
Pattern Recognition Letters 125 (2019) 303–309

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

BitStream: An efficient framework for inference of binary neural

networks on CPUs

✩

Yanshu Jiang

a , 1 , Tianli Zhao

a , b , 1 , ∗, Xiangyu He

b , Cong Leng

b , Jian Cheng

b

a Harbin University of Science and Technology, Department of Automation, China
b National Laboratory of Pattern Recoginition, Institute of Automation, Chinese Academy of Science, China

a r t i c l e i n f o

Article history:

Available online 18 April 2019

Keywords:

Convolutional neural networks

Binary neural networks

Image classification

a b s t r a c t

Convolutional Neural Networks (CNN) has been well-studied and widely used in the field of pattern

recognition. Many pattern recognition algorithms need features extracted from CNN models to adapt to

complex tasks, such as image classification, object detection, natural language processing and so on. How-

ever, to deal with more and more complex tasks, modern CNN models are becoming larger and larger,

contain large number of parameters and computation, leading to high consumption of memory, compu-

tational and power resources during inference. This makes it difficult to run CNN based applications in

real time on mobile devices, where memory, computational and power resources are limited. Binariza-

tion of neural networks is proposed to reduce memory and computational complexity of CNN. However,

traditional implementations of Binary Neural Networks (BNN) follow the conventional im2col-based con-

volution computation flow, which is widely used in floating-point networks but not friendly enough to

cache when it comes to binarized neural networks. In this paper, we propose BitStream, a general archi-

tecture for efficient inference of BNN on CPUs. In BitStream, we propose a simple but novel computation

flow for BNN. Unlike existing implementations of BNN, in BitStream, all the layers, including convolu-

tional layers, binarization layers and pooling layers are all calculated in binary precision. Comprehensive

analyses demonstrate that our proposed computation flow consumes less memory during inference of

BNN, and it’s friendly to cache because of its continuous memory access.

© 2019 Published by Elsevier B.V.

1

t

n

a

g

c

C

p

C

3

d

d

l

w

c

C

[

fi

B

p

p

i

t

p

e

o

R

s

h

0

. Introduction

Convolutional Neural Networks (CNN) has emerged as one of

he most widely-used algorithms in the field of pattern recog-

ition, for its superior performance on many tasks such as im-

ge classification [8,13,21] , object detection [14,19,20] , natural lan-

uage processing [6,11] and so on, for its superior performance

ompared to traditional methods [28–31] . However, most modern

NN models contain a large number of parameters and floating-

oint multiply-accumulate operations. For example, the popular

NN model VGG-16 [21] contains 138.85 M parameters and needs

0.76 G floating-point operations during inference. This makes it

ifficult to run CNN-based applications in real time on low-ended

evices where memory, computational and power resources are

argely constrained [12,16] . Nowadays, on the one hand, to deal

ith more and more complex tasks, modern CNN models are be-
✩ Conflict of interest : There are no conflicts of interest.
∗ Corresponding author.

E-mail address: tianli.zhao@nlpr.ia.ac.cn (T. Zhao).
1 These authors have contributed equally to this work.

a

i

l

w

i

ttps://doi.org/10.1016/j.patrec.2019.04.016

167-8655/© 2019 Published by Elsevier B.V.
oming larger and larger, on the other hand, the needs to run

NN-based applications on mobile devices are increasing rapidly

5,9,15] , this problem is thus becoming more and more critical.

Many effort s have been done to improve the computation ef-

ciency of CNN. An important class of these methods are called

inary Neural Networks (BNN) [3,4,18] . These methods present the

arameters and feature maps of CNN as +1 or −1 . In this way,

arameters and feature maps of CNN can be stored bit by bit

n memory. The model size can be then compressed as the fac-

or of 32 ×. What’s more, in binary neural network, the floating-

oint convolution can be calculated through efficient bitwise op-

rations, instead of expensive floating-point multiply-accumulate

perations. Computation complexity can be then largely reduced.

ecent results of BNN [18] have shown that BNN can get nearly

tate-of-the art performance on the task of image classification.

However, the efficient implementation of BNN on CPUs is still

 challenging problem and only few of previous works focus on

t. BMXNet [25] is an implementation of BNN on CPUs. It fol-

ows the traditional im2col-based convolution computation flow,

hich is widely used in floating-point convolution. However, when

t comes to binary neural networks, this computation flow is

https://doi.org/10.1016/j.patrec.2019.04.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.04.016&domain=pdf
mailto:tianli.zhao@nlpr.ia.ac.cn
https://doi.org/10.1016/j.patrec.2019.04.016

304 Y. Jiang, T. Zhao and X. He et al. / Pattern Recognition Letters 125 (2019) 303–309

Fig. 1. Computation flow of im2col-based convolution.

o

i

s

i

w

fi

i

k

T

t

i

2

i

p

v

v

p

w

w

I

∑

C

w

T
inefficient because of its uncontinuous memory access. Moreover,

in this computation flow, all the other layers, excluding convolu-

tional layers, are calculated in floating-point precision. This can not

only increase the memory consumption, but also reduce computa-

tion efficiency during the whole calculation. There are also other

works focusing on acceleration of BNN on GPUs [17] and FPGAs

[23,27] .

