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a b s t r a c t 

Scene text detection has attracted many researches due to its importance to various applications. How- 

ever, current approaches could not keep a good balance between accuracy and speed, i.e., a high- 

performance accuracy but with a low processing speed, or vice-versa. In this paper, we propose a novel 

model, named PyrBoxes, for efficient and effective multi-scale scene text detection. PyrBoxes consists of 

an SSD-based backbone that utilizes deep layers with strong semantics to detect texts in various sizes, 

and a proposed grouped pyramid module that leverages basic layers to append detailed locations into 

detection. Most existing detectors discard features from the basic layers due to the efficiency issue. We 

argue these layers contain fine-grained information, which is complementary to high-level semantics. 

Based on this, the grouped pyramid module combines the basic layers recursively into a detection layer 

via a top-down partition and a bottom-up group. Extensive experiments on both horizontal and oriented 

benchmarks, including ICDAR2013 Focused Scene Text, ICDAR2015 Incidental Text and COCO-Text, demon- 

strate that PyrBoxes achieves state-of-the-art or highly competitive performance compared with base- 

lines, while runs significantly faster at inference. Furthermore, by experimenting on another ChiTVText 

dataset, PyrBoxes shows great generality to Chinese and long text lines. By visualizing some qualitative 

results, as expected, PyrBoxes provides more accurate locations and reduces the rate of missed detections, 

especially for small-sized texts. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Scene text detection, which aims to locate texts in natural im-

ages, has drawn increasing interests from both artificial intelligence

and computer vision communities. The popularity is mainly due

to its essential role in extracting rich semantic information that is

highly relevant to scenes or objects. Therefore it has been applied

to a wide range of applications, such as geo-location, caption read-

ing and image interpretation. 

Although extensive studies have been carried out in the past

few years, scene text detection is still challenging due to several

difficulties, e.g., low resolution (small texts), low visual quality,

complex deformations and cluttered background. Moreover, each

natural image tends to include multiple text regions in various

scales. Take ICDAR2013 dataset for example, each image contains

four text regions in varying sizes on average. 
� Conflict of interest. ia.ac.cn, jd.com, ucas.ac.cn. 
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To detect texts in different scales, multi-scale inputs (image

yramid) form the basis of a standard solution. As shown in

ig. 1 (a), image pyramid resizes each input image to several differ-

nt sizes and runs multi-passes of the network for all-scale inputs.

mage pyramid could capture text features across a wide range

f sizes and accordingly boosts detection performance as shown

n [5,21] . However, it increases the processing time considerably,

.g., by 8 times in [10] , making it impractical for real applications,

specially for mobile platforms with limited computation capabil-

ty and power. Image pyramid, therefore, is used only at inference

ather at training stage, which further leads to an inconsistency be-

ween the training and inference phases. 

To accelerate speed for multi-scale text detection, researches

urn to exploit in-network layers of the deep convolutional net-

ork (deep ConvNet). As shown in Fig. 1 (b), a deep ConvNet

omputes a feature hierarchy layer by layer and forms an inher-

nt multi-scale shape by using the subsampling operation. How-

ver, the feature pyramid introduces a large semantic gap between

ifferent depths. It will harm the feature representation when

ow-level and high-level features are directly used. To avoid this

roblem, existing methods like TextBoxes [10] discard reusing the

https://doi.org/10.1016/j.patrec.2019.04.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.04.022&domain=pdf
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(a) Image pyramid (b) Feature pyramid

Fig. 1. (a) Image pyramid involves multi-passes of the network for multi-scale inputs. It is of high accuracy but low speed. (b) Feature pyramid runs the network only once 

and uses multiple deep layers to make predictions. It is of high speed but low accuracy. 
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ower-level features but build a pyramid starting from higher ones

n the network, e.g., con v 4 _ 3 in VGG16 network [18] . Note that

on v 4 _ 3 represents the third convolutional layer (the second num-

er ’3’) in the fourth convolutional block (the first number ’4’) of

GG16, the same below. These methods accelerate inference time,

ut perform poor due to the lack of fine-grained information, es-

ecially for small-size text detection. 

