Neural Processing Letters (2019) 50:103-119
https://doi.org/10.1007/511063-018-09973-5

@ CrossMark

Image Captioning with Bidirectional Semantic
Attention-Based Guiding of Long Short-Term Memory

Pengfei Cao"7 . Zhongyi Yang' - Liang Sun? - Yanchun Liang'3 -
Mary Qu Yang*® . Renchu Guan'345

Published online: 11 January 2019
© The Author(s) 2019

Abstract

Automatically describing contents of an image using natural language has drawn much
attention because it not only integrates computer vision and natural language processing but
also has practical applications. Using an end-to-end approach, we propose a bidirectional
semantic attention-based guiding of long short-term memory (Bag-LSTM) model for image
captioning. The proposed model consciously refines image features from previously gener-
ated text. By fine-tuning the parameters of convolution neural networks, Bag-LSTM obtains
more text-related image features via feedback propagation than other models. As opposed
to existing guidance-LSTM methods which directly add image features into each unit of
an LSTM block, our fine-tuned model dynamically leverages more text-conditional image
features, acquired by the semantic attention mechanism, as guidance information. Moreover,
we exploit bidirectional gLSTM as the caption generator, which is capable of learning long
term relations between visual features and semantic information by making use of both his-
torical and future contextual information. In addition, variations of the Bag-LSTM model are
proposed in an effort to sufficiently describe high-level visual-language interactions. Exper-
iments on the Flickr8k and MSCOCO benchmark datasets demonstrate the effectiveness of
the model, as compared with the baseline algorithms, such as it is 51.2% higher than BRNN
on CIDEr metric.
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1 Introduction

Automatically generating a natural language description of an image using a sentence, which
is known as image captioning, has emerged as a popular multi-disciplinary task in both
academia and industry [7,28]. Pursuing this task not only facilitates theoretical development
in machine learning but also has great practical potential; for instance, in performing this
task, one can help visually impaired people understand the content of an image. Although
it is effortless for a human to describe the content of an image, it is very challenging for
machines to do so. This task is difficult because it requires a computer not only to capture the
objects and attributes in an image but also to express the semantic relations between them
in natural language. To address this problem, deep neural networks with encoder—decoder
structures are employed. These deep neural networks mainly consist of two sub-networks:
deep convolution neural networks (CNNs) for image representation and recurrent neural
networks (RNNs) for language modeling [7,8,10,19,24]. However, a bottleneck facing the
encoder—decoder framework is that it is difficult to exploit all the visual information necessary
to produce a caption of an image that accurately describes it.

Therefore, Xu et al. [28] introduced an attention mechanism into the encoder—decoder
framework to break down this bottleneck by refining the original image features. Although
this approach achieved significant improvements in image captioning, several issues remain
to be explored. First, some existing baselines employ unidirectional LSTMs as decoders
used to generate captions. One of the shortcomings of unidirectional LSTMs is that they
only make use of generated textual information, thereby limiting their ability to predict any
future context. It is obvious that if a model simultaneously captures both past and future con-
textual information from a sentence, it will achieve a higher prediction accuracy. Moreover,
a semantic attention mechanism [30] has been proposed as an efficient method to address
image captioning with attributes. However, the attribute predictor has no learning ability and
is separated from the encoder—decoder model. Therefore, it cannot be trained in an end-to-end
manner. In addition, visual attention refines visual image features conditioned on previously
generated information, thus it has limited ability to exploit both current and future hidden
states of RNNs. Some existing methods [7,24] merely input visual representations into RNNs
at the first step, or else, the input visual information is time invariant. Such methods have
difficulty in exploiting visual information sufficiently enough to generate captioning that is
coupled to the image content.

To address the above issues, we propose a novel Bag-LSTM model for effective image
captioning. Our model is illustrated in Fig. 1. The main contributions of our paper are as
follows:

(1) To obtain text-related image features, we propose a new semantic attention mecha-
nism, which can automatically focus on features on demand using generated contextual
information. Moreover, the semantic attention mechanism can be trained with the
encoder—decoder model in an end-to-end manner.

(2) To our knowledge, it is the first work to combine a bidirectional gLSTM (Bi-gLSTM)
with an attention mechanism in a model used for image captioning. To learn long
term visual-language interactions, the model embeds visual features and contextual
information into semantic space by exploiting both historical and future context. The
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Fig. 1 The framework of the proposed model consists of a CNN, a guiding Bi-LSTM, and an attention
mechanism

text-conditional image features used as semantic guidance are input into each unit of the
Bi-LSTM with the aim of guiding the model towards more relevant predictions of image
information.

(3) We adjust the structure of the Bag-LSTM to refine the original image features using
current hidden state information more than the generated information.

(4) The proposed model achieves better performance than all baselines on bench-mark
datasets, such as the MSCOCO dataset [17], across several evaluation metrics.

2 Related Work

Generally, the existing image captioning approaches can be divided into three categories:
sentence-template based methods, retrieval based methods and neural network based meth-
ods.

Sentence-template based methods [4,11,16,29] use pre-defined templates to generate sen-
tences by filling detected objects or recognized scenes into templates. Apparently, this method
has difficulty in generating flexible captioning and cannot accurately express the relations
between objects [6]. Retrieval based methods [12—14] treat image captioning as a retrieval
and ranking task. They first find similar images from a large database and then modify the
retrieved image sentences to generate a new sentence. The effectiveness of this method is
extremely limited when dealing with previously unseen images in datasets [6].