In this paper, we propose BitStream, a general architecture for

efficient inference of BNN on CPUs. In BitStream, all the kernels

and feature maps are stored in channel-first order. We propose a

simple but novel computation flow for BNN. Different from exist-

ing implementations of BNN, in BitStream, all the layers, includ-

ing convolutional layers, pooling layers and binarization layers are

computed in binary precision. Comprehensive analyses show that

the memory consumption of BitStream is largely reduced com-

pared to that of existing methods. The memory access in BitStream

is more continuous, which is more friendly to cache, and furthure

leading to its high computation efficiency. Extensive experimental

results show that BitStream is not only memory but also compu-

tation efficient compared to other existing algorithms. For exam-

ple, on dual core Coretex-A72 CPUs, BitStream is overall 10 × and

somtimes more than 30 × faster than floating-point im2col-based

convolution on some popular networks.

2. Preliminary

The algorithm introduced in this paper is closely related to

im2col-based convolution algorithm. In this section, we first de-

fine the notations used in the whole paper, and then review this

algorithm briefly. We will also introduce how calculation can be

accelerated when parameters and feature maps are all binarized,

that is to say, all the parameters and feature maps are +1 or −1 .

Finally, we will introduce traditional implementations of BNN and

their problems.

2.1. Notations

To improve the clarity of description, in this section, we briefly

introduce the notations used in this paper. Notations related to a

convolutional layer are shown in Table 1 . We use capital characters

A, B , . . . to denote floating-point matrices or tensors, and we use

lowercase unbolded characters a, b , . . . to denote a single number.

Lowercase bolded characters a, b, . . . are used to denote a floating-

point column vector. We use a sequence of lowercase characters

included in a pair of bracket [i, j] to denote index. And a capital

character followed by an index is used to denote the specific ele-

ment of the tensor. For example, A [i, j] is used to denote the ele-

ment at the i ′ th row and j ′ th column of the matrix (or tensor) A .

2.2. Im2col-based conovlution

It is well known that convolution can be done through im2col

and GEMM, which can be calculated efficiently via highly opti-

mized libraries [7,26] , this is so called im2col-based convolution.

Im2col-based convolution has been widely used in most mod-

ern deep learning frameworks [1,2,10] . Fig. 1 demonstrates the

main idea of im2col-based convolution algorithm. The main idea
Table 1

Notations used in this paper.

i c , i h , i w channels, height and width of inputs

k h , k w height and width of kernels

o c , o h , o w channels, height and width of results

s h , s w stride of convolution on height/width dimensions

p h , p w padding of convolution on height/width dimensions

e

e

a

1

v

f

∑

f im2col based convolution is to first transform the input tensor I

nto a flat matrix I ∗. As the kernel K sliding through both dimen-

ions of I with strides s h , s w

, the corresponding patch of I is vector-

zed and duplicated into a column of I ∗. For example, the sub-patch

ith blue dashed line borders is vectorized and duplicated to the

rst column of I ∗, the sub-patch with green dashed line borders

s vectorized and duplicated to the second column of I ∗, etc. The

ernel tersor K is directly reinterpreted as a o c × i c k h k w

matrix K

∗.

hen the results of convolution can be calculated with GEMM be-

ween K

∗ and I ∗: O = K

∗ × I ∗. The output O is automatically stored

n o c × o h × o w

order after GEMM, so no reordering is needed.

.3. Acceleration of binary innerproduct

Innerproduct is the center operation of convolution. When the

nputs of innerproduct are all binarized, that is, when all the in-

uts of inner product are +1 or −1 , it can be calculated efficiently

ia bitwise operation. Suppose that we have two d − dimensional

ectors w, x , each element of which is either +1 or −1 . The inner-

roduct between w and x can be then calculated as follows

T x =

d ∑

i =1

w [i] ∗ x [i] =

d ∑

i =1

I (w [i] ∗ x [i] = 1) −
d ∑

i =1

I (w [i] ∗ x [i]

= −1) (1)

here I (·) is a conditional function, defined as I (true) = 1 and

 (false) = 0 . On the other hand, it is obvious that:

d

i =1

I (w [i] ∗ x [i] = 1) +

d ∑

i =1

I (w [i] ∗ x [i] = −1) = d (2)

onsidering Eqs. (1), (2) can be then rewritten as:

