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Abstract

Purpose: We aimed to evaluate the value of deep learning
on positron emission tomography with computed tomogra-
phy (PET/CT)–based radiomics for individual induction che-
motherapy (IC) in advanced nasopharyngeal carcinoma
(NPC).

Experimental Design:We constructed radiomics signatures
and nomogram for predicting disease-free survival (DFS)
based on the extracted features from PET and CT images in
a training set (n¼ 470), and then validated it on a test set (n¼
237). Harrell's concordance indices (C-index) and time-inde-
pendent receiver operating characteristic (ROC) analysis were
applied to evaluate the discriminatory ability of radiomics
nomogram, and compare radiomics signatures with plasma
Epstein–Barr virus (EBV) DNA.

Results: A total of 18 features were selected to construct
CT-based and PET-based signatures, which were signifi-
cantly associated with DFS (P < 0.001). Using these sig-

natures, we proposed a radiomics nomogram with a
C-index of 0.754 [95% confidence interval (95% CI),
0.709–0.800] in the training set and 0.722 (95% CI,
0.652–0.792) in the test set. Consequently, 206 (29.1%)
patients were stratified as high-risk group and the other
501 (70.9%) as low-risk group by the radiomics nomo-
gram, and the corresponding 5-year DFS rates were 50.1%
and 87.6%, respectively (P < 0.0001). High-risk patients
could benefit from IC while the low-risk could not. More-
over, radiomics nomogram performed significantly better
than the EBV DNA-based model (C-index: 0.754 vs. 0.675
in the training set and 0.722 vs. 0.671 in the test set) in risk
stratification and guiding IC.

Conclusions:Deep learning PET/CT-based radiomics could
serve as a reliable and powerful tool for prognosis prediction
and may act as a potential indicator for individual IC in
advanced NPC.

Introduction
Nasopharyngeal carcinoma (NPC) is a special kind of head and

neck cancers which ismainly endemic in South Asia (1). Although
the advance in radiotherapy technique and chemotherapy strat-
egies has improved the prognosis of NPC, outcomes of patients
with advanced disease still remain unsatisfactory, with nearly
30% of cases suffering treatment failure (2, 3). Unfortunately,

more than 70% of the patients present with locoregionally
advanced disease at initial diagnosis (4, 5). Management of
advanced disease remains a challenge for clinicians.

Induction chemotherapy (IC), given before radical radiother-
apy, has widely been proven a feasible neoadjuvant treatment
with satisfactory efficacy and low toxicities in advanced NPC
during the past decade (6–9). Consequently, IC has been
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routinely recommended for advanced NPC. However, it should
be pointed out that the advanced disease consisted of many
subgroups and not all of them could benefit from additional
IC (10, 11). Thus, identifying the high-risk subgroups who could
benefit from IC is the key to improve management of advanced
NPC. Although a few retrospective studies have found that pre-
treatment plasma Epstein–Barr virus DNA (pre-DNA) could act as
an indicator for IC (12, 13), these pieces of evidence were not
strong. Most importantly, the assay standardization of plasma
EBV DNA has constrained its wide application because different
labs used different polymerase chain reaction assays and therefore
produced inconsistent results (14). Thus, it is worth identifying
novel and powerful factors to guide IC.

Radiomics has recently emerged as a promising field in oncol-
ogy, and is basedon the premise thatmedical imaging canprovide
important information on tumor physiology (15, 16). By trans-
lating medical imaging into mineable, high-dimension, and
quantitative imaging features via high-throughput extraction of
data-characterization algorithms, radiomics offers an easy, effec-
tive, and reliable method of stratifying patients into risk groups

and aids decision-making (15–17). Meanwhile, the novel deep
learning techniques have shown the promising capabilities to
extract correlative quantitative representation in many medical
applications (18, 19). Specially, the patch-based strategy makes it
possible to implement the training process on a relatively small
data set (20–22). Given this, we conducted this study to evaluate
the role of deep learning positron emission tomography with
computed tomography (PET/CT)-based radiomics in risk strati-
fication and guiding individual IC for patients with advanced
NPC undergoing intensity-modulated radiotherapy (IMRT).