With inspiration from the success of neural networks in machine translation tasks [1], the
encoder—decoder framework [7,20,24] has been widely applied in image captioning tasks and
has yielded promising results. This framework was first introduced by Kiros et al. [9], who
described a multimodal log-bilinear model for image captioning with a fixed context window.
Mao et al. [20] proposed a multimodal recurrent neural network for the prediction task where
a deep CNN interacted with a deep RNN in a multimodal layer. Later, Vinyals et al. [24] and
Donahue et al. [3] used an LSTM network in their model for sentence generation. However,
Vinyals et al. [24] only provided visual input at the beginning of processing, while Donahue
et al. [3] fed image context information at each step. Still, the input visual information used
by Donahue et al. [3] is time invariant. Instead of extracting image features as a single vector
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from a fully connected layer, Karpathy et al. [7] proposed an alignment model that can
generate descriptions of image regions by integrating object detection with a regional-CNN
and inferring the alignment between image regions and the outputs of a bidirectional RNN.
Jia et al. [5] proposed a gLSTM that added semantic information into each unit of the LSTM
block with the aim of guiding the model towards the captioning that is most tightly coupled
with the image information presented. Wang et al. [25] employed a bidirectional LSTM as a
language model to generate captioning, which enabled them to exploit both long term history
and future context in completing the task of automatically generating a caption that describes
an image.

Recently, Xu et al. [28] proposed visual attention mechanisms for image captioning,
including soft attention and hard attention, in which the model focused on specific regions
based on the previous state of an RNN. Although hard attention performed better, its train-
ing was very complex. You et al. [30] proposed a semantic attention model with attribute
prediction. However, the attribute predictor required separate training. Yang et al. [27] pro-
posed a “reviewer” module to acquire previous attention-related information. A very recent
work proposed “Areas of Attention” that modeled the interplay between the state of an RNN,
image region descriptors and word embedding vectors by three pairwise interactions [22].
And Liu et al. [18] proposed an image captioning architecture that allows a visual encoder
and a language decoder to coherently cooperate in a recurrent manner.

Distinct from these previous models, we propose a Bag-LSTM model that dynamically
integrates image features with generated textual information, obtains text-related image
features via the semantic attention model and learns long term high-level visual-semantic
relations from the model’s history and future context. In addition, the text-related visual fea-
tures input into each unit of a Bi-LSTM block are expected to guide the LSTMs toward the
solution that most closely matches the image content presented to the model.

3 Bidirectional Semantic Attention-Based Guidance of Long
Short-Term Memory

In this section, we first introduce the novel model for image captioning holistically, as shown
in Fig. 2. Then, we present the structure of our bidirectional semantic attention-based guidance
of long short-term memory model (Bag-LSTM) and introduce the intuitions behind it. Finally,
we describe the selection algorithm which is used to determine the final sentence presented
as a caption for each image.

3.1 Overall Framework

This model consists of CNNs, the semantic attention mechanism and the Bi-gL.STM, which
processes both left-to-right and right-to-left sequence context. We first replace the uni-
directional LSTMs with bidirectional LSTMs, which are capable of learning long term
visual-language interactions by exploiting historical and future semantic information. Then,
a new and trainable semantic attention model is proposed, which is expected to obtain more
text-related image features. Eventually, to make more sufficient use of visual information
and to obtain more accurate predictions, we leverage the text-related visual features acquired
via semantic attention as guidance information that is input into the LSTMs.

First, we use CNNs to extract image features. Global features acquired from the fully
connected layer are expected to provide macroscopic correspondence among multiple objects.
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Fig. 2 The framework of the Bag-LSTM model: CNN for visual representation, Bi-gLSTM for caption
generation and visual features v and generated semantics are combined together using an attention mechanism

Suppose global visual information is denoted by v € RP. A CNN implements its function
as:
v=W[CNNy(Ip)] +b ()

where I}, denotes the image pixels, CNN(I) transforms the pixels into L dimensional
activations and W € RP*L and b € RP are the weight matrix and bias vector, respectively.
CN N denotes the VggNet-16, which secured the 2nd place in ImageNet Large Scale Visual
Recognition Competition 2014 (ILSVRC-2014). 0 represents the parameters.

Then, the image features obtained from the CNN are fed into the semantic attention
model to obtain text-related features based on the generated contextual information. Finally,
the text-related visual features are injected into the Bi-gL.STM to generate the description of
an image.

At time ¢, the Bi-gLSTM hidden state controls the prediction of the z-th word S¢ from
corpus y with a probability p; € RI?!. The generated word S¢ will be fed into the semantic
attention model and the Bi-gL.STM in the next step. Unlike previous image captioning meth-
ods that only leverage image features at the first step, our model uses the text-related visual
features as guidance information that is input into the Bi-LSTM at each step. Specifically,
our model is implemented using the following equations:

X0 = fariy (V) = Wv (@)
hi = BLSTM(1(t > 0) © hy_1, x¢) 3)
St ~ pt = Sof tmax (hy) 4)
-1
Xt = fann (v, Z&) >0 )
i=0
Sentence = ¢ (sentence, sentence) (6)
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where W € RP*P denotes the weight matrix, f,, is semantic attention at the first step,
xo € RP denotes the text-related visual features after semantic attention has been applied at
the first step, BLST M represents the Bi-gLSTM network, 1denotes the indicator function,
when ¢t > 0, the value of the indicator function is 1, otherwise, the value is 0, Zf;(l) Si
is the sum of generated word vectors, x; € RP are the text-related visual features after
semantic attention has been applied at step ¢, hy € R” is the hidden state of the Bi-gLSTM,
St € RI”! represents the generated word at step #, f,; is the semantic attention mecha-
nism; Sentence, sentence and sentence represent the final caption, as well as the generated
captions of the forward and backward LSTMs, respectively; and @ () denotes the selection
algorithm.