T x = 2

d ∑

i =1

I (w [i] ∗ x [i] = 1) − d (3)

he first term of the right side of Eq. (3) can be accelerated via

fficient bitwise operations, this can be done in two steps. First,

ach N elements of floating-point vectors w and x are packed into

 single N − bit number, where the number +1 is replaced by bit

, and the number −1 is replaced by bit 0, generating two new

ectors w b and x b . The calculation can be then efficiently done as

ollows:

d

i =1

I (w [i] ∗ x [i] = 1) =

� d N � ∑

i =1

popcnt(X NOR (w b [i] , x b [i])) (4)

Y. Jiang, T. Zhao and X. He et al. / Pattern Recognition Letters 125 (2019) 303–309 305

Fig. 2. Floating-point binarized inner product (left) and its acceleration via bitwise

operations (right).

t

a

v

n

n

t

p

r

2

h

t

t

o

T

I

l

b

D

d

c

t

K

d

K

a

e

b

t

p

t

p

f

t

d

r

n

f

t

3

B

r

c

t

c

n

m

c

f

3

l

i

c

t

a

c
Where popcnt is an operation counting the number of bits set

o 1 in a N − bit number. Fig. 2 shows a simple example for d = 8

nd N = 8 . The binarized floating-point vectors w and x (the blue

ectors at the top left of Fig. 2) are first bit-packed as two 8 − bit

umbers w b and x b (the red vectors at the top right of Fig. 2). In-

er product between w and x can be then done through just one

ime of XNOR and popcnt between w b and x b . In this way, the com-

utation complexity of floating-point innerproduct can be largely

educed.

.4. Traditional implementations of BNN and their limitations

We have introduced im2col-based convolution algorithm and

ow computation can be accelerated when inputs of convolu-

ion are binarized. In this section, we briefly introduce tradi-

ional implementations of BNN and their problems. The left side

f Fig. 3 gives an overview of traditional implementations of BNN.

o calculate the convolution between binarized kernel K and input

 , im2col procedure is first done, (the top to middle part of the

eft side of Fig. 3). This procedure is exactly the same as what has

een described in Section 2.2 , generating a transformed matrix I ∗.

uring this stage, the kernel K , stored in order o c × i c × k h × k w

, is

irectly unfolded to a matrix K

∗ of size o c × i c k h k w

. The output of

onvolution O can be then calculated with O = K

∗ × I ∗. Considering

hat K

∗ and I ∗ are all binarized, to calculate multiplication between

∗ and I ∗ efficiently, bit-packing procedure is then done (the mid-
Fig. 3. Computation flow of traditional implementations of BNN
le to bottom part of the left side of Fig. 3). During this stage, for

∗, each N elements at the same row and adjacent columns of K

∗

re bit-packed into a single N − bit number, generating K

∗
b

. For I ∗,

ach N elements at the same column and adjacent rows of I ∗ are

it-packed into a single N − bit number, generating I ∗
b
. The output

ensor O of the convolution can be then calculated via XNOR and

opcnt operations between K

∗
b

and I ∗
b
.

There are mainly three problems for traditional implementa-

ions of BNN. First, the dimension of matrix I ∗ generated by im2col

rocedure is i c k h k w

× o h o w

, which is several times of the size of

eature maps. This will consume too much extra memory. Second,

he bit-packing of I ∗ needs too much shift and or operations. Third,

uring the bit-packing procedure, each N elements at the same

ow and adjacent columns of I ∗ are bit-packed into a single N − bit

umber. Memory access will be uncontinuous, which is not cache-

riendly. All these three problems will largely reduce the computa-

ion efficiency of BNN.

. Algorithm

In this section, we present our proposed computation flow for

NN. The overall architecture of our algorithm is shown in the

ight side of Fig. 3 , which consists of three stages, bit-packing,

hannel-first im2col and binarized matrix to matrix multiplica-

ion. All the kernels and feature maps in BitStream are stored in

hannel-first order, bit-packing procedure is done along the chan-

el dimension, just before channel-first im2col is done. In this way,

emory consumption can be largely reduced, and memory ac-

ess of the whole computation can be more continuous, which is

riendly to cache.

.1. Data layout

Before introducing our algorithm, we first describe the data

ayout of BitStream. The data layout of BitStream is designed to

mprove the continuousness of memory access during the whole

omputation. Detailed analyses will be given in Section 3.5 .

For kernels and feature maps of convolution, we store all of

hem in channel-first order. For i c feature maps, each of size i h × i w

,

re stored in memory as an array of size i h × i w

× i c . Kernels of a

onvolutional layer with i c inputs, o c outputs and kernel size of
(left) and optimized computation flow of BitStream (right).