Materials and Methods
Participant inclusion

Patients treated at our center between December 2009 and
December 2014 were reviewed and included for this study if they:
(i) received pretreatment 18F-FDG PET/CT test; (ii) had newly
diagnosed stage III-IVA disease; (iii) treated by concurrent che-
moradiotherapy (CCRT) with or without IC; (iv) received IMRT;
(v) did not have other malignancies. Flow chart of patient inclu-
sion was presented in Supplementary Fig. S1. This study was
approved by the Research Ethics Committee of our Center, and
written informed consent was obtained from all patients before
treatment. Also, our study was carried out in accordance with the
Declaration of Helsinki. The study data underlying the findings of
current work were deposited at the Research Data Deposit plat-
form (RDDA2018000721, available at http://www.researchdata.
org.cn/).

PET/CT imaging protocol
18F-FDG PET/CT scans were performed using a dedicated PET/

CT system (Discovery ST16; GE Medical Systems). Imaging was
performed using a combination PET/CT scanner according to
PET/CT tumor imaging guidelines (23). Detailed information on
PET/CT protocol was described in Supplementary Methods.

Translational Relevance

Induction chemotherapy (IC) plus concurrent chemora-
diotherapy (CCRT) has emerged as the standard care for
locoregionally advanced nasopharyngeal carcinoma (LA-
NPC). However, most of the patients could not benefit from
additional IC, and we still lack effective markers to perform
individualized IC. Our current study developed and validated
that deep learning-aided PET/CT radiomics could serve as a
powerful prognostication and help to individual IC. Our
findings would provide important evidence for clinical treat-
ment of LA-NPC.

Figure 1.

Radiomics workflow in this study.
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Imaging segmentation
PET/CT images were retrieved from the picture archiving and

communication system and then loaded into ITK-SNAP software
(version 2.2.0; www.itksnap.org) for manual segmentation. A
radiation oncologist (L. Chen) with 13 years of experience out-
lined the regions of interest (ROI), which included volumes of the
tumor and lymph nodes, on the PET and CT images, respectively.
Therefore, there were four different ROIs being segmented for
each patient in this study (Supplementary Fig. S2). After 3
months, 50 patients in the training set were selected randomly
and segmented again by him and another radiation oncologist
(L.-L. Tang) with 15 years of experience to assess intra/interreader
agreement of the radiomics analysis.

Radiomics feature extraction
Both deep learning features and handcrafted features were

extracted based on the PET/CT images to quantify the tumor
phenotype (Fig. 1). For each ROI, 136 deep learning features and
133 handcrafted features were extracted. We constructed and
trained four deep convolutional neural networks (DCNNs with
12 or 8 weighted layers) to extract deep learning features on the
four groups of ROIs, respectively (Supplementary Fig. S3). A set of
handcrafted features, which was defined by experiential algo-
rithms, was also extracted. The features could be divided into
four groups: shape features, histogram features, gray-level co-
occurrence matrix features, and gray-level run-length matrix
features.

The architecture and implementation of our DCNNs and the
feature extraction pipeline were detailed in Supplementary Meth-
ods. Our DCNNs were implemented based on the Python Keras
package (https://github.com/fchollet/keras) with the TensorFlow
library (https://www.tensorflow.org) as the backend. The hand-
crafted feature extraction was performed in MATLAB 2017a
(MathWorks) using an in-house developed tool box.

Feature selection and radiomics signature building
We built two radiomics signatures reflecting the phenotypic

characteristics of the primary tumor and the lymph nodes in CT
and PET images, respectively, as independent predictors of dis-
ease-free survival (DFS), i.e., the CT-based signature and the PET-
based signature. The least absolute shrinkage and selection oper-
ator (LASSO) Cox regression method was used to select the most
useful prognostic combination of features. Then, the radiomics
score (Rad-score) was computed for each patient through a linear
combination of selected features weighted by their respective
coefficients. Both feature selection and the following radiomics
signature construction were performed in the training set. Sup-
plementary Methods detailed the feature selection and radiomics
signature construction. Furthermore, signatures combining either
the handcrafted features or the deep learning features were also
developed using the same methods for comparison.