3.2 Semantic Attention Model

Unlike the approaches that directly exploit image features acquired from CNNs described
in [7,24], we propose a semantic attention model to generate image features more closely
related to textual information and then these features are used as semantic guidance. During
the process of generating a caption, image features interact with generated semantics via
non-linear layers at each step. Because the visual information becomes more relevant during
this process, the generated semantic information also becomes more accurate as processing
continues. Therefore, the proposed semantic attention mechanism refines original image
features to obtain text-conditional image features by taking the advantages of previously
generated textual information.

An additional advantage of the new semantic attention model is that it can be automatically
trained with the encoder—decoder model via feedback propagation.

Specifically, given the image features v extracted from a fully connected layer of the CNN
and the generated word Sk, the proposed semantic attention mechanism in the Bag-LSTM
model can be implemented by:

-1
x¢ = Softmax (V@ <WZSk)) ov 7

k=0

where x; denotes the text-related image features at step 1, W € RP*I7I is the embedding
matrix for textual features and can be trained by back propagation, and © denotes element-
wise multiplication.

3.3 Bidirectional Guiding of Long Short-Term Memory

We use gLSTM networks [5] to replace the LSTM networks by feeding the LSTM networks
semantic information, which is composed of the text-conditional image features obtained
from the semantic attention model. The Bi-gLSTM networks are implemented by introducing
a second gLSTM layer, where the hidden-to-hidden connections flow in opposite temporal
order based on unidirectional gLSTM networks as shown in Fig. 3.

The Bi-gLSTM network computes the forward and backward hidden sequences denoted
as 'y and <1T, respectively. Taking the forward order as an example, the Bi-gLSTM networks
work as follows:
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Fig.3 Bidirectional guiding of long short-term memory network (Bi-gLSTM). Each box represents a gLSTM
unit. The Bi-LSTMs summarize semantic information from both forward and backward directions
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— _ — —
ft =0 (Wext +WgsSt + Wmhe—1 + by) 9
— — e —
0ot =0 (Wox Xt + WosSt + Wonhe_1 4 by) (10)
- P o=, — e —
cg = f Oci-1+ it Oh(WexXt + Wes St + Wenhe—1 +be) (1)
= =
hy = ot O ¢t (12)

where iy, fy and o¢ indicate the input gate, forget gate and output gate, respectively; ¢¢ repre-
sents the state of cell memory,they are all D dimentional vectors; Xy denotes the text-related
image features; St stands for the model-generated contextual information; hy is the hidden
state; W is the trainable weight matrix; b is a bias term; o is a sigmoid activation function,
and & denotes a hyperbolic tangent function; and © denotes element-wise multiplication.

To produce the probability distribution of the word from forward and backward prediction,
respectively, two softmax layers are employed.

N — - «~
pt = Softmax(hy; Wy, bs), pc = Softmax(hy; Ws, b) 13)

Then, a selection algorithm is designed to determine the final sentence to be used as the
caption for the image. Including the CNN, the semantic attention model and the Bi-gLSTM,
the whole model is referred to as Bag-LSTM.

In addition, to extract more image features and learn the visual-language interactions more
comprehensively, we adjust the typological structure of the Bag-LSTM network to produce
three variants of the model.

Bawg-LSTM Based on Bag-LSTM, Bawg-LSTM is implemented by multiplying the image
features by the weight matrix before they are input into the semantic attention module, as
shown in Fig. 4b. Clearly, this version of the model enables further refinement of original
image features that allows the model to learn more text-related visual representations by
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Fig. 4 Model comparison a attention model proposed in [28], b Bawg-LSTM, ¢ Bbag-LSTM and d Bdag-
LSTM are the newly proposed models

feedback propagation to adjust the weight matrix. The semantic attention in Bawg-LSTM is
implemented by converting Eq. (7) to:

-1
x¢ = Softmax ((WVV) © (Ws ZSk)) ov (14)

k=0

where Wy € RP*P and Wy € RP*I7! are weight parameters. Notably, W in Eq. (14) is the
same as W in Eq. (7).

Bbag-LSTM As compared to Bag-LSTM, Bbag-LSTM is created by adding the attention
mechanism after the Bi-gLSTM layers, as shown in Fig. 4c. After the Bi-gLSTM acquires
long term interactions between original visual features and textual information, the hidden
state of the Bi-gL.STM is input into semantic attention to obtain a more accurate prediction
of the next word of the caption. Bbag-LSTM uses the current hidden state of the Bi-gLSTM,
h¢, and previously generated information to refine the image features, which is expected to
diminish the uncertainty in the next word prediction by complementing the information of the
current hidden state. The semantic attention in Bbag-LSTM is implemented by the following
formula:

xt = Softmax(v O (Why)) O v (15)

where W e RP*D is the weight parameter and h¢ is the current hidden state of the
Bi-gLSTM.