306 Y. Jiang, T. Zhao and X. He et al. / Pattern Recognition Letters 125 (2019) 303–309

C

fi

d

g

d

d

m

t

3

m

s

v

o

3

t

a

C

a

p

t

fl

3

p

t

p

o

o

o

l

i

M

R

d

d

c

m

M

B

t

T

i

l

l

M

F

p

M

F

M
k h × k w

, are stored in memory as an array of size o c × k h × k w

× i c .

Bit-packed kernels (K

∗∗
b

at the bottom part of the right side of

Fig. 3) with height of
i c k h k w

N and width of o c , are stored in memory

as an array of size o c × i c k h k w
N , namely column-major order.

3.2. Bit-packing

In the first stage, bit-packing procedure is done (the top to

middle part of the right side of Fig. 3). Different from exist-

ing implementations of BNN, in BitStream, all the linear oper-

ations, such as BatchNormalization and Scale operations, are all

fused into bit-packing operation. Consider a stacked layers of

on v olution + BatchNorm + ReLU(Quantization) , we have shown in

Section 2.3 that:

w

T x = 2

� d N � ∑

i =1

popcnt(X NOR (w b [i] , x b [i])) − d (5)

Now we define:

w � x =

� d N � ∑

i =1

popcnt(X NOR (w b [i] , x b [i])) (6)

The whole computation of Con v olution + BatchNorm + ReLU

(Quant izat ion) can be formulated as:

o =

{
1 , α w

T x + b−μ√

σ+ ε + β > 0

0 , otherwise
(7)

From equations above, we can immediately get the equation as fol-

lows:

o =

{
1 , w � x > ξ
0 , otherwise

(8)

where:

ξ =

−β
√

σ+ ε
α + μ + d − b

2

(9)

We calculate a proper threshold for each channel via Eq. (8) in

advance, and perform bit-packing procedure with shift and or oper-

ations. During this stage, each N elements at the same location and

adjacent channels of the input tensor I are bit-packed into a sin-

gle N − bit number, where numbers greater than the corresponding

thresehold ξ are replaced by bit 1, and other numbers are replaced

by bit 0. Kernels are fixed after training, so for inference only com-

putation, they can be stored in arbitrary format without any extra

memory and time. In BitStream, kernels are all directly stored in

bit-packed format.

3.3. Binary convolution

After bit-packing procedure is done, binary convolution can be

calculated in two steps. First, channel-first im2col prcedure is per-

formed (the middle to bottom part of the right side of Fig. 3).

Channel-first im2col procedure is the same as what is described

in Section 2.2 , except that as the kernel sliding through the bit-

packed tensor I b along height and width dimensions with stride s h
and s w

, the corresponding sub-pactch of I b is unfolded and dupli-

cated to a row of I ∗∗
b

, instead of a column of I ∗∗
b

. The convolution

between binarized I and K can be then calculated efficiently via

XNOR and popcnt operations between I ∗∗
b

and K

∗∗
b

. Note that in this

way, the output O is automatically stored in channel-first order, so

no reordering is needed after computation.

After channel-first im2col procedure is done, binary matrix to

matrix multiplication between I ∗∗
b

and K

∗∗
b

is then calculated via

XNOR and popcnt operations (the bottom part of the right side of

Fig. 3). During this stage, each row of I ∗∗
b

and column of K

∗∗
b

are
rst combined with XNOR operation. Popcnt operations are then

one to count the number of bits set to 1 of the combined vector,

enerating a specific element of the output O . As what we have

escribed, the bit-packed kernel K

∗∗
b

is stored in column-major or-

er in memory, so during this stage, the memory access of both

atrices I ∗∗
b

and K

∗∗
b

are completely continuous, which is friendly

o cache.

.4. Binary pooling

Considering that for two single bits w b and x b , we have:

ax (w b , x b) = OR (w b , x b) (10)

o after bit-packing, max-pooling procedure can be done efficiently

ia OR operation. In this way, computation complexity and mem-

ry consumption can be further reduced.

.5. Analyses

In this section, we analyse BitStream and traditional implemen-

ations of BNN in terms of memory consumption, memory access

nd computation complexity. Consider a common stacked layers

on v + ReLU(Quant izat ion) + Pooling. To simplify our analyses, we

ssume that i c = o c , i h = i w

= o h = o w

, and the image size after

ooling is the half of the size of pooling input, which is usually

rue in most layers. We use γ to denote the number of bytes of a

oating-point precision number.

