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A robotic shared control teleoperation
method based on learning from
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Abstract
In teleoperation, the operator is often required to command the motion of the remote robot and monitor its behavior.
However, such an interaction demands a heavy workload from a human operator when facing with complex tasks and
dynamic environments. In this article, we propose a shared control method to assist the operator in the manipulation
tasks to reduce the workload and improve the efficiency. We adopt a task-parameterized hidden semi-Markov model to
learn a manipulation skill from several human demonstrations. We utilize the learned model to predict the manipulation
target given the current observed robotic motion trajectory and subsequently estimate the desired robotic motion given
the current input of the operator. The estimated robotic motion is then utilized to correct the input of the operator to
provide manipulation assistance. In addition, a set of virtual reality devices are used to capture the operator’s motion
and display the vision feedback from the remote site. We evaluate our approach through two manipulation tasks with
a dual-arm robot. The experimental results show the effectiveness of the proposed method.
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Introduction

Recently, advancements in robot learning theories, such as

deep reinforcement learning1,2 and imitation learning,3

enable robots carry out many tasks independently, but

human intervention is still indispensable for many complex

tasks, such as handling hazardous materials, underwater and

space exploration, minimally invasive surgery, and so on. In

these cases, teleoperation that combines human manipula-

tion capabilities and the robot is required. In conventional

teleoperation systems, a human operator is directly required

to control the remote robot in detail while monitoring its

behavior, which results in a heavy workload.4 Some biman-

ual tasks, such as peg-in-hole, require two arms to act coop-

eratively. However, teleoperating a dual-arm robot to

accomplish such cooperative tasks is a complicated skill.

In such scenarios, shared control methods can reduce the

workload and improve operation efficiency by combining

manual teleoperation with autonomous assistance.
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Intensive research studies in developmental psychology

indicate that human actions are often goal-directed.5,6

Accordingly, in order to assist the operator in the manip-

ulation tasks, the robot needs to first predict the manipula-

tion goal and then provides assistance based on the

predictions. For example, in reaching-and-grasping task,

which object to reach and how to reach are essential for

providing manipulation assistance. To do the predictions

while performing the task, a robotic motion model is

needed. Additionally, since the type of teleoperation tasks

may vary frequently, the robotic motion model for a spe-

cific manipulation task is required to be built efficiently

and rapidly. Among the robotic learning algorithms, learn-

ing from demonstrations (LfD) enables a robot to be pro-

grammed by simply showing it how to perform a desired

task, which is efficient and intuitive.

In this work, we propose a shared control method

based on task-parameterized hidden semi-Markov model

(TP-HSMM).7 The task parameters here refer to the vari-

ables that describe the manipulation context, such as the

positions of some task-related objects, which can be used to

reshape the robotic movement. For bimanual tasks, we set

the pose of a robotic arm as a task parameter to model the

cooperation behaviors between two arms. The demonstra-

tions used to train TP-HSMM can be obtained from direct

teleoperation. During teleoperation, our approach evaluates

the probability distribution over the possible targets given

the current observed robotic motion trajectory based on the

learned robotic motion model. The object with the highest

probability is assumed to be the manipulation target. To

provide operation assistance, many shared control works

blend operator input with some autonomous policy, which

selects assistance actions independent of the operator

input.8 In this work, the desired robotic movement is esti-

mated based on the current operator input and most likely

target. The desired robotic movement is then used as an

assistance action to blend with the operator input. More-

over, the virtual reality (VR) techniques are adopted in our

teleoperation system to give the operator a better operation

experience. Concretely, we utilize a pair of VR controllers

to capture the motion of the operator and display the vision

feedback from the remote site in the headset to improve the

transparency of the teleoperation system.

The contributions of the proposed method are as fol-

lows: (i) we adopt TP-HSMM to learn a robotic manipula-

tion skill so that our shared control method can adapt to

new tasks rapidly. (ii) The assistance action is dependent on

the current operator input and manipulation target. (iii) VR

techniques are utilized as the human–robot interface to

improve the transparency of the teleoperation system. We

evaluate the approach on a reaching task and a bimanual

peg-in-hole task. The experiments reveal that our method

can provide the operator useful assistance and improve the

operational efficiency.

The remainder of this article is organized as follows.

The second section reviews the related work. The proposed

VR-based dual-arm teleoperation system, the goal predic-

tion method, and manipulation assistance method based on

TP-HSMM are described in the third section. The fourth

section presents the experimental settings and results. Con-

clusions and future work are presented in the fifth section.