Bdag-LSTM This version of the model synthesizes the advantages of the Bag-LSTM model
and the Bbag-LSTM model and involves two attention mechanisms, as shown in Fig. 4d. The
letter “d” in “Bdag-LSTM” means “double”. The two attention models are separately located
before and after the Bi-gLSTM. The Bdag-LSTM uses the first attention model to refine the
original visual features and then employs the second attention model to further analyze the
image features given the current hidden state. Therefore, this version of the model leverages
image and context information more completely and acquires more holistic visual-language
relations than other versions. The first attention model is the same as that described by Eq. (7),
and the second attention model can be implemented using Eq. (15).

3.4 Sentence Selection

The proposed model predicts word S; with given image / and generated words So.;—1
by p(S¢1So:+—1, I) in forward order, or by p(S;|S;+1.7, I) in backward order. Because the
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Bag-LSTM model can generate two different caption sentences by processing in two direc-
tions, we need to determine the final caption from these two candidates. We devised two
methods for selecting a final caption sentence, which are referred to as log based and mean
based models. For log based method, we are inspired by the information entropy. The words
with small probability have little positive effect on the quality of generated sentences. In
addition, the words with large probability (such as the subjects) may simultaneously appear
in two different captions. Therefore, there is no need to pay more attention to both of these
two kinds of words. Based on the analysis of above, the log based algorithm is proposed to
put more emphasis on words of modest probability. For mean based method, we first sum the
probability of each word in sentence and then divide the length of the sentence. The mean
based algorithm considers each word and is less restricted by the length of sentences. These
methods are described by the following equations:

Lo (=7 (1)) og (7 (S011))

Tr+1

tTiO <_<17 (<S_,|I>)log (([7 <(S_t|]>) 16)
Tp + 1

H (So.r|1) = max

)

T —> T <
B (Sr) 2l v ()

Tf—‘r-l ’ Tp + 1

avgp (So.r|I) = max a7

where H (So.7|1) and avgp(So.7|I) indicate the results of the log based and mean based mod-
els, respectively; Ty and 7), are the last time step of forward order and backward, respectively,
so (Ty +1) and (T}, + 1) are the length of the sentences generated by forward processing and
backward processing, respectively; I denotes the image being input to the model; _p) (E) |1 =
[ = T T — « < Ty — &, <—
Hj:O P (Sj|S(), Sl, ey Sj_l, I), and P (Sl |I) = Hj:t P (Sj|Sj+1, Sj.;,_z, ey STb, I).
‘We compute the sentence score of the two different sentences using log score with Eq. (16)
and using average score with Eq. (17). Then, the sentence with the higher score is selected
as the final result.

4 Experiments
4.1 Datasets and Evaluation Metrics

We choose the benchmark datasets Flickr8k and MSCOCO to evaluate the performance of
our model. Flickr8k and MSCOCO contain 8,000 and 123,000 images, respectively. Each
of these images is annotated with 5 sentences. We follow previous work in the way we split
these datasets [7]. For the Flickr8k dataset, we used 1000 images for validation and another
1000 images for testing; the rest were used for training. For the MSCOCO dataset, 5000
images were used for validation, another 5000 images for testing and the rest for training.
We reported the performance across different evaluation metrics such as BLEU-N (N=1, 2,
3,4) [21], METEOR [15] and CIDEr [23]. The higher these metrics were, the better were
the results.
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Table 1 Performance of the proposed model on Flickr8k across BLEU-N (N =1, 2, 3,4), METEOR and CIDEr

Dataset Model B-1 B-2 B-3 B-4 METEOR CIDEr

Flickr8k BRNN [7] 57.9 38.3 24.5 16.0 - -
Mao et al. [20] 58.0 28.0 23.0 - - -
Google NIC [24] 63.0 41.0 27.0 - - -
VggNet+RNN [22] 56.2 37.5 24.5 16.6 - -
GooLeNet+RNN [22] 56.5 38.5 27.7 16.3 - -
Bag-LSTM+mean 59.2 40.4 27.0 18.0 18.3 43.6
Bag-LSTM+log 58.7 40.7 26.3 17.6 18.1 42.8
Bawg-LSTM+mean 59.7 40.5 28.1 17.5 18.0 442
Bawg-LSTM+log 58.5 414 27.4 17.7 17.8 43.6
Bbag-LSTM+mean 59.3 41.2 279 17.0 17.6 429
Bbag-LSTM+log 59.5 40.7 26.9 18.2 18.6 424
Bdag-LSTM+mean 58.3 39.7 26.7 17.8 18.0 42.1
Bdag-LSTM+log 58.1 40.4 26.4 17.5 17.7 423

() indicates unreported scores. The numbers in bold are the top 2 results of each metric

BLEU (Bilingual Evaluation Understudy) is an algorithm that measures the precision of
an n-gram between the generated and reference captions. BLEU-N (N=1, 2, 3, 4) scores can
be calculated by the following equation:

N
logBy = min (1 - 5,0) +anZngn (18)
¢ n=1

where r and c are the length of the reference sentence and the generated sentence, respectively;
w,, represents the uniform weights, and p, represents the modified n-gram precisions.

METEOR (Metric for Evaluation of Translation with Explicit Ordering) was also initially
used as an evaluation metric in machine translation. In addition to measuring precision,
METEOR places emphasis on the recall between the generated and ground truth captions.

CIDEr (Consensus-based Image Description Evaluation) was specifically introduced for
evaluating image captioning. It measures the similarity of generated captions to their ground
truth sentences. Using human consensus, grammaticality and correctness are also taken into
account in this measurement. Therefore, we attach more importance to CIDEr scores in our
experiments.