.5.1. Memory consumption

We first analyse the memory consumption of traditional im-

lementations of BNN. For convolutional layer, memory consump-

ion of traditional implementations of BNN can be divided into 4

arts, the memory of floating-point inputs, γ i c × i h × i w

, the mem-

ry of I ∗ generated by im2col procedure, γ i c k h k w

× o h o w

, the mem-

ry of bit-packed input I ∗
b
, which is

i c k h k w
8 × o h o w

and the memory

f floating-point output O , which is γ o c o h o w

, so for convolutional

ayer, memory consumption of traditional implementations of BNN

s:

 EM

con v
trad = γ i c i h i w

+ γ i c k h k w

o h o w

+

i c k h k w

8

× o h o w

+ γ o c o h o w

(11)

eLU (Quantization) layer is fused into the bit-packing proce-

ure, so in traditional implementations, ReLU (Quantization) layer

oesn’t consume any extra memory. For pooling layer, the memory

onsumption of traditional implementations mainly consists of the

emory of floating-point outputs of pooling:

 EM

pool

trad
= γ

o c o h o w

4

(12)

We then analyse the memory consumption of BitStream. In

itStream, inputs of binary convolutional layer are binarized, so

he memory needed by inputs of convolutional layer is i c
8 × i h i w

.

he memory for I ∗∗
b

generated by channel-first im2col procedure

s
i c k h k w

8 × o h o w

. The size of memory for result O of convolutional

ayer is γ o c o h o w

. So the memory consumption for convolutional

ayer of BitStream is:

 EM

con v
bs =

i c

8

× i h i w

+

i c k h k w

8

× o h o w

+ γ o c o h o w

(13)

or ReLU (Quantization) layer, the only needed memory is the bit-

acked output:

 EM

relu
bs =

o c

8

× o h o w

(14)

or pooling layer, the memory consumption of BitStream is:

 EM

pool

bs
=

o c × o h o w

(15)

8 4

Y. Jiang, T. Zhao and X. He et al. / Pattern Recognition Letters 125 (2019) 303–309 307

t

a

M

M

r

m

S

t

a

a

m

b

3

t

S

o

r

o

i

t

t

b

m

s

i

e

S

u

3

a

i

t

t

p

i

n

o

p

l

n

t

n

t

I

r

4

a

t

l

s

4

m

w

t

p

f

t

m

o

C

t

a

S

p

t

l

m

t

a

c

4

r

1

t

t

Table 2

Benchmarks of convolution.

Conv. [i c , i h , i w] [o c , k h , k w] [s h (s w), p h (p w)]

conv1 [96, 27, 27] [256, 5, 5] [1, 2]

conv2 [256, 13, 13] [384, 3, 3] [1, 1]

conv3 [384, 13, 13] [384, 3, 3] [1, 1]

conv4 [64, 56, 56] [192, 3, 3] [1, 1]

conv5 [64, 56, 56] [64, 3, 3] [1, 1]

conv6 [64, 56, 56] [128, 3, 3] [2, 1]

conv7 [128, 28, 28] [128, 3, 3] [1, 1]

conv8 [256, 14, 14] [256, 3, 3] [1, 1]
Under the assumption that i c = o c and i h = i w

= o h = o w

, the to-

al memory consumption of traditional implementations of BNN

nd BitStream are:

 EM

total
trad = M EM

con v
trad + M EM

pool

trad
= i c i

2
h [2 . 25 γ +

(
γ +

1

8

)
k h k w

]

(16)

 EM

total
bs = M EM

con v
bs + M EC relu

bs + M EM

pool

bs
= i c i

2
h

(
1

8
k h k w +

9

32
+ γ

)
(17)

espectively. The ratio between memory consumption of traditional

ethods and BitStream is:

M EM

total
trad

M EM

total
bs

=

2 . 25 γ + (γ +

1
8
) k h k w

9
32

+ γ +

1
8

k h k w

> min

(
2 . 25 γ
9

32
+ γ

,
γ +

1
8

1
8

)
(18)

From Eq. (18) we can see that the memory consumption of Bit-

tream is always less than that of traditional methods. The larger

he kernel size is, the more memory BitStream will save. For ex-

mple, for a common convolutional layer with kernel size of 3 × 3,

nd single floating-point numbers are used in full-precision feature

aps. In this situation, γ = 4 , then 8.53 × of memory will be saved

y BitStream.

.5.2. Memory access

In this section, we analyse the memory access of BitStream and

raditional implementations of BNN. The memory access of Bit-

tream is improved mainly in the procedure of bit-packing.

For traditional implementations of BNN, during the procedure

f bit-packing, each N elements at the same column and adjacent

ows of the matrix I ∗ are bit-packed into a single N − bit number

f the matrix I ∗
b
. These N elements of I ∗ are stored uncontinuous

n memory. Specifically, for these N elements, address offset be-

ween each two adjacent elements is γ o h o w

. This means that in

raditional methods, the memory access during the procedure of

it-packing is terribly uncontinuous, which is unfriendly to cache.

