation result in the same setting,
thus making the requirements harder to meet by the existing
RGB-D dataset. Additionally, the size of dataset for train-
ing should be limited since the data acquisition is difficult
and time-consuming in industrial application and the dataset
should be able to validate the performance of the system
given insufficient data. Therefore, a new dataset special-
ized for pose estimation system in industrial spray painting
application was collected.

In this dataset, wooden chair frame in spray painting
industry setting was adopted as the target. The RGB-
D sensor in the proposed vision system was used for
dataset collection and the RGB-D data from each frame
were saved as an RGB image and a depth image that
were encoded into PNG format. The depth measurement
error of the sensor was 1% of its measuring distance. The
chair was placed on a rotary table, while the sensor was
mounted on a tripod 1.5 m away on the side from the
table. So the images of different altitude angles of the
sensor to the rotary table could be acquired by adjusting
the height of tripod. The RGB-D images were mainly
collected from three altitude angles 6◦, 11.5◦, and 17◦,
which were named groups I, II, and III respectively. In each
group, the chair was rotated horizontally from 0 to 350◦
with 10◦ interval, thus producing 36 RGB images and 36
depth images that corresponded to 36 annotated rotation
angles and positions for validation of pose estimation.
Furthermore, the chair was rotated randomly and 68 more
RGB-D images were captured and added into groups I
and III according to their altitude angle for training the
deep neural networks, while 50 more were added into
group II for testing. In addition, RGB-D images were
also collected from several random altitude angles ranging
from 2 to 30◦ to promote the robustness of the neural
network training and these data, which consisted of 100
images of randomly rotated chair, were included in group
IV. Subsequently, the data in groups I, III, and IV were
augmented twofold by horizontally flipping every image to
enlarge the training set. Finally, the RGB data in each group
were divided according to the basic orientation category
for orientation determination network, while some images
containing target with randomly rotated angles that were
ambiguous for labelling the basic orientation were excluded
from the dataset. RGB data in training set were also labelled
with pixel-wise mask using LabelMe [30] for semantic
segmentation. The detailed information of the dataset is
presented in Tables 1 and 2.

4.2 Orientation determination results

The implementation details of the proposed orientation
determination network are as follows. The network was
trained and tested using NVIDIA Tesla V100 GPU. In
the training process of the network, the batch size of 3
was adopted in order to accelerate the convergence and

Table 1 The dataset size and
information for semantic
segmentation

Training set Testing set

Group I (6◦) Group III (17◦) Group IV (Random) Total Group II (11.5◦)

Original dataset 104 104 100 308 86

Augmented dataset 208 208 200 616 86
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Table 2 The dataset size and information for orientation determination

Category

Group Dataset Right Front Left Back Total

Groups I, III, Original training dataset 64 50 64 50 228

and IV Augmented training dataset 128 100 128 100 456

Group II Testing dataset 36 32 36 30 134

the whole training set was divided into 186 batches. The
cross entropy was adopted as the loss function. The weight
parameters in the network were updated and optimized
during training using Adam optimizer with a learning rate
of 0.0001 to minimize the loss. It was set that the proposed
network would be deemed converged if the training loss
remained constant for 30 epochs. In the experiment, as
shown in Fig. 8, the network converged after 109 epochs and
the training duration was 1206 s in total.

The test accuracy of the trained network was 98.51%,
which validated that the proposed network was able to
determine the primary orientation precisely. The forward
propagation time of a single image was 0.2 s.

Since the proposed network was designed based on
VGG structure, the testing accuracy of the proposed
network was compared with original VGG structures given
in [25], including VGG-13, VGG-16, and VGG-19. As
demonstrated in Table 3, it was shown that our proposed
VGG structure with 18 layers outperformed the other
original structures.

In addition, it was observed that the actual orientation
of the test images for which the network gave wrong
orientation corresponded to the secondary probabilistic

output of the network, making the accuracy of primary and
secondary orientations 100% accurate. Hence, the wrong
primary orientation prediction would not seriously affect the
subsequent pose estimation based on primary and secondary
orientations.