Related works

In recent years, the research studies on the field of robotic

teleoperation have obtained fruitful achievements, such as

adopting new human–machine interfaces and introducing

autonomy to assist the operators. These advancements

intend to provide the operators more natural and efficient

means to accomplish teleoperation tasks.

The human–robot interface is a vital part in teleopera-

tion, which directly impacts the operation experience of the

user. The currently widely used motion capture sensors,

such as exoskeletal mechanical devices,9 data glove with

angle sensors,10 and inertial motion tracking sensors,11

have the merits of accurate detection and stable perfor-

mance but are invasive and hindrance to natural human

motions. Vision-based techniques12–14 do not require oper-

ator to wear extra devices; however, the problems of object

occlusion and loss of tracking result in bad user experience.

VR interfaces offer intuitive means for mapping a user’s

motion actions to robot. In the work of Lipton et al.15 and

Zhang et al.,16 VR devices were utilized to directly control

a humanoid robot. In this work, we also built our teleopera-

tion system using current consumer VR hardware, but we

adopt a shared control strategy to provide assistance in

manipulation tasks.

Recently, many shared control methods have been pro-

posed to reduce the workload of the operators by improving

the autonomy in teleoperation systems.17–20 Some

researchers investigate to assist the operator with some

force feedback, such as haptic guidance to a target position

or desired trajectory.21,22 Our work adopts a predict-then-

blend framework,17 which predicts the most likely goal of

the operators and then provides assistance in the manipula-

tion tasks for that goal.

There are a large number of works on predicting the goal

of the user. Narayanan et al.18 proposed an approach to

predict the short-term goal of the user based on the distance

between the current and the goal configuration. This

method is intuitive but very crude, since it does not take

the history information into account. In the work of Javdani

et al.17 and Dragan and Srinivasa,19 the prediction problem

is formulated based on maximum entropy inverse reinfor-

cement learning (MaxEnt IRL).23–25 In MaxEnt IRL, the

user’s input is assumed to be noisy that optimizes a goal-

dependent cost function, which is relevant to the historic

trajectory of the user. However, learning a robotic motion

skill by IRL is time-consuming. In our work, we adopt an

efficient LfD method, namely TP-HSMM, as the motion

planner to generate goal-dependent trajectory. Moreover,

in TP-HSMM, the state duration is modeled explicitly,
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which is beneficial for resisting temporal perturbations and

representing the time constraint of the tasks.7

There are also a few works which address the prediction

problem by utilizing other machine leaning methods.

Koppula and Saxena26 proposed to use anticipatory tem-

poral conditional random field to predict human motions.

Martinez et al.27 utilized a recurrent neural network to

model human motion to do short-term prediction.

After predicting the goal, shared control teleoperation

system provides the user operation assistances for that goal.

There are many approaches to offer the assistances.

El-Hussieny et al.28 proposed a teleoperation system, which

turns to autonomous mode if the confidence of the predic-

tion is high. However, in some tasks, human intervention is

indispensable, even though the prediction confidence

is high. Rosenberg proposed a method called virtual fix-

tures29 which can be seen as a ruler so that the user can

teleoperate a robot to achieve some precise motions.30,31

Therefore, virtual fixture-based methods are usually used

to guide the user along a predefined path. Our work is

similar to Tanwani and Calinon.32 We advance it in two

directions. First, we blend the desired robotic motion with

the input of the operator so that they can complement each

other, which can avoid manipulation failure led by bad

estimation or improper input. Second, we model the coop-

eration behaviors between two arms so that the operator can

obtain assistance in bimanual manipulation tasks.

Proposed approach

In this work, the technology of motion mapping between

operator and robot is divided into position mapping and

orientation mapping. The basic idea of position mapping

is that the position displacements of the user’s hands cor-

respond to those of the robot’s end-effectors. In order to

make the teleoperation more intuitive, the orientations of

the user’s hands are mapped to the robot directly.

We improve the autonomy in teleoperation system to

assist the human operator in performing tasks. TP-HSMM

is used to encode the human demonstrations observed

from multiple task-parameterized frames. The parameters

of HSMM are estimated using an expectation maximiza-

tion (EM) algorithm.33 The learned HSMM is used as a

motion planner to evaluate probability distribution over

the possible targets. To avoid improper assistance, a pre-

diction confidence is defined based on the entropy of the

evaluated probability distribution. When the confidence is

higher than a predefined threshold, the teleoperation sys-

tem switches to assist mode from direct mode. To assist

operator, we estimate the intended robotic movement and

blend it with the input of the operator to teleoperate the

remote robot.

Motion mapping in direct teleoperation

We build the direct teleoperation system based on a set of

VR devices, a dual-arm robot, and a Microsoft Kinect V2.0.