For BitStream, during the bit-packing procedure, each N ele-

ents at the same location and adjacent channels of the input ten-

or I are bit-packed into a single N − bit number of I b . Because the

nput tensor I is stored in memory with order i h × i w

× i c , these N

lements are stored in a continuous area of memory. So in Bit-

tream, the memory access during this procedure is totally contin-

ous.

.5.3. Computation complexity

The computation complexity of BitStream is reduced in two

spects. First, during the procedure of bit-packing, for traditional

mplementations of BNN, bit-packing procedure is performed on

he matrix I ∗ of size i c k h k w

× o h o w

. During this stage, i c k h k w

× o h o w

imes of shift and OR operations are nedded. For BitStream, bit-

acking procedure is done just before channel-first im2col. Dur-

ng this stage, only i c i h i w

times of shift and OR operations are

eeded. Under the assumption that i h = o h = i w

= o w

, k h k w

× of

perations are saved. Second, the pooling layer. In traditional im-

lementations of BNN, all the other layers, excluding convolutional

ayers, are computed in floating-point precision. Suppose the ker-

el size of pooling layer is k 2 p . Then for traditional implementa-

ions of BNN,
o c o h o w

4 × k 2 p floating-point comparison operations are

eeded. In BitStream, pooling layer is calculated through OR opera-

ions. During this stage, only
o h o w

4 × o c k
2
p

N OR operations are needed.

n this way, computation complexity of BitStream can be largely

educed.
. Experimental results

In this section, we report the experimental results. To evalu-

te our algorithm, we implement BitStream with C + and multi-

hreaded OpenMP. We benchmark our algorithm on two platforms

isted as follows:

• A72 × 2 : Dure-core Cortex-A72 up to 1.8GHZ with Linux.
• A53 × 4 : Quad-core Cortex-A53 up to 1.5GHZ with Linux.

To compare with other convolution algorithms, we evaluate

everal popular methods listed as follows:

• Im2col − Open : Floating-point im2col-based convolution im-

plemented in Caffe [10] , the General Matrix to Matrix Multipli-

cation is calculated with the highly optimized library OpenBLAS

[26] .
• BMXNet : The state-of-the-art of the traditional implementa-

tions of BNN. To compare with it fairly, we download the code

of BMXNet [25] from [24] and port it to Caffe.

.1. Experiments on different convolutional layers

We take 8 convolutional layers appearing frequently in most

odern CNN models [8,13,21,22] listed in Table 2 . For each layer,

e run each algorithm 50 times and take the average execution

ime. Results are shown in Fig. 4 . We can see that BitStream out-

erforms all the other convolution algorithms.

The left side of Fig. 4 shows the normalized runtime of dif-

erent algorithms on benchmark convolutional layers. Compared

o floating-point im2col-based convolution, BitStream can achieve

ore than 10 × acceleration on all the layers except conv 6. On 5

ut of all the 8 layers, BitStream can get even 30 × acceleration.

ompared to BMXNet, the state-of-the-art of traditional implemen-

ations of BNN, BitStream can get more than 5 × acceleration on

ll the layers except conv 6. On conv 2, conv 3, conv 7 and conv 8, Bit-

tream can be even more than 10 × faster.

The superiority of BitStream on speed is more obvious on the

latform of A 53 × 4. See the right side of Fig. 4 . BitStream is more

han 15 × faster compared to im2col-based convolution on all the

ayers. Compared to BMXNet, BitStream is overall 6 × faster. This is

ainly because that the cache size of A 53 × 4 CPUs is smaller than

hat of A 72 × 2 CPUs, so improving the continuousness of memory

ccess and reducing the memory consumption during computation

an bring more improvement of computation efficiency.

.2. Experiments on different networks

For experiments on different networks, we benchmark our algo-

ithm on four popular networks. VGG-16 [21] , Alexnet [13] , Resnet-

8 [8] and a VGG-like network on CIFAR-10, as the same architec-

ure described in [3] . In all the binary models, the first layer and

he last layer are not binarized. Results are shown in Fig. 5 .

308 Y. Jiang, T. Zhao and X. He et al. / Pattern Recognition Letters 125 (2019) 303–309

Fig. 4. Normalized runtime of different algorithms on different layers on A 72 × 2 (left) and A 53 × 4 (right).

Fig. 5. Normalized runtime of different algorithms on different networks on A 72 × 2 (left) and A 53 × 4 (right).

i

B

T

o

t

s

s

o

s

s

B

s

m

o

T

4.3. Memory consumption

We have analysed theoretically in Section 3.5 that BitStream

can largely reduce the memory consumption compared to tradi-

tional methods, in this section, we report the experimental results

of memory consumption of different algorithms. Note that in these

results, all the memory consumption, including memory for pa-

rameters, inputs and outputs of layers, and intermediate memory

needed during computation are considered. We evaluate the mem-

ory consumption of different algorithms on different layers and

networks decribed in the previous Section, results are shown in

Fig. 6 .