4.2 Performance on Flickr8k

We first conducted experiments on Flickr8k data and compared our results with those of five
classical algorithms. The results based on different evaluation metrics are shown in Table 1.
Flickr8k is a small dataset which introduces difficulties in training complicated models;
however, the proposed model still achieves a competitive performance on this dataset. When
compared with the bidirectional recurrent neural network (BRNN) model in [7], which is a
classical baseline of image captioning model, the Bag-LSTM-+mean method achieves better
results on all metrics. Itis 2.3%, 5.5%, 10.2% and 12.5% higher than BRNN on B-1, B-2, B-3
and B-4, respectively. In addition, when compared with another classical model proposed by
Mao et al., it can be seen that the proposed model can significantly improve performance on
image captioning tasks. We are aware that the performance of our proposed model is slightly
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inferior to that of the Google NIC model when using the evaluation metric B-1. We conjecture
that GooLeNet is more powerful than VggNet in extracting image features. The fact can be
inferred from the performance of these models, as measured by the metrics presented, with
these two models using an identical RNN. In addition, our model is more complex than the
Google NIC model, so our model suffers more difficulties because it is a deep model being
trained with limited data.

It can be seen that the variations of Bag-LSTM, including Bawg-LSTM, Bbag-LSTM
and Bdag-LSTM, achieve better performance than the Bag-LSTM model on some concrete
metrics. For instance, compared with Bag-LSTM, Bawg-LSTM improves the CIDEr score
from 43.6 to 44.2, which reveals that the captioning generated by Bawg-LSTM is more similar
to the ground-truth. In addition, we should be aware that our mean based selection algorithm
and our log based selection algorithm are both capable of generating superior performance,
which demonstrates the effectiveness of the two proposed selection algorithms.

4.3 Performance on MSCOCO
To check the performance of our models on a larger dataset, we compare Bag-LSTM and its

variations with other models on the MSCOCO dataset. It can be seen from Table 2 that our

Table 2 Performance of the proposed model on MSCOCO compared with other baselines across multiple
evaluation metrics

Dataset Model B-1 B-2 B-3 B-4 METEOR CIDEr

MSCOCO Google NIC [24] 66.6 46.1 329 24.6 - -
BRNN [7] 62.5 45.0 32.1 23.0 19.5 66.0
Log Bilinear [9] 70.8 48.9 34.4 24.3 20.0 -
Bi-LSTM [25] 67.2 49.2 352 244 - -
ATT-FCN [30] 70.9 53.7 40.2 304 243 -
LRCN [3] 62.8 46.1 329 24.6 - -
Soft-Attention [28] 70.7 49.2 344 24.3 239 -
Hard-Attention [28] 71.8 50.4 357 25.0 23.0 -
Sentence-condition [31] 72.0 54.6 40.4 29.8 24.5 95.9
Pedersoli et al. [22] 71.0 30.1 - - 24.5 93.7
RIC with STL [18] 68.7 47.8 33.1 22.0 20.5 -
G-MLE [2] - - 39.3 29.9 24.8 102.0
G-GAN [2] - - 30.5 20.7 224 79.5
CNN+CNN [26] 68.5 51.1 36.9 26.7 234 84.4
Bag-LSTM+mean 71.7 54.5 40.8 30.5 253 99.8
Bag-LSTM+log 71.9 54.5 40.0 29.1 24.3 96.2
Bawg-LSTM+mean 71.9 54.5 40.5 30.2 253 99.8
Bawg-LSTM+log 72.0 54.9 40.2 29.2 24.6 97.9
Bbag-LSTM+mean 71.1 53.8 40.1 30.0 24.7 97.7
Bbag-LSTM+log 723 54.8 40.2 29.3 24.4 97.5
Bdag-LSTM+mean 70.6 53.7 39.7 29.8 24.9 97.7
Bdag-LSTM+log 71.6 53.7 39.2 28.5 24.3 96.2

The numbers in bold are the top 2 results of each metric
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model outperforms these baselines on all metrics presented. A detailed discussion proceeds
as follows:

1. Compared with those models consisting of attention and unidirectional LSTMs (e.g., Soft-
Attention and Hard-Attention [28]), our model significantly improves the performance
according to all the evaluation metrics presented. For example, the BLEU-4 score is
improved from 25.0 to 30.5. Table 2 demonstrates that the scores of Bag-LSTM are 22%
higher than those of Hard-Attention and 25.5% higher than those of Soft-Attention. The
results indicate that it is more efficient to extract complete visual-semantic relations than
to rely on relations that can be uncovered using only unidirectional LSTMs.

2. We note that the proposed model yields significant improvements when compared with
those methods that merely exploit Bi-LSTM [25]. Particularly, the Bag-LSTM+mean
model increases the BLEU-4 score from 24.4 to 30.5, which is a 25% increase over the
performance of the Bi-LSTM model. Therefore, our model reveals that having visual
information and semantic context interact via an attention mechanism can make contri-
butions toward producing better captions.

3. In addition, we note that CIDEr scores are improved significantly in our models, which
suggests that the caption sentences predicted by our models are very similar to the target
captions for the images presented. For example, the Bag-LSTM+mean model and the
Bawg-LSTM-+mean model have CIDEr scores 4.1% higher than those of the Sentence-
condition model proposed in [31]. The CIDEr scores of these models are also 51.2%
higher than those of the BRNN model in [7]. These results demonstrate that our Bag-
LSTM model is more effective than the other models at image captioning tasks.