4.3 Semantic segmentation results

The implementation details of the proposed semantic
segmentation network are presented as follows. The
proposed network was trained and tested using NVIDIA
Tesla V100 GPU. During the training process, the batch
size of 5 was adopted in order to accelerate the convergence
and the whole training set was divided into 124 batches.
The loss function for this network was binary cross entropy.
The stochastic gradient descent optimizer was adopted
to update the weight parameters. The learning rate was
set to be 0.001 and a learning rate decay of 1×10−6

was introduced to improve the speed and accuracy of the
parameters optimization. In order to reduce the fluctuations
and improve convergence rate, Nesterov momentum [31]
was applied and its momentum value was set to be 0.9. The
total training epochs were set to 300 epochs to analyze the

Fig. 8 The training loss curve of
the proposed network
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Table 3 Comparative performance of different VGG structures

Network structure Test accuracy (%)

Proposed network 98.51

VGG-13 72.39

VGG-16 90.30

VGG-19 88.81

loss and training accuracy in the entire training process. The
proposed network contained 4,837,961 trainable parameters
in total and the training accuracy and loss curve is shown in
Fig. 9. The graph took iterations as the horizontal ordinate
to illustrate the rate of change of the loss and accuracy
in the first several epochs as well as the fluctuations. The
proposed network converged quickly after 5000 iterations,
or 40 epochs. The forward propagation time for each image
through the network was around 0.5 s on average, which
was also the segmentation time of an input image.

To validate the effectiveness of the proposed segmen-
tation network, the network was tested using the test set
including 86 images and corresponding manually labelled
ground truth masks, and the network output masks were
compared with ground truth masks. Furthermore, we tested
several different segmentation networks including FCN,
SegNet, U-net, Mask R-CNN, and original U-SegNet with
the same test set and made comparison within the outputs
of these networks. The visualized comparison of the out-
put segmented grayscale masks is shown in Fig. 10. From
the comparison, it can be seen that the proposed modi-
fied U-SegNet structure and original U-SegNet structure
resembles the ground truth closely. Comparatively, the mask
from original U-SegNet structure contains outliers from the
surrounding environment, which would be included in the

segmented point cloud and interfere the registration, while
the segmented mask from our proposed structure mainly
contains the points from target region owing to the pres-
ence of additional skip connections in the structure. In
contrast with U-SegNet structures, the masks from U-net
and FCN network miss some part of the target region due to
the inaccurate segmentation on the edge of the target. The
boundary of the masks segmented by Mask R-CNN is also
distorted due to the lack of shared pooling indices. The out-
put from SegNet, however, gives inapplicable mask of the
target because the insufficient training data for the VGG
based deep segmentation network without skip connections.

In order to give quantitative evaluation of the test results,
several metrics for segmentation were adopted. For the
binary semantic segmentation, the prediction of every pixel
in the segmented mask can be divided into four categories
including TP, TN, FP, and FN, which are explained in
Table 4. These were adopted to calculate the pixel-wise
evaluation metrics for the testing performance of each
network.

In this experiment, the evaluation metrics include
precision, recall, F1 score (also known as Dice similarity
coefficient), and IoU (intersection over union, also known
as Jaccard index). The metrics are defined as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2 × Precision × Recall

Precision + Recall
=

2 × TP

2 × TP + FP + FN
(7)

IoU =
TP

TP + FP + FN
(8)
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Fig. 9 The training accuracy and loss curve of the proposed segmentation network



Int J Adv Manuf Technol (2019) 104:285–299 295

Fig. 10 Visualized comparison of the segmented masks between our proposed structure and other semantic segmentation methods

Table 4 Confusion matrix of
segmented mask prediction,
where positive denotes target
region and negative denotes
environment

Ground truth Prediction Category

Positive Positive True positive (TP)
Positive Negative False negative (FN)
Negative Positive False positive (FP)
Negative Negative True negative (TN)

Table 5 Comparative
performance of different
segmentation networks

Network structure Precision (%) Recall (%) F1 score (%) IoU (%)