During teleoperation, we map the poses of the operator’s

hands from the VR frame into the robot frame to get the

target poses of the robotic arms. And then the target poses

are sent to the robot through network.

Since the dual-arm robot is right-and-left symmetrical,

we shall discuss only the right side for the sake of brevity.

Some of the used frames of reference in this work are

illustrated in Figure 1. The pose of the right robotic arm

in the right base frame at each time step is denoted as

Fr ¼ ðpr;OrÞ, where pr 2 R3 and Or 2 R3� 3 represent

the position and the orientation of the right end-effector,

respectively. Similarly, the pose of user’s right hand in the

VR frame is denoted as Fh ¼ ðph;OhÞ. The initial pose of

the right robotic arm and user’s hand is denoted as

Fr
0 ¼ ðpr

0;O
r
0Þ and Fh

0 ¼ ðph
0;O

h
0Þ, respectively. The super-

script r and h represent robot and operator’s hand,

respectively.

robot frame

right base frame

VR frame

VR controllers

Kinect 2.0

camera frame

VR headset

left gripper frame 

vision feedback

motion mapping

Figure 1. Teleoperation diagram. The VR controllers capture the motion of operator’s hands and the VR headset shows the vision
feedback from the Kinect mounted on the robot. The coordination systems of VR devices, dual arm robot, and Kinect are used in
motion mapping from operator to robot. VR: virtual reality.
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As is illustrated in Figure 1, in the VR frame, the

x-axis is pointed right (red arrow), the y-axis is pointed

upward (green arrow), and the z-axis is pointed back-

ward (blue arrow). In the robot frame, the x-axis is

pointed forward; the y-axis and the z-axis are pointed

left and upward, respectively. In teleoperation systems,

the translation between these two reference frames is not

a concern. The rotation matrix between the robot frame

and the VR frame is

Rr
V ¼

0 0 �1

�1 0 0

0 1 0

2
664

3
775 ð1Þ

Then, we convert the orientation of the operator’s hand

from the VR frame to the robot frame by Rr
V

Oh
r ¼ Rr

V �Oh � ðRr
V Þ
�1 ð2Þ

where Oh
r denotes the rotation of the hand in the robot

frame.

The displacement of the operator’s hand is transformed

to the robot frame as

dh
r ¼ Rr

V � ðph � ph
0Þ ð3Þ

Finally, the target position and orientation of right end-

effector in the right base frame is

pr
b ¼ pr

0 þ gðRb
r Þ
�1 � dh

r ð4Þ

Or
b ¼ ðRb

r Þ
�1 �Oh

r ð5Þ

where Rb
r denotes the rotation from the robot frame to the

right base frame and g is a scale coefficient so that the

positional displacement is appropriately scaled. Then, we

send the target pose ðpr
b;O

r
bÞ to the controller of the right

robotic arm via network. The target pose of the left robotic

arm is calculated in a similar way.

Task-parameterized HSMM

Hidden markov model (HMM) is composed of several dis-

crete states, which emit observations drawn from a set of

probability density functions. We adopt a multivariate

Gaussian distribution to represent the emission probability

distribution of each state. In LfD, HMM segments the

demonstrations into a set of movement primitives, which

correspond to the hidden states.

The parameter of an HMM with K hidden states is

described by Y ¼ ai;j

� �K

j¼ 1
; P i; �i; Σi

n oK

i¼ 1
, where

ai;j represents the probability to transit from state qi to state

qj, P i is the initial state prior, and �i; Σif g are the center

and covariance matrix of the Gaussian emission probability

of the ith state. In robotic applications, HMM models the

duration of each state roughly as a geometric distribution

by a state self-transition probability. HSMM extends HMM

by modeling the state duration explicitly as a state-

dependent stochastic variable. Here, the duration is mod-

eled by a univariate Gaussian distribution N �Di ;Σ
D
i

� �
.

Therefore, the parameters of an HSMM are described by

Y ¼ fai;jgK
j¼1;P i;�i;Σi;�

D
i ;Σ

D
i

n oK

i¼1
.

Task parameters here are the positions and orientations of

the reference frames, which are attached on the task-relevant

objects. The task-parameterized models learn to describe a

movement from different frames of reference. Therefore, a

TP-HSMM with K states and P frames of reference are

described by Y ¼ fai;jgK
j¼1;P i; �

ðjÞ
i ;Σ

ðjÞ
i

n oP

j¼1
;�Di ;Σ

D
i

� �K

i¼1

.

The demonstrations used to train TP-HSMM can be

obtained by direct teleoperation or kinesthetic teaching.