4. By comparing variations of the Bag-LSTM model, we realize that the Bag-LSTM and
Bbag-LSTM models achieve better results than the Bdag-LSTM model. For instance, the
results achieved by Bag-LSTM are 7% higher than the results generated by Bdag-LSTM
according to the BLEU-4 metric. In addition, Bbag-LSTM achieves the best BLEU-1
result. We conjecture that the more complicated structure of the Bdag-LSTM model
contributes to its relatively poorer performance.

4.4 Analysis of Sentence Selection Algorithms

As described in Sect. 3.4, we propose two selection algorithms to compute sentence scores
for determining the final caption. To quantitatively eveluate the quality of the two pro-
posed algorithms and traditional method, we conduct a comparison experiment. Table 3
lists the comparative results of the two proposed sentence selection algorithms and the
traditional method with the same model on MSCOCO dataset. The traditional method
named as sum based model listed in the table selects a final caption by merely accord-
ing to max <ZZO 7)) (E; 1), Z[Tio (17(<S_,|1)>. If the lengths of the generated sentences are
quite different, the sentence with more words generally has higher score by only comput-
ing Zszo p(S:|I). Therefore, the traditional method will have difficulty in making right
decisions. The two selection algorithms proposed for our model can alleviate this problem
caused by the different length of generated sentences via considering the length and select a
more accurate caption than the traditional method. From the results, we can observe that the
proposed selection algorithms achieve the best performance than the traditional method on
almost every metric, which clearly demenstrates the effectiveness of the proposed selection
algorithms.
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Table 3 Performance of the proposed sentence selection algorithms compared with the traditional selection
method on MSCOCO dataset

Dataset Model B-1 B-2 B-3 B-4 METEOR CIDEr

MSCOCO Bag-LSTM+mean 71.7 54.5 40.8 30.5 253 99.8
Bag-LSTM-+log 71.9 54.5 40.0 29.1 243 96.2
Bag-LSTM+sum 71.7 54.8 40.3 29.6 24.5 97.7
Bawg-LSTM+mean 71.9 54.5 40.5 30.2 253 99.8
Bawg-LSTM+log 72.0 54.9 40.2 29.2 24.6 97.9
Bawg-LSTM+sum 71.9 54.6 40.5 29.6 24.4 97.8
Bbag-LSTM+mean 71.1 53.8 40.1 30.0 24.7 97.7
Bbag-LSTM+log 72.3 54.8 40.2 29.3 24.4 97.5
Bbag-LSTM+sum 71.4 53.9 40.3 29.5 243 95.4
Bdag-LSTM+mean 70.6 53.7 39.7 29.8 249 97.7
Bdag-LSTM+log 71.6 53.7 39.2 28.5 24.3 96.2
Bdag-LSTM+sum 71.5 53.6 40.0 29.4 24.1 94.9

The best results of each model on each metric are marked in bold

4.5 Visualization

In Fig. 5, we selected four representative captioning examples to help visualize the generation
of natural language description of image content with our model. The second and third rows
show the predicted word probabilities of the Bag-LSTM using forward and backward order

»6&% é&%
r A

forward : a train is
traveling down train
tracks near a building

forward: a group of
people riding surfboards
on top of a wave

forward: a kitchen
counter with a sink and
various other things in it

forward: a double
decker bus is driving
down the street

backward : a train that
is sitting on the tracks

backward: a group of
people standing on
surfboards in the ocean

backward: a table
with a mirror and
other items on it

backward: a red double]
decker bus driving
down a street

mean: a train that is
sitting on the tracks

mean: a group of people
riding surfboards
on top of a wave

mean: a kitchen counter
with a sink and various
other things in it

mean: a red double
decker bus driving
down a street

log: a train that is
sitting on the tracks

log: a group of people
riding surfboards on

top of a wave

log: a table with a mirrof
and other items on it

log: a red double
decker bus driving
down a street

Fig.5 Examples from the MSCOCO dataset, which visualize the generation of captions
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processing, respectively. The sixth and seventh rows represent the final caption chosen by
the two different selection algorithms: the log based and mean based models.

Because the Bag-LSTM model generates sentences in both forward and backward direc-
tions, the length of captions generated by these two processing streams may be different;
examples of such cases are shown in Fig. Sa, b. We also found that the semantics captured
by the forward sentence may be different from those captured by the backward sentence. For
example, in Fig. 5c, the forward sentence describes “kitchen counter” and “sink” while the
backward sentence captures “table” and “mirror”. This occurs when a predicted word is the
same for both processing streams, but the corresponding probabilities for this word in the
separate streams are different. For example, in Fig. 5d, the probability of “bus” is approx-
imately 0.9 in the forward directional processing stream; however, the computations result
in a probability 0.7 for “bus” in the backward directional processing stream. This discrep-
ancy occurs because the attention mechanism produces different word probabilities based on
different textual information generated in the two separate processing streams.

forward:a bus thatis driving,  forward:a baseball player pit-}  {forward:a white refrigerator | {forward:a dog is sitting next

in the street.

on a city street.

mean:a bus that is driving in
the street.

log:a public transit bus on
a city street.

backward:a public transit bus

ching a ball on top of a field.

backward:a baseball player
igetting ready to throw the ball,

mean:a baseball player pit-
ching a ball on top of a field.

log:a baseball player pitching
a ball on top of a field.

placing in a kitchen.

backward:a white refrigerator
placing inside of a kitchen.

mean:a white refrigerator
placing inside of a kitchen.

log:a white refrigerator

placing inside of a kitchen.

to a table with a plate of food.

backward:a dog sitting in
front of a plate of food.

mean:a dog is sitting next to a
table with a plate of food.

log:a dog sitting in front of a
iplate of food.

flying in the sky.

backward:two birds that are
flying in the sky.

mean:two birds that are
flying in the sky.

log:a couple of birds are
flying in the sky.

forward:a couple of birds are|

forward:a group of people rid-!
ing on the back of a motorcycle;

backward:a man riding a
motorcycle down a street.

mean:a group of people riding
on the back of a motorcycle.

log:a man riding a motorcycle

down a street.