The goal of this paper is to detect multi-scale scene texts with

roper speed and accuracy. To achieve this goal, we propose a

ovel model, named PyrBoxes, that involves an SSD-based back-

one and a grouped pyramid module. Inspired by SSD [13] , a

eneric object detector, PyrBoxes adds several convolutional lay-

rs (added layers) with size decreased progressively to the end of

GG16 network. The added layers are leveraged directly for multi-

cale text detection due to their strong semantics. Since resolutions

f the added layers are too small to contain location details, we

ropose the grouped pyramid module for more accurate text de-

ection. We argue that layers in the base network (basic layers)

ndergo only a few times of downsamplings and transformations,

.g., convolution and activation operations, therefore their corre-

ponding receptive fields are big enough to contain sufficient loca-

ion information. However, among the basic layers, the shallower

ayers have large feature maps but low-level semantics, while the

eeper layers behave oppositely [23] . It is not advisable to apply

he basic layers to make predictions directly. To maximize fine-

rained information with strong semantics, the grouped pyramid

odule combines the basic layers recursively into a single layer

ia a top-down partition and a bottom-up group. The resulted layer

ompanying with the above added layers make the multi-scale text

etections with a more robust feature representation and a faster

peed. 

We conduct extensive experiments on standard benchmarks, in-

luding the horizontal (ICDAR2013 Focused Scene Text) and the

riented (ICDAR2015 Incidental Scene Text and COCO-Text) text

atasets, and our newly constructed Chinese text dataset ChiTV-

ext. Evaluations demonstrate that PyrBoxes achieves the new

tate-of-the-art or highly competitive performance, while runs at

east 7x faster than baselines. Furthermore, by analyzing results

n texts with different scales and qualitative detections, we find

hat PyrBoxes exhibits more accurate locations and a lower rate of

issed detections, especially for small-size texts. Our code will be

ade publicly available soon. 

. Related work 

Scene text detection has received significant attention due to

he use of deep ConvNets. Quite a few systems have been reported

ocusing on different aspects, e.g., accuracy and speed. 
For higher accuracy, TextFlow [19] utilizes the minimum cost

ow network, with character candidates detected by cascade

oosting, to solve the error accumulation problem in traditional

ulti-step approaches. This model achieves good performance but

uns at 1.4s per image. Wenhao [5] proposes a direct regression-

ased method for multi-oriented text detection. By predicting the

ffsets from a given point rather than a default anchor, it achieves

-measure of 86% on ICDAR2013 benchmark with 0.9s per image. 

For faster processing speed, Fast TextBoxes [10] modifies SSD

y using irregular convolutional kernels and long anchors. It ac-

elerates inference time with 0.09s per image, but sacrifices a lot

n accuracy. To improve detection performance, TextBoxes uses the

mage pyramid rather than one-scale input. Though achieving a big

erformance boost, TextBoxes needs 0.73 s to detect one image.

CRN [2] , modified from YOLO [16] , achieves high accuracy with

ulti-scale inputs but a slow detection speed at 1.27 s per image.

ith only a single-scale input, FCRN accelerates inference speed by

everal times but also with a noticeable performance drop. 

Our proposed PyrBoxes leverages in-network pyramid features,

ut has a significant difference with FPN [11] , a state-of-the-art

eneric object detector. FPN detects objects by first upsampling

eature maps one by one then making detections from each of the

esulting layers at all levels. Though with performance improve-

ents, FPN brings a heavy burden on both speed (0.25 s each im-

ge, carried out on M40 GPU) and memory. To trade off between

ccuracy and speed, we propose the novel grouped pyramid mod-

le to recursively group basic layers into a single layer that con-

ains both fine-grained information and strong semantics. Combin-

ng the grouped layer with the added layers, PyrBoxes makes more

ccurate and efficient predictions with only a single-scale input. 

. Methodology 

The architecture of PyrBoxes is depicted in Fig. 2 . The whole

etwork consists of an SSD-based convolutional backbone and a

rouped pyramid module that includes a top-down partition and a

ottom-up group. In the following sections, we will give details of

hese components. 