In order to learn the relation between the robot’s movementn
ξIt
oT

t¼1
and the environment, we represent the observation

as ξðjÞt ¼
h
ξI

T

t ξOjT

t

iT

, where ξIt and ξOj
t are observed from

right base frame and jth task frame, respectively. The right

base frame is located at the base of the right robotic arm as

shown in Figure 1. To get the observation, ξðjÞt , we denote

the task parameters with P reference frames as Aj; bj

� �P

j¼ 1

Aj ¼
I 0

0 Rj

� 	
; bj ¼

0

pj

" #
ð6Þ

where I 2 R3, Rj 2 R3� 3, and pj 2 R3. Rj and pj denote

the relative rotation matrix and translation vector between

the jth reference frame and the right base frame, and I is a

identity matrix. Then, the observation ξðjÞt is obtained by

ξðjÞt ¼ A�1
j ðξt � bjÞ ð7Þ

where ξt ¼
h
ξI

T

t ξI
T

t

iT

. The observation forms a third-

order tensor data set ξðjÞt

n oT ;P

t;j¼ 1
, where T is the length of

the demonstration. The parameters of TP-HSMM are

obtained using EM algorithm.

Target prediction

In this section, we describe our approach to predict the

manipulation target based on the learned TP-HSMM. In

what follows, S denotes the initial position of the robot’s

end-effector, C denotes the current position, G denotes a

potential target, and G denotes a set of possible targets in

the manipulation environment.

To adapt to a new environment, the parameters of the ith

state of the learned TP-HSMM in the jth reference frame

�
ðjÞ
i ;Σ

ðjÞ
i

n o
are transformed to the right base frame accord-

ing to the task parameter of the jth reference frame
~Aj; ~bj

� �
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N



~�
ðjÞ
i ;

~ΣðjÞi

�
¼ N



~Aj�

ðjÞ
i þ ~b; ~AjΣ

ðjÞ
i

~A
T

j

�
ð8Þ

The center and covariance ~�
ðjÞ
i and ~ΣðjÞi can be repre-

sented in block form

~�
ðjÞ
i ¼

~�I j
i

~�Oj
i

" #
; ~ΣðjÞi ¼

~ΣI j

i
~ΣIOj

i

~ΣOI j

i
~ΣOj

i

" #
ð9Þ

According to the block form of Aj and bj described in

the last section, the top-left block of Aj is always I, and the

corresponding block of bj is 0. Therefore, the componentn
~�I j

i ;
~ΣI j

i

o
is the same for different j values. For the sake

of brevity, we present
n

~�I j
i ;

~ΣI j

i

o
as
n

~�Ii ;
~ΣIi
o

.

Then, we can synthesize the transformed model from the

P task-parameterized frames and the right base frame by

computing the product of Gaussians

Nð~�i; ~Σ iÞ / N ð~�Ii ; ~Σ
I
i Þ
YP

j¼1

N



~�Oj
i ;

~ΣOj

i

�
ð10Þ

where

~Σ i ¼ ~ΣIi

 ��1

þ
XP

j¼1

~ΣOj

i


 ��1

" #�1

~�i ¼ ~Σ i
~ΣIi

 ��1

~�Ii þ
XP

j¼1

~ΣOj

i


 ��1

~�Oj
i

� 	( ) ð11Þ

This product model can plan the motion of the robot

given the current observation ξIt . Firstly, it has to recognize

the most likely state at present by

s0 ¼ arg max
i

piN ξIt j~�i; ~Σ i


 �
PK
k¼1

pkN ξIt j~�k ; ~Σk


 � ð12Þ

Secondly, a state sequence is generated by the means of

forward variable at;i ¼ Pði; ξ1; . . . ; ξtjY Þ
st ¼ arg max

i

at;i ð13Þ

The state sequence is then used to retrieve a stepwise

reference trajectory Nð�̂t; Σ̂ tÞ

�̂t ¼ ~�Ost
; Σ̂ t ¼ ~ΣOst

ð14Þ

The reference trajectory is tracked by a finite horizon

discrete-time linear quadratic regulator to generate an

executable and smooth trajectory.