{forward:a stove top oven
sitting in a kitchen.

backward:a white stove top
oven sitting in a kitchen.

mean:a stove top oven sitting
in a kitchen.

log:a stove top oven sitting in
a kitchen.

{forward:a bunch of vegetahles\
that are on a table.

backward:an assortment of
fruits and vegetables on a table;

mean:an assortment of fruits
and vegetables on a table.

log:a bunch of vegetables that

are on a table.

Fig.6 Qualitative results for images with high values of loss function on MSCOCO testing split. The top four
examples(green solid box) shows that the proposed model can generate acceptable captions. The bottom four
examples(red dashed box) indicate the model can be misled by incorrect visual information. (Color figure
online)
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In addition, these two different selection algorithms can generate different sentences,
allowing our model to select a more appropriate sentence than those selected by models
using unidirectional LSTMs. For example, in Fig. 5, our model enables the generation of a
caption sentence that is very similar to the ground-truth. This example illustrates the proposed
model’s enhanced ability to synthesize visual and linguistic information.

‘We have shown some positive examples about the caption result in Fig. 5. We also sample
some testing images with high values of loss function from MSCOCO, as shown in Fig. 6.
We can find that the proposed model still enables to generate acceptable results, as shown by
the examples in the green box. However, incorrect visual information can disrupt the model,
particularly key visual features. For example, for the left-most example in the red dashed
box, the model generates “bird” as key visual feature rather than “airplanes”. We think this
is due to the lack of relevant examples in training split, and we believe the errors could be
solved by introducing more instructive training data in the future.

4.6 Efficiency and Discussion

We implemented our model on Torch framework. In our experiment, we use the Adam
optimizer with learning rate of 0.4 x 10~3 for language model and 0.1 x 10~ for the CNN.
We trained our model in two stages. In the first stage, we fix the weights of CNN to pre-train
on ImageNet. In the second stage, we back-propagate the loss from Bi-gLSTM to the CNN.
All of our experiments were conducted on Ubuntu 14.04, 24G RAM, and single GTX Titan
X with 12G memory. On the largest dataset (MSCOCO), our Bag-LSTM took within 3 days,
which is as efficient as the classical soft attention model proposed by Bengio et al. [28].

Because the proposed model is relatively deep and complex, it is very possible to be
overfitting. In oder to prevent overfitting problem, we adopted several effective techniques
such as fine-tuning the parameters of CNN and dropout method. Additionally, we observed
the value of loss function on the training set and validation set. If the value of loss function
decreased on the training set, however, increasing on the validation set, we will stop the
training procedure.

5 Conclusion and Future Work

In this work, we proposed a novel model for image captioning, referred to as Bag-LSTM,
which performed better than all baselines on benchmark datasets across different evaluation
metrics. Bag-LSTM combines a semantic attention mechanism and bidirectional gLSTMs.
It not only achieves interactions between visual image features and semantic information but
also takes both historical and future contexts into account when generating captions. Next,
we designed several variations of Bag-LSTM to sufficiently leverage visual and sentential
information in generating image captions. In addition, we qualitatively visualized the pro-
cedure of our proposed model for generating a caption sentence at consecutive steps. In the
future, we plan to apply our model to other datasets and tasks, such as video captioning and
visual question answering.

Acknowledgements The authors are grateful for the support of the National Natural Science Foundation
of China (Nos. 61572228, 61472158, 61300147, 61602207, 61402076), United States National Institutes
of Health (NIH) Academic Research Enhancement Award (No. 1R15GM114739), the Science Technology
Development Project from Jilin Province (No. 20160101247JC), Zhuhai Premier-Discipline Enhancement

@ Springer



118

P.Caoetal.

Scheme and Guangdong Premier Key-Discipline Enhancement Scheme. However, the information contained
herein represents the position of the author(s) and not necessarily that of the NIH.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

20.

21.

. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate.

arXiv preprint arXiv:1409.0473

Dai B, Lin D, Urtasun R, Fidler S (2017) Towards diverse and natural image descriptions via a conditional
gan. arXiv preprint arXiv:1703.06029

Donahue J, Anne Hendricks L, Guadarrama S, Rohrbach M, Venugopalan S, Saenko K, Darrell T (2015)
Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp 2625-2634

Farhadi A, Hejrati M, Sadeghi M, Young P, Rashtchian C, Hockenmaier J, Forsyth D (2010) Every picture
tells a story: generating sentences from images. Comput Vis ECCV 2010:15-29

Jia X, Gavves E, Fernando B, Tuytelaars T (2015) Guiding the long-short term memory model for image
caption generation. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2407—
2415

Jin J, Fu K, Cui R, Sha F, Zhang C (2015) Aligning where to see and what to tell: image caption with
region-based attention and scene factorization. arXiv preprint arXiv:1506.06272