.1. SSD-based convolutional backbone 

Following SSD, PyrBoxes inherits the popular VGG-16 network

y keeping the layers from conv 1 to conv 5, converting the last

wo fully-connected layers into convolutional layers ( conv 6 and

onv 7), truncating the classification layers ( fc -10 0 0 and softmax),

nd adding a series of convolutional layers ( conv 8 to conv 11) to the

nd with sizes decreased progressively. The added layers ( conv 7
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Fig. 2. (left) Network architecture of PyrBoxes. (right) Architecture of the Grouped Pyramid Module, including the top-down partition and the bottom-up group. 
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to conv 11) with different receptive fields are leveraged as predic-

tion layers, as the blue part shown in Fig. 2 . For each prediction

layer, each feature map location simultaneously outputs the text

presence scores and bounding boxes. The output boxes include ori-

ented quadrangles and minimum horizontal rectangles containing

the corresponding oriented quadrangles. PyrBoxes achieves it by

predicting the regression of offsets from a number of default an-

chors. In this paper, we only use horizontal rectangles instead of

quadrangles as default anchors for a simpler matching strategy. An-

chors tile each feature map with various sizes and aspect ratios.

Considering scene texts tend to have a larger variation in aspect

ratios, e.g., short and long texts, we use 6 aspect ratios including

{1,2,3,5,7,10} for each anchor to better cover all texts, as TextBoxes

[10] did. 

More precisely, for each horizontal anchor b 0 = ( x 0 , y 0 , w 0 , h 0 ) ,

where ( x 0 , y 0 ) means the center point and w 0 and h 0 are

the width and height, it can be written as a quadrangle q 0 =
( x q 

01 
, y 

q 
01 

, x 
q 
02 

, y 
q 
02 

, x 
q 
03 

, y 
q 
03 

, x 
q 
04 

, y 
q 
04 

) . The relationship between b 0 

and q 0 is formulated in Eq. (1) , where b 0 is the corresponding min-

imum enclosing the horizontal rectangle of q 0 . 

x q 
01 

= x 0 − w 0 / 2 , y q 
01 

= y 0 − h 0 / 2 , 

x q 
02 

= x 0 + w 0 / 2 , y q 
02 

= y 0 − h 0 / 2 , 

x q 
03 

= x 0 + w 0 / 2 , y q 
03 

= y 0 + h 0 / 2 , 

x q 
04 

= x 0 − w 0 / 2 , y q 
04 

= y 0 + h 0 / 2 . (1)

The predicted horizontal and quadrilateral offsets are formu-

lated as ( �x , �y , �w , �h ) and ( �x 
q 
1 
, �y 

q 
1 
, �x 

q 
2 
, �y 

q 
2 
, �x 

q 
3 
,

�y 
q 
3 
, �x 

q 
4 
, �y 

q 
4 
) respectively. Thus, a horizontal rectangle b =

( x, y, w, h ) and a quadrangle q = ( x q 
1 
, y 

q 
1 
, x 

q 
2 
, y 

q 
2 
, x 

q 
3 
, y 

q 
3 
, x 

q 
4 
, y 

q 
4 
) text

boundaries are detected with confidence c , as formatted in

Eq. (2) . 

x = x 0 + w 0 �x , w = w 0 exp ( �w ) , 

y = y 0 + h 0 �y , h = h 0 exp ( �h ) , 

x q n = x q 
0 n 

+ w 0 �x q n , n = 1 , 2 , 3 , 4 

y q n = y q 
0 n 

+ h 0 �y q n , n = 1 , 2 , 3 , 4 . (2)

During network training, given all detected boxes in an image,

PyrBoxes follows the matching scheme in SSD to match minimum
ounding horizontal rectangles to rectangle ground-truths accord-

ng to their overlaps. The predicted quadrangles are not used for

atching due to inefficiency. 

.2. Grouped pyramid module 

Apart from the added layers mentioned above, the grouped

yramid module is proposed to further leverage the basic layers of

onvNet for prediction, as the gray part shown in Fig. 2 . It consists

f a top-down partition and a bottom-up group. 