In this work, the observation sequence of robotic

motion from initial position S to current position C is

denoted as ξS!C . The problem of predicting the target

G� given ξS!C is formulated as maximizing a posterior

probability

G� ¼ arg max
G2G

PðGjξS!C;Y Þ ð15Þ

where Y is the parameters of TP-HSMM. Rewriting equa-

tion (15) according to the Bayes’ theorem

G� ¼ arg max
G2G

PðGjξS!C;Y Þ

/ arg max
G2G

PðξS!CjG;Y ÞPðGÞ
ð16Þ

The learned TP-HSMM is utilized to plan the robotic

motion from S to G, denoted as �ξS!G. Assume the closest

point to C from �ξS!G is D. Dynamic time wrap is then

adopted to compare the observation sequence ξS!C and the

planned sequence �ξS!D to get the distance DðξS!C;
�ξS!DÞ,

which is a target-dependent measurement. Then, the simi-

larity between ξS!C and �ξS!D is defined as

CGðξS!CÞ ¼ �D ξS!C;
�ξS!D

� �
ð17Þ

Based on the principle of maximum entropy, we induce

the likelihood in equation (16) by the similarity

PðξS!CjG;Y Þ �
ebCGðξS!CÞP

g2G ebCgðξS!CÞ
ð18Þ

where b is an adjustable coefficient that increases the

importance of similarity on the distribution. Substituting

equation (18) into equation (16), the prediction becomes

G� ¼ arg max
G2G

ebCGðξS!CÞP
g2G ebCgðξS!CÞ

PðGÞ ð19Þ

In the preceding, S is the initial position, in fact, it can be

any point in the observation sequence. Before making pre-

dictions, the robot is teleoperated directly at the beginning

to get some observations ξS!C . The prior probability of

each possible target P(G) reflects the relevant environment

information, such as task type, object affordance, and so on.

Many previous works studied the impact of autonomy

on the performance of teleoperation and analyzed vari-

ous influencing factors. Among all of the factors, pre-

diction correctness has a substantial effect on the

operation performance and user experience. Thus, the

assistance should take into account how good the pre-

diction is. In this work, a prediction confidence is

defined based on the entropy of the prediction to mea-

sure the quality or correctness of the prediction

conf ¼
X
G2G

PðξS!CjG;Y ÞlogPðξS!CjG;Y Þ ð20Þ

At the beginning of the operation, since there is little

information for the robot to predict the user’s intent, the

prediction confidence is usually low. As the manipulator

expresses apparent tendency toward a target in the course

of teleoperation, the prediction confidence increases. In

order to avoid bad assistance based on the incorrect

Xi et al. 5



predictions, we define a switching threshold to decide when

to assist the operator

control mode ¼
direct mode; conf < T
assist mode; conf � T

�
ð21Þ

where T is the switching threshold. When the confidence is

lower than the switching threshold, the operator controls

the robot directly, otherwise the system switches from

direct mode to assist mode.

Operation assistance

In the direct mode, the position and orientation of the oper-

ator hand at time t are mapped to the robot as ðpr
b;O

r
bÞ.

Then, pr
b is directly sent to the robot as the target position of

the robot end-effector Mt

Mt ¼ pr
b ð22Þ

In assist mode, we first obtain the task parameters based

on the predicted target. Then, our approach corrects pr
b

using the information contained in the TP-HSMM. Concre-

tely, given the current operator input, pr
b, we first approx-

imate the conditional probability distribution of the robot

end-effector position from the perspective of each task-

parameterized frame as

PðξOj
t jpr

bÞ � N ~�Oj
t ; ~Σ

Oj

t


 �
ð23Þ

The center and covariance of conditional probability

distribution P ξOj
t jpr

b


 �
are estimated based on the block

matrix form of ~�
ðjÞ
i and ~ΣðjÞi in equation (9)

~�Oj
t ¼

XK

i¼1

hiðpr
bÞ�̂

Oj
i ðpr

bÞ ð24Þ

~ΣOj

t ¼
XK

i¼1

hiðpr
bÞ



Σ̂
Oj

i þ �̂Oj
i ðpr

bÞ�̂
Oj
i ðpr

bÞ
T
�
� �̂Oj

t �̂OjT

t

ð25Þ

with

hiðpr
bÞ ¼

piN pr
bj~�

I j
i ;

~ΣI j

i


 �
XK

k¼1

pkN pr
bj~�

I j
k ;