Karpathy A, Fei-Fei L (2015) Deep visual-semantic alignments for generating image descriptions. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3128-3137
Karpathy A, Joulin A, Li FFF (2014) Deep fragment embeddings for bidirectional image sentence map-
ping. In: Advances in neural information processing systems, pp 1889-1897

Kiros R, Salakhutdinov R, Zemel R (2014) Multimodal neural language models. In: Proceedings of the
31st international conference on machine learning (ICML-14), pp 595-603

Kiros R, Salakhutdinov R, Zemel RS (2014) Unifying visual-semantic embeddings with multimodal
neural language models. arXiv preprint arXiv:1411.2539

. Kulkarni G, Premraj V, Ordonez V, Dhar S, Li S, Choi Y, Berg AC, Berg TL (2013) Babytalk: understanding

and generating simple image descriptions. IEEE Trans Pattern Anal Mach Intell 35(12):2891-2903
Kuznetsova P, Ordonez V, Berg AC, Berg TL, Choi Y (2012) Collective generation of natural image
descriptions. In: Proceedings of the 50th annual meeting of the association for computational linguistics:
long papers-volume 1, Association for Computational Linguistics, pp 359-368

Kuznetsova P, Ordonez V, Berg AC, Berg TL, Choi Y (2013) Generalizing image captions for image-text
parallel corpus. In: ACL (2), Citeseer, pp 790-796

Kuznetsova P, Ordonez V, Berg TL, Choi Y (2014) Treetalk: composition and compression of trees for
image descriptions. TACL 2(10):351-362

Lavie MDA (2014) Meteor universal: language specific translation evaluation for any target language.
ACL 2014:376

Li S, Kulkarni G, Berg TL, Berg AC, Choi Y (2011) Composing simple image descriptions using web-
scale n-grams. In: Proceedings of the fifteenth conference on computational natural language learning,
Association for Computational Linguistics, pp 220-228

Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollar P, Zitnick CL (2014) Microsoft coco:
common objects in context. In: European conference on computer vision, Springer, pp 740-755

Liu H, Yang Y, Shen F, Duan L, Shen HT (2016) Recurrent image captioner: Describing images with
spatial-invariant transformation and attention filtering. arXiv preprint arXiv:1612.04949

Mao J, Xu W, Yang Y, Wang J, Huang Z, Yuille A (2014) Deep captioning with multimodal recurrent
neural networks (m-rnn). arXiv preprint arXiv:1412.6632

Mao J, Xu W, Yang Y, Wang J, Yuille AL (2014) Explain images with multimodal recurrent neural
networks. arXiv preprint arXiv:1410.1090

Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method for automatic evaluation of machine
translation. In: Proceedings of the 40th annual meeting on association for computational linguistics,
Association for Computational Linguistics, pp 311-318

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1703.06029
http://arxiv.org/abs/1506.06272
http://arxiv.org/abs/1411.2539
http://arxiv.org/abs/1612.04949
http://arxiv.org/abs/1412.6632
http://arxiv.org/abs/1410.1090

Image Captioning with Bidirectional Semantic... 119

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Pedersoli M, Lucas T, Schmid C, Verbeek J (2016) Areas of attention for image captioning. arXiv preprint
arXiv:1612.01033

Vedantam R, Lawrence Zitnick C, Parikh D (2015) Cider: Consensus-based image description evaluation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 45664575
Vinyals O, Toshev A, Bengio S, Erhan D (2015) Show and tell: A neural image caption generator. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3156-3164

Wang C, Yang H, Bartz C, Meinel C (2016) Image captioning with deep bidirectional Istms. In: Proceed-
ings of the 2016 ACM on multimedia conference, ACM, pp 988-997

Wang Q, Chan AB (2018) Cnn+ cnn: Convolutional decoders for image captioning. arXiv preprint
arXiv:1805.09019

WuZYYYY, Cohen RSWW (2016) Encode, review, and decode: reviewer module for caption generation.
arXiv preprint arXiv:1605.07912

Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y (2015) Show, attend
and tell: neural image caption generation with visual attention. In: International conference on machine
learning, pp 2048-2057

Yang Y, Teo CL, Daumé III H, Aloimonos Y (2011) Corpus-guided sentence generation of natural images.
In: Proceedings of the conference on empirical methods in natural language processing, Association for
Computational Linguistics, pp 444-454

You Q, Jin H, Wang Z, Fang C, Luo J (2016) Image captioning with semantic attention. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp 4651-4659

Zhou L, Xu C, Koch P, Corso JJ (2016) Image caption generation with text-conditional semantic attention.
arXiv preprint arXiv:1606.04621

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


http://arxiv.org/abs/1612.01033
http://arxiv.org/abs/1805.09019
http://arxiv.org/abs/1605.07912
http://arxiv.org/abs/1606.04621

	Image Captioning with Bidirectional Semantic Attention-Based Guiding of Long Short-Term Memory
	Abstract
	1 Introduction
	2 Related Work
	3 Bidirectional Semantic Attention-Based Guidance of Long Short-Term Memory
	3.1 Overall Framework
	3.2 Semantic Attention Model
	3.3 Bidirectional Guiding of Long Short-Term Memory
	3.4 Sentence Selection

	4 Experiments
	4.1 Datasets and Evaluation Metrics
	4.2 Performance on Flickr8k
	4.3 Performance on MSCOCO
	4.4 Analysis of Sentence Selection Algorithms
	4.5 Visualization
	4.6 Efficiency and Discussion

	5 Conclusion and Future Work
	Acknowledgements
	References