.2.1. Top-down partition 

As shown in Fig. 2 , the top-down partition iteratively divides

he basic layers into different blocks and finally forms a pyramid

ith an increasing number of blocks from the top-down direction.

uppose there are n basic layers. At the first level of the pyramid

 l = 0 ), all layers are put into one block. At l = 1 , if n is even, layers

ill be divided equally into two sub-blocks, each of which contains

 /2 layers. If n is odd, the middle layer will be put into a single

lock, and layers on either side are divided into two sub-blocks

espectively. Similarly, layers in sub-blocks will be further divided

nto smaller blocks until the number of layers in the latest block

s less than three. After the top-down partition, PyrBoxes obtains a

yramid with max (1, � log 2 n � ) levels. 

Specifically, for the VGG16-based network, the basic layers in-

lude { con v 2 _ 2 , con v 3 _ 3 , con v 4 _ 3 , con v 5 _ 3 , con v 6 } and accordingly

orm a 2 − l e v el pyramid. Considering the large memory footprint

f conv 1, PyrBoxes does not include it in the pyramid. 

.2.2. Bottom-up group 

Based on the above pyramid, the bottom-up group combines

ayers recursively via a bottom-up way, and finally outputs a single

ayer by integrating all basic layers. After the top-down partition, at

he bottom level of the pyramid, each block contains two or three

ayers with different resolutions. If there are two layers, one with

ower resolution will be first upsampled, i.e., ’UP’ in Fig. 2 , via a

econvolution operation, then combined with the other one via an

lement-wise summarization. If there are three layers, apart from

he one with the lowest resolution upsampled, the one with the

ighest resolution will be downsampled, i.e., ’DW’ in Fig. 2 , via a

onvolution operation. Then these three layers are combined into
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ne layer. Similarly, for upper levels, layers in each block continue

o be combined and finally form a single layer for prediction. 

Specifically, for the VGG16-based network, { con v 2 _ 2 , con v 3 _ 3 }
nd { con v 5 _ 3 , con v 6 } are firstly grouped into group 23 and group 56, 

hen { group23 , group56 , con v 4 _ 3 } are grouped into the final com- 

ined layer group 23456. PyrBoxes uses group 23456 layer together

ith the added layers (conv7 to conv11) as the prediction layers. 

.3. Label generation 

For each image, we generate both quadrangular and rectangu-

ar ground truths if it has only one of them. For a quadrangle

 q = ( q 1 , q 2 , q 3 , q 4 ) = ( ̃  x 
q 
1 
, ̃  y 

q 
1 
, ̃  x 

q 
2 
, ̃  y 

q 
2 
, ̃  x 

q 
3 
, ̃  y 

q 
3 
, ̃  x 

q 
4 
, ̃  y 

q 
4 
) , where ( q 1 , q 2 , q 3 ,

 4 ) are the four vertices in clockwise order with q 1 being the top-

eft one, its minimum horizontal rectangle enclosing G q is format-

ed as G h = ( ̃  x h 
0 
, ̃  y h 

0 
, ̃  w 

h 
0 
, ̃  h h 

0 
) , where ( ̃  x h 

0 
, ̃  y h 

0 
) is the center and 

˜ w 

h 
0 

nd 

˜ h h 
0 

are the width and height. Similarly, for each horizontal

ectangle G h = ( ̃  x h 
0 
, ̃  y h 

0 
, ̃  w 

h 
0 
, ̃  h h 

0 
) , its corresponding quadrangle is ob-

ained as G q = ( q 1 , q 2 , q 3 , q 4 ) = ( ̃  x 
q 
1 
, ̃  y 

q 
1 
, ̃  x 

q 
2 
, ̃  y 

q 
2 
, ̃  x 

q 
3 
, ̃  y 

q 
3 
, ̃  x 

q 
4 
, ̃  y 

q 
4 
) by fol-

owing Eq. (1) . 

.4. Multi-task loss function 

PyrBoxes simultaneously fulfills the classification task and re-

ression task. Its multi-task loss is represented as: 

 ( x, c, l, g ) = 

1 

N 

(
L con f ( x, c ) + αL loc ( x, l, g ) 

)
(3) 

 loc is the smooth L 1 loss [1] operated on the matched quadrilat-

ral ground truths ( g ) and regressed text quadrangles ( l ). L conf is

 standard 2-class softmax loss. N is the number of matched an-

hors. If N = 0 , we set the loss to 0. The balance between these

wo losses is controlled by the parameter α. We set α = 1 in our

xperiments. 