~ΣI j

k


 �

�̂Oj
i ðpr

bÞ ¼ ~�Oj
i þ ~ΣOI j

i
~ΣI j�1

i pr
b � �̂I j

i


 �
Σ̂Oj

i ¼ ~ΣOj

i � ~ΣOI j

i
~ΣI j�1

i
~ΣIOj

i

ð26Þ

Synthesizing the information from all task-

parameterized frames using the product of Gaussians, we

can get the conditional probability distribution of the end-

effector’s position at time t

Nð�̂t; Σ̂ tÞ /
YP

j¼1

N ~�Oj
t ; ~Σ

Oj

t


 �
ð27Þ

Evaluating the product of Gaussians yields

Σ̂ t ¼
XP

j¼1

~ΣOj

t


 ��1

" #�1

�̂t ¼ Σ̂ i

XP

j¼1

~ΣOj

t


 ��1

~�Oj
t

� 	 ð28Þ

The mean �̂t denotes the most likely desired position of

the end-effector given the operator input pr
b. In this work,

we utilize �̂t to correct pr
b to yield the target position of the

robot end-effector

Mt ¼ a�̂t þ ð1 � aÞpr
b ð29Þ

where a 2 ð0; 1Þ is a combination coefficient. By regulat-

ing the value of a, we can adjust the level of correction to

the input of the operator. If a is close to 0, Mt is largely

decided by pr
b. When a increases to 1, Mt is mainly deter-

mined by the estimated movement, �̂t. The value of a
cannot be set too large as human interference is important

in teleoperation. Especially when the predicted goal is

wrong or the estimated �̂t is improper, the operator will

not be able to correct the movement of the robot if a is

close to 1.

Our approach for shared control teleoperation is sum-

marized in Algorithm 1. The TP-HSMM is used to pre-

dict the manipulation target and estimate the intended

position of the robotic end-effector. When the confi-

dence of the prediction is higher than a switching

threshold, the operation assistance is provided by cor-

recting the input of the operator.

Algorithm 1. Shared control teleoperation.
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Experiments

In this section, two experiments are conducted to vali-

date the proposed shared control teleoperation method.

In the first experiment, we evaluate the performance of

predicting the manipulation target in a working environ-

ment that contains more than one candidate objects. In

the second experiment, we apply the proposed method in

a bimanual manipulation scenario to show how the

cooperation behaviors can be learned and used to assist

the operator during teleoperation.

Experimental setup

In the following experiments, the AprilTags are used to

help to detect the poses of the interested objects in the

manipulation environment. The experimental platform

consisted of a Microsoft Kinect 2.0 sensor, a dual-arm

robot, and a set of HTC Vive VR devices. The Kinect is

placed on the robot whose view is as shown in Figure 2(a).

The dual-arm robot is composed of two six-DoF Universal

Robot 3 (UR3), and each UR3 is equipped with a two-

finger gripper as shown in Figure 5(a). UR3 can be con-

trolled by torque and position mode, and all its joints

contribute to the transformational and rotational move-

ments of its end effector. We operate each UR3 in position

control mode by sending the target pose of its end-effector

ðx; y; z; rx; ry; rzÞ continuously to its controller via net-

work, and UR3 moves its end effector to the latest target

pose as quickly as possible. In our system, HTC Vive

controllers are used to measure the position and orienta-

tion of the user’s hands, and triggers of the controllers are

used to command the opening and closing of the two-

finger grippers. The vision feedback of the remote work-

ing environment captured by the Kinect is displayed in the

HTC Vive headset.

Goal prediction

Reaching is a standard benchmark in robotics because

many tasks can be represented by one or more reaching

tasks. In order to assist the user in these tasks, the robot

has to know which object the user is intended to reach. In

this experiment, more than one object were placed in the

manipulation environment (see Figure 2(a)), and the oper-

ator teleoperated the robot to pick one of the two objects.

During the operation, the intended goal object was pre-

dicted in real time. This scenario allows us to demonstrate

the ability of the proposed method to predict the manipula-

tion target.

This experiment consists of a learning phase and a pre-

diction phase. In the learning phase, the user teleoperated

the robot directly to reach an object from initial pose and

recorded the pose of the end-effector as human demonstra-

tions. There were 15 demonstrations (see Figure 2)

recorded for different locations of the target object.

In this experiment, one task-parameterized frame (P ¼
1) is utilized to describe the manipulation context, namely

the object frame, which is located at the center of the

AprilTag marker attached on the object as shown in Figure

2(a). The demonstrations were used to train a TP-HSMM

with K ¼ 3 states using EM algorithm. The states of the

resulting TP-HSMM in the right base frame and the object

frame are displayed in Figure 2(b) and (c). The ellipsoids

represent the states of HSMM, whose locations and shapes

are determined by the mean and covariance of the corre-

sponding Gaussian distributions. The models in these two

reference frames describe the reaching task from different

perspectives. In the right base frame, since all demonstra-

tions start from a same initial position and end at different

object positions, the variance of the demonstrations gets

bigger and bigger, which is reflected by the size of the

ellipsoids (see Figure 2(b)). The object frame is located

Object frame 1

(a) (b) (c)