Proposed network 93.37 94.21 93.75 88.30
Original U-SegNet 93.04 94.27 93.61 88.04
U-net 98.08 61.84 74.84 60.98
FCN 95.23 86.95 90.79 83.30
SegNet 66.44 66.49 66.30 50.07
Mask R-CNN 89.36 83.89 86.48 76.27
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Fig. 11 Precision-recall curves of different networks
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Before the evaluation, the segmented grayscale proba-
bilistic mask of the target was binarized. The binarization
threshold determines whether the pixel belongs to the region
of interest and thus has influence on the metric value. This
threshold is a normalized intensity value lies within the
range of 0 to 1. If normalized intensity value of a pixel is
over the threshold, the pixel is deemed as part of the target
region and given the maximal intensity, otherwise it is allo-
cated into the background and given the intensity value of 0.
To meet the above mentioned requirement of the proposed
system, a slightly higher binarization threshold of 0.4 was
adopted in this experiment as well as in the application of
the proposed system.

The performance of different segmentation networks
was evaluated accordingly using the evaluation metrics.
The results are presented in Table 5. It is shown that the
proposed modified U-SegNet structure outperforms others
in comprehensive metrics F1 score and IoU. Noticing that
the U-net and FCN show higher precision, the reason is
that the mask is too thin for the target and misses relatively
large part of the target though not covering beyond the target
area.

Moreover, to further evaluate the performance of the
networks under different segmented mask binarization
thresholds, the precision-recall curves of the networks with
different thresholds were plotted. Since Mask R-CNN is
an instance segmentation network which does not provide
a probabilistic mask for binary segmentation like other
networks, the result of Mask R-CNN is not presented in the
comparison of precision-recall curves. As shown in Fig. 11,
it is indicated that the proposed network structure achieves
better recall while providing the same precision and vice
versa.

4.4 Pose estimation results

In this experiment, using the segmented mask from the
segmentation, the corresponding area of depth image was
cropped and mapped into 3D point cloud. The 3D point
processing and ICP registration were implemented using
PCL [32]. The model candidates and the target point cloud
were first downsampled using voxel grid filter in [32] with
a leaf size of 0.01. The point cloud size was decreased

from around 28,000 points to 5,000 points, which largely
accelerated the ICP registration. For ICP registration, the
maximal correspondence distance between two aligned
point was set to 0.21. To judge the convergence and
determine the end of the iteration, the Euclidean fitness
epsilon was set to 0.01 and maximal iterations were set to
30.

In this experiment, the processing time of ICP registra-
tion between two point clouds was 0.8 s on average. For the
images that obtained secondary orientation from the orien-
tation determination network, the process time was doubled
to 1.6 s. In total, the whole processing time added up to 2
to 3 s from the original images captured by sensor to an
estimated pose.

The dataset annotated with pose from group II was used
to validate the model registration. ICP registration gave
a pose estimation of the rotation and translation matrix
between the model candidates and target point cloud along
with a fitness score. The matrix corresponded to smallest
score was adopted as the final rotation and translation
matrix and then the rotation angle and 3D position were
computed and compared with annotated value. The mean
absolute error values and standard deviations of the rotation
angle and 3D position were calculated to validate the
performance.

Also, to compare the influence of segmentation on the
final pose estimation results, the model registration result
from segmented target point cloud using the proposed
segmentation network was compared with the segmented
point cloud obtained using other networks. From Table 6,
it is shown that the proposed network gives 1.83◦ in
angle error and 0.0284 m in position error on average
with relatively small standard deviations, which outperform
others in the final pose estimation statistically. The
distribution histograms of angle and position error are
shown in Figs. 12 and 13 to illustrate the error distribution.
It could be observed that the majority of data is within a
relatively small error range, which is less than 5◦ in angle
error and less than 0.05 m in position error. As shown in the
illustration, 92% of the position errors and angle errors of
the proposed network are within this range. This estimation
error is within the spray radius of 0.08 m in the spray
painting process of the chair and the pose provided by this

Table 6 Mean error and
standard deviation of rotation
angle (◦) and 3D position (m)

Mask Mean error (◦) Standard deviation (◦) Mean error (m) Standard deviation (m)

Proposed network 1.830 1.044 0.0284 0.0209

Original U-SegNet 1.899 2.083 0.0294 0.0227

U-net 2.415 5.509 0.0617 0.1928

FCN 1.906 2.192 0.0286 0.0215

SegNet 4.771 13.674 0.0371 0.0326

Mask R-CNN 2.307 2.817 0.0446 0.0775
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Fig. 12 Angle error distribution histogram of pose estimation based
on different networks

system is sufficient for accomplishing the spray painting
operation accurately.