The left side of Fig. 6 shows the comparison of memory con-

sumption of different algorithms on different layers. Interestingly,

in the layer conv 5, the memory consumption of BMXNet is even

larger than that of floating-point im2col-based convolution. And
n layers conv 4, conv 6 and conv 7, the memory consumption of

MXNet and floating-point im2col-based convolution are similar.

his is mainly because that BMXNet needs an extra area of mem-

ry to store the bit-packed input I ∗
b

(see Fig. 3). In some situa-

ions, the size of this area of memory may be larger than the

ize saved by binarization of convolutional parameters. We can

ee from this figure that compared to BMXNet, BitStream can save

verall 5 × memory on benchmark convolutional layers.

The right side of Fig. 6 shows the normalized memory con-

umption of different algorithms on different networks. We can

ee that on most networks, more than 2.5 × memory is saved by

itStream compared to BMXNet. This ratio is smaller than the re-

ults shown in the left side, this is because that in all the binary

odels, the first layer and last layer are not binarized, the mem-

ry consumption of all the algorithms on these layers are the same.

he ratio of memory saved by BitStream is then reduced.

Y. Jiang, T. Zhao and X. He et al. / Pattern Recognition Letters 125 (2019) 303–309 309

Fig. 6. Normalized memory overhead of different algorithms on different layers (left) and different networks (right).

5

e

B

s

t

r

m

p

i

o

t

c

R

[

[

[

[

[

[

[

[

[

. Conclusion

In this paper, we propose BitStream, a general framework for

fficient inference of Binary Neural Networks (BNN) on CPUs. In

itStream, we propose a simple but novel memory management

trategy, as well as a new computation flow for BNN. Compared

o existing implementations of BNN, our algorithm can not only

educe memory consumption, but also improve the continuous of

emory access during the inference of BNN. Computation com-

lexity is also largely reduced. Comprehensive analyses and exper-

ments on different networks and hardware platforms show that

ur algorithm outperforms traditional implementations of BNN in

he aspects of both memory consumption and computation effi-

iency.

eferences

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray,
B. Steiner, P.A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zhang,

Tensorflow: a system for large-scale machine learning, CoRR (2016) arXiv: 1605.

08695 .
[2] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,

Z. Zhang, Mxnet: a flexible and efficient machine learning library for heteroge-
neous distributed systems, CoRR (2015) arXiv: 1512.01274 .

[3] M. Courbariaux, Y. Bengio, Binarynet: training deep neural networks with
weights and activations constrained to + 1 or −1, CoRR (2016) arXiv: 1602.

02830 .

[4] M. Courbariaux, Y. Bengio, J. David, Binaryconnect: training deep neural net-
works with binary weights during propagations, CoRR (2015) arXiv: 1511.00363 .

[5] N.D. Lane , P. Georgiev , Can Deep Learning Revolutionize Mobile Sensing? in:
Proceedings of the 16th International Workshop on Mobile Computing Systems

and Applications, 2015, pp. 117–122 .
[6] C. Dos Santos , M. Gatti de Bayser , Deep convolutional neural networks for sen-

timent analysis of short texts, COLING, 2014 .

[7] G. Guennebaud, B. Jacob, et al., Eigen v3, 2010, (http://eigen.tuxfamily.org).
[8] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,

CoRR (2015) arXiv: 1512.03385 .
[9] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, L.V. Gool, AI

Benchmark: running deep neural networks on android smartphones, CoRR
(2018) arXiv: 1810.01109 .

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
T. Darrell, Caffe: convolutional architecture for fast feature embedding, 2014

arXiv: 1408.5093 .

[11] Y. Kim, Convolutional neural networks for sentence classification, CoRR (2014)
arXiv: 1408.5882 .

[12] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, D. Shin, Compression of deep con-
volutional neural networks for fast and low power mobile applications, CoRR

(2015) arXiv: 1511.06530 .
[13] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet Classification with Deep Con-

volutional Neural Networks, in: F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Wein-
berger (Eds.), Advances in Neural Information Processing Systems 25, Curran

Associates, Inc., 2012, pp. 1097–1105 .
[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.E. Reed, C. Fu, A.C. Berg, SSD: Single

shot multibox detector, CoRR (2015) arXiv: 1512.02325 .
[15] S.S.L. Oskouei, H. Golestani, M. Kachuee, M. Hashemi, H. Mohammadzade,

S. Ghiasi, Gpu-based acceleration of deep convolutional neural networks on

mobile platforms, CoRR (2015) arXiv: 1511.07376 .
[16] E. Park , D. Kim , S. Kim , Y. Kim , G. Kim , S. Yoon , S. Yoo , Big/little deep neu-

ral network for ultra low power inference, in: 2015 International Conference
on Hardware/Software Codesign and System Synthesis (CODES + ISSS), 2015,

pp. 124–132 .
[17] F. Pedersoli , G. Tzanetakis , A. Tagliasacchi , Espresso: Efficient forward propaga-

tion for binary deep neural networks, in: International Conference on Learning
Representations, 2018 .