. Experiments 

To evaluate PyrBoxes, we conduct extensive experiments on

oth horizontal and oriented benchmarks widely used in the lit-

rature. We will give a detailed description of these datasets for

odel training and inference, experimental implementation, re-

ults with comparisons, and ablation study respectively. 

.1. Datasets 

SynthText [2] contains 80 0,0 0 0 synthetic images. Each image

as multiple texts overlaid on appropriate background regions

ampled from natural images. These texts look realistic as the over-

aying follows carefully set up configurations and a well-set learn-

ng algorithm. 

ICDAR2013 Focused Scene Text (IC13) contains 229 training

nd 233 test images. Texts in these images are from sign boards,

osters and other objects with axis-aligned bounding box annota-

ions. 

ICDAR 2015 Incidental Text (IC15) contains 10 0 0 training and

00 test images captured by wearable cameras with relatively low

esolutions. Each image includes several oriented texts annotated

y four vertices of the quadrangles. 

COCO-Text [20] is the largest text detection dataset which

omes from the MS COCO dataset. It contains 63686 images, where

3,686 images are used for training, 10,0 0 0 for validation and

0,0 0 0 for test. Although texts in this dataset are in arbitrary ori-

ntations, text regions are annotated in the form of axis-aligned

ounding boxes. 

ChiTVText is our newly constructed dataset for the task of Chi-

ese detection. We firstly collect over one hundred Chinese news
ideos from 59 TV programs. Then we sample keyframes evenly

rom these videos and remove duplicate ones. We label the re-

aining images with axis-aligned rectangles. Texts in ChiTVText

re annotated with line-level boxes, which therefore are longer.

inally, we build ChiTVText with 5454 training and 621 test im-

ges. As depicted in Fig. 3 , ChiTVText mainly contains superim-

osed captions and complex scene texts. 

.2. Implementation details 

.2.1. Training 

PyrBoxes is optimized by SGD with back-propagation [8] . Mo-

entum and weight decay are set to 0.9 and 5 × 10 −4 respec-

ively. Learning rate is initialized to 10 −3 and decayed to 10 −4 after

0k iterations. Following TextBoxes, all training images are aug-

ented online with random crop and deformation, and lastly re-

ized to 300 × 300. We firstly pre-train PyrBoxes on SynthText for

20k iterations, then finetune it on each of benchmarks. The num-

er of iterations at finetuning is decided by the sizes of the bench-

arks. Note that for ChiTVText, we only train PyrBoxes on ChiTV-

ext training set from scratch for 120k iterations. All implementa-

ions are carried out on a PC with one Nvidia Titan X GPU. 

.2.2. Inference 

For each test image, PyrBoxes simultaneously outputs text pres-

nce scores, quadrilateral and corresponding horizontal boundaries

f texts. The outputs then undergo a two-step NMS process to fil-

er out redundant boxes. Since NMS operating on quadrilaterals is

ore time-consuming than that on horizontal rectangles, we firstly

pply NMS on minimum horizontal rectangles with a higher IOU

hreshold, e.g., 0.5. This step is much less time-consuming and re-

oves many irrelevant boxes. Then the NMS on quadrangles is ap-

lied among remaining candidate boxes with a lower IOU thresh-

ld, e.g., 0.2. The two-step NMS is much faster than one-step NMS

irectly operated on quadrangles. After that, we get the final text

etections. 

.3. Experiments on horizontal text benchmarks 

We firstly evaluate PyrBoxes on horizontal text datasets, i.e.,

C13 datasets and ChiTVText, to demonstrate its effectiveness. 

.3.1. ICDAR 2013 focused scene text (IC13) 

Experimental results are depicted in Table 1 . Compared to ex-

sting methods, PyrBoxes achieves highly competitive performance,

hile requires merely 0.11 s per image at inference. Specifically,

RPN and FEN obtain higher accuracies but with 3 × or 9 × slower

han ours. SegLink accelerates the inference time but accompanied

ith performance reduction. Moreover, as closely related works to

urs, Fast-TextBoxes obtains faster speed but lower accuracy with-

ut leveraging the basic layers, while TextBoxes uses image pyra-

id to improve accuracy but is much time-consuming (0.73s per

mage). PyrBoxes achieves a good trade-off between accuracy and

peed thanks to the proposed grouped pyramid module. Thus, Pyr-

oxes is appealing when taken into account both accuracy and

peed, e.g., mobile platforms or wearable devices. Qualitative de-

ections including comparisons and failure cases are shown in

ig. 3 . As shown, PyrBoxes exhibits more accurate locations and a

ower rate of missed detections than TextBoxes ++ , which is consis-

ent with the above analysis. However, PyrBoxes performs poor on

ome digits and large-size texts, and outputs some detected boxes

overing background regions along with the text regions. We at-

ribute it to the use of fixed anchors, where the scales and po-

itions of anchors could not be adjusted during network training.