Object frame 2

Figure 2. Manipulation environment, demonstrations, and the learned HSMM. (a) The manipulation environment captured by the
Kinect fixed on the robot and two object frames. Demonstrations and models in (b) right base frame and (c) object frame. The lines are
the recorded demonstrations, and the ellipsoids represent the Gaussian hidden states of the learned HSMM. HSMM: hidden semi-
Markov model.
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on the object, as shown in Figure 2(a). When the demon-

strations are transformed from the right base frame to the

object frame, they converge to the origins of the object

frame at the end phase. Since the location of the object is

different in each demonstration, the initial position of the

robotic end-effector is different in the object frame. There-

fore, in the object frame, the starting phase of the demon-

strations shows great variance. As a result, the size of the

ellipsoid corresponding to state 3 is small and that corre-

sponding to state 1 is large as shown in Figure 2(c).

Given the current pose of the object, the model in the

object frame (Figure 2(b)) is transformed to the right base

frame to get the transformed model (Figure 3(b)) using

equation (8). Therefore, the transformed model contains

the information about the location of the object while the

base frame model (Figure 3(a)) contains the information

about the initial position of the robotic end-effector. The

information of the two models can be used to complement

each other. An all-round description of the task is obtained

by computing the product of the base frame model and the

transformed model. The product of two Gaussian is still a

Gaussian, and the product is closer to the one with smaller

variance. Since the variance of the first state of the base

frame model is small and that of the transformed model is

large, the first state of the product model is closer to that of

the base frame model. Analogously, the third state of the

product model is closer to that of the transformed

model. Therefore, the product model reflects the synthe-

sizing of the information from different frames of

reference. On the other hand, the product model is the

motion trajectory distribution of the reaching task. In a

specific reaching task, since the start and end position of

the motion is fixed, the variances of the trajectory seg-

ments corresponding to the start and end phase are

small. However, the middle part of the trajectory is not

fixed, so the variance is high. Therefore, as shown in

Figure 3(c), the size of the first and third ellipsoid is

small while that of the second one is large.

The product model is used as a motion planner to eval-

uate probability distribution over the possible targets. The

dotted lines in the left column of Figure 4 are the planned

trajectories to the two objects at different locations. At

every time step, the probability to each object is estimated

based on the similarity between the planned trajectory and

the recorded actual trajectory. The b in equation (18) is set

at 50 to evaluate the probabilities. In the first two cases (see

Figure 4(a) and (d)), since the operator teleoperated the

robot to reach one of the objects directly, the estimated

probabilities to that object increased rapidly and the pre-

diction confidence also increased monotonically. In the

third case, the robot moved toward object 2 at the begin-

ning and then turned to object 1 as shown in Figure 4(g).

Since the user changed mind during the operation, the esti-

mated probability and the prediction confidence exhibit

fluctuations apparently. Therefore, the probabilities to each

objects and the prediction confidence in these three cases

can reflect the intent of the user clearly.

Bimanual peg-in-hole

Bimanual teleoperation tasks involve up to two robotic

arms at the same time, thus increasing the operational

difficulty. In this example, the user teleoperated the dual

arm robot to insert a peg held by the right end-effector into

a slot held by the left end-effector as shown in Figure 5(a).

Due to the heterogeneity between human and the dual arm

robot, this kind of manipulation task is often difficult for

the operator.

In bimanual manipulation tasks, the relative motions can

be used to specify the desired motions of both robotic arms.

(a) (b) (c)

Figure 3. The adaptation of the learned model to new environment. (a) The base frame model is the HSMM model in the right base
frame. (b) The transformed model is obtained by transforming the learned model in object frame to the robot base frame according to
the current pose of the object. (c) The product model is the product of the base frame model and the transformed model. HSMM:
hidden semi-Markov model.
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In order to describe the relative motion between the two

robotic arms in the task, we attached a task-parameterized

frame on the left end-effector called left end-effector

frame. A task-parameterized model with K ¼ 4 states and

P ¼ 1 task-parameterized frame is used to encode the

demonstrations.

The demonstrations and the learned models in the robot

base frame and in the left end-effector frame are illustrated

in Figure 5(b) and (c). The red ellipsoids represent the

fourth state of HSMM, which correspond to the insertion

phase of the peg-in-hole task. Since the position of the left

end-effector is different between demonstrations, the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Goal prediction in three different cases (three rows): left column illustrates the actual trajectories and the planned
trajectories of the end-effector to each of the two objects in the manipulation environment; the middle column illustrates the estimated
probabilities move to one of the objects during operation; the right column gives the confidence of the predictions. The black stars
represent the positions of different objects and the black circles represent the start position of the robot’s end-effector. (a), (d), and (g)
The actual and planned trajectories; (b), (e), and (h) the probabilities to different objects; and (c), (f), and (i) the prediction confidence.
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trajectories in the robot base frame show great variance in

the insertion phase. Conversely, in the left gripper frame,

all trajectories finally gather at the position of the peg.