[18] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: imagenet classifi-

cation using binary convolutional neural networks, CoRR (2016) arXiv: 1603.
05279v4 .

[19] J. Redmon, A. Farhadi, Yolov3: An incremental improvement, CoRR (2018)
arXiv: 1804.02767 .

20] S. Ren, K. He, R.B. Girshick, J. Sun, Faster R-CNN: towards real-time object de-
tection with region proposal networks, CoRR (2015) arXiv: 1506.01497 .

[21] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, CoRR (2014) arXiv: 1409.1556 .
22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.E. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, CoRR (2014)
arXiv: 1409.4842 .

23] Y. Umuroglu, N.J. Fraser, G. Gambardella, M. Blott, P.H.W. Leong, M. Jahre,
K.A. Vissers, FINN: A framework for fast, scalable binarized neural network in-

ference, CoRR (2016) arXiv: 1612.07119 .

24] H. Yang, M. Fritzsche, C. Bartz, C. Meinel, Bmxnet: An open-source binary neu-
ral network implementation, 2017a, (https://github.com/hpi-xnor/BMXNet).

25] H. Yang, M. Fritzsche, C. Bartz, C. Meinel, Bmxnet: an open-source binary neu-
ral network implementation based on mxnet, CoRR (2017) arXiv: 1705.09864 .

26] X. Zhang, Openblas: An optimized blas library, 2018, (http://www.openblas.
net/).

[27] R. Zhao , W. Song , W. Zhang , T. Xing , J.-H. Lin , M. Srivastava , R. Gupta ,

Z. Zhang , Accelerating binarized convolutional neural networks with soft-
ware-programmable FPGAS, FPGA, 2018, pp. 15–24 .

28] X. Bai , H. Yang , J. Zhou , P. Ren , J. Cheng , Data-Dependent Hashing Based
on p-Stable Distribution, IEEE Trans. Image Processing 23 (12) (2014) 5033–

5046 .
29] X. Bai , C. Liu , P. Ren , J. Zhou , H. Zhao , Y. Su , Object Classification via Feature

Fusion Based Marginalized Kernels, IEEE Geosci. Remote Sensing Lett 12 (1)

(2015) 8–12 .
30] X. Bai , C. Yan , H. Yang , L. Bai , J. Zhou , Edwin Robert Hancock: Adaptive hash

retrieval with kernel based similarity, Pattern Recognition 75 (2018) 136–
148 .

[31] C. Wang , X. Bai , S. Wang , J. Zhou , P. Ren , Multiscale Visual Attention Networks
for Object Detection in VHR Remote Sensing Images, IEEE Geosci. Remote Sens-

ing Lett. 16 (2) (2019) 310–314 .

http://arxiv.org/abs/1605.08695
http://arxiv.org/abs/1605.08695
http://arxiv.org/abs/1605.08695
http://arxiv.org/abs/1511.00363
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0006
http://eigen.tuxfamily.org
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1810.01109
http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1511.06530
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0012
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1511.07376
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0016
http://arxiv.org/abs/1603.05279v4
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1612.07119
https://github.com/hpi-xnor/BMXNet
http://arxiv.org/abs/1705.09864
http://www.openblas.net/
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0028
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0028
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0028
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0028
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0028
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0028
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0031
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0031
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0031
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0031
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0031
http://refhub.elsevier.com/S0167-8655(19)30123-0/sbref0031

	BitStream: An efficient framework for inference of binary neural networks on CPUs
	1 Introduction
	2 Preliminary
	2.1 Notations
	2.2 Im2col-based conovlution
	2.3 Acceleration of binary innerproduct
	2.4 Traditional implementations of BNN and their limitations

	3 Algorithm
	3.1 Data layout
	3.2 Bit-packing
	3.3 Binary convolution
	3.4 Binary pooling
	3.5 Analyses
	3.5.1 Memory consumption
	3.5.2 Memory access
	3.5.3 Computation complexity

	4 Experimental results
	4.1 Experiments on different convolutional layers
	4.2 Experiments on different networks
	4.3 Memory consumption

	5 Conclusion
	References