s scene texts tend to have a large variation in sizes, aspect ratios

nd orientations, fixed anchors are insufficient to cover diverse text

atterns and thus lead to degenerate models. 
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Fig. 3. Qualitative results of PyrBoxes on IC13 (column 1), ChiTVText (column 2), IC15 (column 3), COCO-Text (column 4) and failure detections (column 5). The last row 

of column 1 ∼ 4 are detection results from TextBoxes ++ . For column 1 ∼ 4, the green boxes are detections; For column 5, the red boxes are detections and green boxes are 

ground truths. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Performance comparison on IC13 dataset. Precision (P), Recall (R), F-measure (F), and inference time 

are reported. 

Methods IC13 Eval DetEval Time/s 

P R F P R F 

TextFlow [19] 0.85 0.76 0.80 – – – 1.40 

FCRNall + multi-filt [2] – – – 0.92 0.76 0.83 1.27 

Text-Block FCN [25] 0.88 0.78 0.83 – – – –

SSD [13] 0.80 0.60 0.68 0.80 0.60 0.69 0.10 

Text-CNN [4] 0.93 0.73 0.82 – – – –

DDR [5] 0.92 0.81 0.86 – – – 0.90 

RRPN [15] 0.95 0.88 0.91 – – - 0.30 

SegLink [17] 0.87 0.83 0.85 – – – 0.05 

FEN [24] 0.93 0.89 0.91 0.93 0.89 0.91 0.90 

Fast TextBoxes [10] 0.86 0.74 0.80 0.88 0.74 0.81 0.09 

TextBoxes [10] 0.88 0.83 0.85 0.89 0.83 0.86 0.73 

Our Proposed: PyrBoxes 0.91 0.85 0.88 0.93 0.86 0.89 0.11 

Table 2 

Performance comparison on ChiTVText dataset. Precision (P), Recall (R), F-measure (F), and inference 

time are reported. 

Methods IC13 Eval DetEval Time/s 

P R F P R F 

Baidu API 0.79 0.59 0.68 0.79 0.64 0.71 –

SSD [13] 0.83 0.82 0.83 0.82 0.82 0.82 0.10 

TextBoxes [10] 0.85 0.86 0.85 0.85 0.86 0.85 0.73 

Our Proposed: PyrBoxes 0.89 0.89 0.89 0.90 0.89 0.89 0.11 
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4.3.2. ChiT V Text dataset 

Different from English scene texts, Chinese texts tend to be

longer and more complex. To evaluate the generality of PyrBoxes,

we perform experiments on ChiTVText dataset. In order to have

a strict quantitative comparison, we also train SSD and TextBoxes

with ChiTVText training set, following training strategies provided

in their papers. Besides, Baidu provides a text detector API 1 to the

public, which could be treated as a commercial baseline. Results

listed in Table 2 indicate that PyrBoxes achieves the best perfor-
1 https://cloud.baidu.com/product/ocr/general. 

 

a

ance among these methods, while still runs fast. Some quali-

ative detection are shown in Fig. 3 . Based on the above analy-

is, PyrBoxes shows excellent generalization to different domains

nd longer text lines without additional considerations on training

trategy. 

.4. Experiments on oriented text benchmarks 

We further evaluate PyrBoxes on two oriented text datasets to

ssess its versatility for arbitrary oriented text detection. 

https://cloud.baidu.com/product/ocr/general
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Table 3 

Performance comparison on IC15 dataset. Precision (P), Recall (R), F-measure (F), 

and inference time are reported. ∗ means multi-scale test. 