Therefore, the red ellipsoids are large in the robot base

frame but rather small in the left end-effector frame.

During teleoperation, the position and orientation of the

task-parameterized frame are updated at each time step.

Then, learned model is transformed by equation (8) accord-

ing to the new task parameter.

We compare the shared control teleoperation with direct

teleoperation by analyzing the corresponding trajectories of

the right end-effector. The operators teleoperated the robot

to do the bimanual peg-in-hole task in the direct mode and

the assist mode 10 times, respectively. In assist mode, the

right base frame

left end-effector frame

(a) (b) (c)

Figure 5. The dual arm robot, demonstrations, and learned HSMM. The ellipsoids represent the Gaussian hidden states of the learned
HSMM: (a) the dual arm robot and some frames of reference used in the experiment; (b) demonstrations and models in the base frame;
and (c) demonstrations and models in left end-effector frame. HSMM: hidden semi-Markov model.

(a) (b)

(c) (d)

Figure 6. The trajectories and corrections during teleoperation. The red circles represent the position of the slot and the purple part
of the trajectories indicate less than 10 cm to the slot. Plots in the second and fourth columns show the corrections to the input of the
operator, in which the purple rectangle regions correspond to the purple parts of the trajectories. Trajectory and corrections in (a) and
(c) assist mode and (b) and (d) direct mode.
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value of a was empirically set to 0.2. The learned model

assisted the operator in controlling the position of the right

end-effector while the orientation was controlled by the

operator directly. In the direct mode, the operator con-

trols the robot directly without corrections as shown in

Figure 6(b) and (d). The purple part of the trajectories

indicates that the operator is continuously adjusting the

position of the peg in order to insert into the slot. In

assist mode, the purple part is smoother which illustrates

that the operator did less adjustment during operation.

The corrections in the assist mode are illustrated in

Figure 6(a) and (c). The purple rectangle regions corre-

spond to the purple part of the trajectories.

To investigate the influence of a in shared control, we

set the value of a to different values and teleoperate the

robot to do the peg-in-hole task 10 times for each value.

The duration time of the insertion phase for different values

of a is illustrated in Figure 7. We compare the performance

of teleoperation from the perspectives of mean and var-

iance of the duration time of the insertion phase. When

a ¼ 0, the system works in direct teleoperation mode. As

shown in Figure 7, the mean and variance of the duration

time in direct mode are higher than those in shared control,

where a 6¼ 0. Therefore, the assistance can improve the

manipulation efficiency in teleoperation tasks. The high

variance indicates the performance is effected by the

manipulation context greatly, while the low variance indi-

cates the performance is stable. When the value of a is

close to 0, the manipulation assistance is weak and the

performance is close to direct control. As the value of a
gets bigger, the influence of the operator becomes weaker.

If the estimation of desired position is good, the duration

time of larger a is usually shorter than that of the smaller a.

On the other hand, if the estimation is bad, the duration

time of larger a becomes longer. For example, in Figure 7,

the minimum duration time of large a is shorter than that of

the small a, while the maximum duration time of the large

a is longer than that of the small a. Therefore, when a
gets larger, even though the mean duration time might

become lower, the variance usually becomes higher. Tak-

ing both the mean and variance into account, the value

0.2 performs good.

Conclusion

In this article, a shared control method based on LfD is

proposed to assist operator in manipulation tasks. The VR

devices are used to capture the motion of the human oper-

ator and display the vision feedback from the remote site. A

motion mapping approach is developed to map the operator

motion to the robot. We adopt a predict-then-blend

framework to correct the operator input during operation.

A TP-HSMM is utilized to encode human demonstrations

so that the model can adapt to new situations. The learned

model is used as a motion planner to predict the manipula-

tion target based on the principle of maximum entropy and

Bayes’ theorem. Then, the desired motion of the robot is

estimated given the current operator input and task para-

meters. We utilize the estimated desired robot motion to

correct operator input. Our method can apply to bimanual

teleoperation tasks to reduce the operator workload. We set

the pose of left end-effector as a task parameter to describe

the relative behavior of the two robotic arm in bimanual

tasks. The experimental results show that the proposed

method can predict the manipulation target accurately and

provide useful assistance to the operator to reduce the

manipulation workload and improve the operational effi-

ciency. In this work, only the input position of the operator

is corrected. We plan to investigate a way to assist the

operator in controlling the orientation of the end-effector

in future work.
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