Furthermore, the experiment results were compared with
other pose estimation systems based on model registration.
In [18] and [20], the overall estimation result is deemed
successful when the angle error is within 15◦ and the
position error is within 0.05 m. In this sense, the results
obtained from the proposed system within this limit add
up to 92%, while the best performance of [20] is 80% and
[18] is 79%. Compared by the average error of rotation
angle, the mean angle error of the proposed system is
1.83◦, while the best performance given by [20] is 4.5◦
and by [18] is 3.95◦. In contrast, our proposed system
gives superior performance in angle estimation, and all the
angle estimation errors are less than 15◦ in our system.
When comparing the 3D position error, our system gives
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Fig. 13 Position error distribution histogram of pose estimation based
on different networks

an average of 0.0284 m, which is inferior to 0.011 m of
[20] and 0.007 m of [22]. Nevertheless, in comparison with
the proposed system that is set in industrial spray painting
environment, the vision system of [18], [20], and [22] is
relatively close to the target in the laboratory setting and
the target size is also smaller than the chair. Moreover, for
the distance of 1.5 m in this experiment, the RGB-D sensor
itself introduced an uncertainty of over 0.01 m in depth
value due to its own precision limit. When compared with
the real dimensions of the target, as mentioned in [22], the
3D position error compared to the dimensions of the chair
(0.44 m × 0.42 m × 0.92 m) is 5.4%, which is superior
to the [22] that gives 7.3%. On the other hand, the angle
is scale invariant in the pose estimation, and our proposed
system achieves notably higher performance.

5 Conclusions

In this paper, we present a pose estimation system based
on deep neural network and ICP registration for robotic
spray painting application. The system is able to meet
spray painting requirements, providing an accurate pose
estimation (1.83◦ angle error and 0.0284 m position error)
of the target from a relatively large safe distance (1.5 m)
under the insufficient illumination in industrial setting.
Notably, the estimation performance of target rotation angle,
which is scale invariant, largely surpasses the relevant pose
estimation systems based on model registration. From the
experiments and analysis mentioned above, the system has
three properties that help to achieve high effectiveness in
robotic spray painting application.

1. Firstly, the RGB-D sensor in the proposed system is
placed at a relatively large safe distance (1.5 m) from
the target, hence providing sufficient interspace for
robotic operation, while the algorithm still guarantees
enough estimation accuracy for the painting applica-
tions.

2. Secondly, a modified U-SegNet network structure is
designed and applied as the semantic segmentation
network. This network structure is capable of utilizing
small quantity of labelled training data to achieve
accurate segmentation (93.75% in F1 score metric) with
few outliers in poor lighting condition.

3. Thirdly, an orientation determination network is
designed to use the RGB image to determine the basic
orientations precisely (98.51% accuracy for primary
orientation and 100% for primary and secondary orien-
tations) of the target and to aid the selection of model
candidates accordingly. This method reduces the mis-
alignment caused by local minima in ICP registration,
making the final pose estimation result accurate.
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With prepared training data and models, the proposed sys-
tem can be applied to accurately estimate the pose of
targets with rotationally asymmetric figure such as furni-
ture, complex steel structure in spray painting application.
Moreover, the accuracy of the proposed system could be
further improved with the integration of a vision sensor
of higher precision such as structured light sensor based
on digital light processing technology. In the future, this
proposed system is expected to be integrated with model-
based robot trajectory generation methods and improve the
productivity as well as the quality of the automatic spray
painting manufactural lines.
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