Methods IC15 Eval Time/s 

P R F 

SegLink [17] 0.768 0.731 0.750 0.05 

WordSup [6] 0.793 0.770 0.782 0.52 

DMPNet [14] 0.732 0.682 0.706 - 

SSTD [3] 0.800 0.730 0.770 0.13 

DDR [5] ∗ 0.820 0.800 0.810 0.90 

EAST [26] 0.836 0.735 0.782 0.06 

EAST [26] ∗ 0.833 0.783 0.800 0.08 

R2CNN [7] ∗ 0.856 0.797 0.825 2.25 

RRPN [15] 0.820 0.730 0.770 0.30 

RRPN [15] ∗ 0.840 0.770 0.800 0.30 

TextBoxes ++ [9] 0.872 0.767 0.817 0.09 

TextBoxes ++ [9] ∗ 0.878 0.785 0.829 0.43 

Our Proposed: PyrBoxes 0.875 0.794 0.832 0.12 

Table 4 

Performance comparison on COCO-Text. Precision (P), Recall (R), F-measure (F), and 

inference time are reported. ∗ means multi-scale test. 

Methods COCO-Text Eval Time/s 

P R F 

Baseline A [20] 0.838 0.233 0.365 –

Baseline B [20] 0.897 0.107 0.191 –

Baseline C [20] 0.186 0.047 0.075 –

Yao [22] ∗ 0.432 0.271 0.333 7.20 

SSTD [3] ∗ 0.460 0.310 0.370 0.13 

EAST [26] ∗ 0.504 0.324 0.395 0.08 

TextBoxes ++ [9] 0.558 0.560 0.559 0.09 

TextBoxes ++ [9] ∗ 0.609 0.567 0.587 0.43 

Our Proposed: PyrBoxes 0.734 0.508 0.601 0.12 
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Table 5 

Recall at different text scales. Small (S, area < 32 2 ), Medium (M, 32 2 < area < 96 2 ) 

and Large (L, area > 96 2 ) are reported. 

Methods IC13 Eval DetEval 

S M L S M L 

Fast TextBoxes 0.37 0.79 0.81 0.37 0.79 0.81 

TextBoxes 0.62 0.85 0.86 0.62 0.86 0.87 

Our Proposed: PyrBoxes 0.66 0.87 0.89 0.66 0.87 0.89 

Table 6 

Performance of different grouped pyramid module on ICDAR2013 dataset. Inference 

time and F-measure are reported. 

Module IC13 Eval DetEval Time/s 

F-measure F-measure 

Group6 0.79 0.80 0.094 

Group56_down 0.81 0.81 0.097 

Group56_up 0.82 0.83 0.098 

Group456_up 0.84 0.84 0.109 

Group456_up_grad 0.86 0.87 0.116 

Group456_middle 0.87 0.88 0.102 

Group3456 0.88 0.89 0.105 

Group23456 0.86 0.87 0.138 
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.4.1. ICDAR 2015 incidental text (IC15) 

Quantitative results following the standard evaluation proto-

ol is given in Table 3 . PyrBoxes outperforms state-of-the-art re-

ults with a comparatively higher speed. Specifically, PyrBoxes

chieves a F-measure of 0.832 and surpasses TextBoxes ++ by 0.3

ercent, while still 3x faster than it. With the single-scale input,

extBoxes ++ takes only 0.09s per image but with a lower accu-

acy. With comparative precisions, PyrBoxes achieves a higher F-

easure due to a higher recall. Some qualitative results are shown

n Fig. 3 . 

.4.2. COCO-Text 

Performances of PyrBoxes and other competitive methods are

isted in Table 4 . Considering that COCO-Text is the largest and

ost challenging benchmark to date, PyrBoxes achieves the best

erformance with 0.601 in F-measure. Specifically, PyrBoxes im-

roves multi-scale TextBoxes ++ by 1.4 percent. Some qualitative

etection results are shown in Fig. 3 . As depicted, our model is ro-

ust in detecting oriented texts with a large variation in positions

nd scales. 

.5. Ablation study 

To better understand PyrBoxes, we execute controlled experi-

ents on IC13 dataset. All experiments are under the same setting,

xcept for the specified changes in different comparisons. 

.5.1. Performance on different text scales 

From Tables 1 to 4 , we find that PyrBoxes achieves a higher per-

ormance mainly due to a higher recall. To better explain this ob-

ervation, we investigate PyrBoxes on different text scales. Specif-

cally, we divide IC13 dataset into three parts: small (area < 32 2 ),

edium (32 2 < area < 96 2 ) and large (area > 96 2 ) according to the
rea definition in Microsoft COCO [12] . We list recall values of Fast

extBoxes, TextBoxes and PyrBoxes in Table 5 and present repre-

entative visualization in Fig. 3 . As expected, PyrBoxes achieves the

ighest recall on all text scales, and localizes texts with a lower

issed rate, especially for small-size texts. 

.5.2. How to group layers in the same block 

For the bottom-up group, apart from the way described in

ection 3.2.2 , we also test other ways to group layers in the same

lock. For a block with two layers, taking { con v 5 _ 3 , con v 6 } for

xample, Group56_up first upsamples conv 6 then sums it with

on v 5 _ 3 . Group56_down downsamples conv 5 then adds it with

onv 6. As indicated in Table 6 , Group56_up achieves better per-

ormance than Group56_down with merely a little speed reduc-

ion. We attribute it to the fact that the upsampling introduces

 larger resolution and more location details than downsampling.

or a block with three layers, taking { con v 4 _ 3 , con v 5 _ 3 , con v 6 }
or example, Group456_up first upsamples conv 6 and con v 5 _ 3 to

on v 6 _ up and con v 5 _ 3 _ up with different strides, then sums these

wo layers with con v 4 _ 3 . Group456_grad_up upsamples conv 6 to

on v 6 _ up then does addition with con v 5 _ 3 . The summed layer

s upsampled again then made element-wise sum with con v 4 _ 3 .
roup 456_middle downsamples con v 4 _ 3 to con v 4 _ down , upsam- 

les conv 6 to con v 6 _ up , then sums the two layers with con v 5 _ 3
ogether. Table 6 shows that Group 456_middle achieves the best

esult, which can be interpreted as it obtains a better balance be-

ween resolution and semantics. Accordingly, in our final model,

e choose the “up” strategy in blocks with two layers, and the

middle” strategy in blocks with three layers. 

.5.3. Which basic layers are useful 

Generally, among the basic layers, the deeper layers have strong

emantics but with coarse features, while the shallower layers

ave large resolutions but with more noises. We add shallow lay-

rs gradually into the grouped pyramid module to obtain the best

ombination. Apart from the Group56_up and Group456_middle

entioned above, we also test Group6, Group3456 and

roup23456 that group { conv 6}, { con v 3 _ 3 , con v 4 _ 3 , con v 5 _ 3 , con v 6 }
nd { con v 2 _ 2 , con v 3 _ 3 , con v 4 _ 3 , con v 5 _ 3 , con v 6 } respectively. As

hown in Table 6 , with more shallow layers added, the perfor-

ance increases at first then decreases. We guess that con v 2 _ 2
ayer contains more noises than valuable location information.
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Table 7 

Performance of different group modes. F-measure on ICDAR2013 dataset are re- 

ported. 

Group Mode IC13 Eval DetEval 

F-measure F-measure 

element-wise sum 0.88 0.89 

element-wise max 0.87 0.88 
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Besides, incorporating more basic layers also leads to heavier com-

putational cost. In view of both accuracy and speed, we choose

Group3456 in our final model. 

4.5.4. Which combination modes are the best 

In the bottom-up group, we test both the element-wise sum

and the element-wise max in the same block, to choose the best

group mode. Results in Table 7 show that the element-wise sum

achieves a better performance, which indicates its strong ability of

combining features among various layers. We choose the element-

wise sum in our final model. 

5. Conclusion 

We have presented PyrBoxes, a novel model for multi-scale

scene text detection. Establishing the grouped pyramid module

within the SSD-based backbone obtains the state-of-the-art per-

formance, while runs faster at inference due to the use of a sin-

gle scale input. Extensive experiments conducted on several bench-

marks basically validate our proposal. At the moment, PyrBoxes is

focused on the bounding box outputs, and one of our future plans

is to extend it to output polygon shape and test on Total-Text or

CTW1500 datasets. 
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