Staging workup and treatment
All patients were staged by PET/CT and MRI. Two radiologists

(L.-Z. Liu and L. Tian) reviewed theMRI scans independently, and
discrepancy was solved by consensus. Tumor stage was grouped
according to the 8th edition of the International Union against
Cancer/American Joint Committee on Cancer manual.

All the patients received radical IMRT. The cumulative radiation
doses were 66 Gy or greater to the primary tumor and 60 to 70 Gy
to the involved neck area. All potential sites of local infiltration

and bilateral cervical lymphatics were irradiated to 50 Gy or
greater. All patients were treated with 30 to 35 fractions with five
daily fractions per week for 6 to 7 weeks. IC included cisplatin-
based regimens every three weeks for 2 to 4 cycles. Concurrent
chemotherapy was weekly or triple-weekly cisplatin.

Clinical endpoints and follow-up
To allow earlier individual treatment (24), we set DFS (time

from diagnosis to disease progression or death from any cause) as
the main endpoint and nomograms were built based on it. Other
endpoints included OS (time from diagnosis to death from any
cause), distant metastasis-free survival (DMFS, time from

Table 1. Baseline information of the training and internal validation sets.

Training set (n ¼ 470) Test set (n ¼ 237)
Characteristics No. (%) No. (%) Pa

Age (y) 0.759
Median (range) 45 (9–76) 44 (10–76)

Gender 0.458
Female 111 (23.6) 62 (26.2)
Male 359 (76.4) 175 (73.8)

Smoking 0.155
Yes 157 (33.4) 92 (38.8)
No 313 (66.6) 145 (61.2)

Drinking 0.454
Yes 58 (12.3) 34 (14.3)
No 412 (87.7) 203 (85.7)

WHO pathology type 0.710
I 3 (0.6) 1 (0.4)
II-III 467 (99.4) 236 (99.6)

Family history of cancer 0.231
Yes 143 (30.4) 62 (26.2)
No 327 (69.6) 175 (73.8)

LDH (U/L) 0.120
Median (range) 177 (100–658) 174 (118–626)

HGB (g/L) 0.092
Median (range) 146 (79–178) 144 (91–176)

ALB (g/L) 0.484
Median (range) 44.2 (31–53) 44 (25–54)

CRP (mg/L) 0.549
Median (range) 2 (0–127.2) 2.1 (0–126.6)

Pre-DNA (copies/mL)b 0.376
Median (range) 5,385 (0–68,700,000) 4,855 (0–1,840,000)

T categoryc 0.118
T1 24 (5.1) 10 (4.2)
T2 50 (10.6) 13 (5.5)
T3 287 (61.1) 151 (63.7)
T4 109 (23.2) 63 (26.6)

N categoryc 0.694
N0 46 (9.8) 24 (10.1)
N1 206 (43.8) 111 (46.8)
N2 135 (28.7) 58 (24.5)
N3 83 (17.7) 44 (18.6)

Overall stagec 0.664
III 292 (62.1) 143 (60.3)
IVA 178 (37.9) 94 (39.7)

Treatment 0.085
IC þ CCRT 322 (68.5) 147 (62.0)
CCRT alone 148 (31.5) 90 (38.0)

Abbreviations: WHO, World Health Organization; LDH, lactate dehydrogenase;
HGB, hemoglobin; ALB, albumin; CRP, C-reaction protein; Pre-DNA, pretreat-
ment plasma Epstein–Barr Virus DNA; IC, induction chemotherapy; CCRT,
concurrent chemoradiotherapy.
aP values were calculated by the c2 test for categorical variables and nonpara-
metric test for continuous variables.
bTwenty-three patients lost these data.
cAccording to the 8th edition of the International Union against Cancer/Amer-
ican Joint Committee on Cancer (UICC/AJCC) staging manual.
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diagnosis to first distant metastasis) and locoregional relapse-free
survival (LRRFS, time from diagnosis to first local or regional
recurrent or both).

Patients were followed by routine imaging methods every 3
months during the first 2 years, every 6 months at the 3rd to 5th
years, and annually thereafter. Follow-up duration was measured
from the day of diagnosis to last visit or death. All local and
regional recurrence was confirmed by pathology. Distant metas-
tasis was diagnosed mainly based on imaging methods such as
MRI, CT, or PET/CT.

Statistical analysis
To compare radiomics signatures with pre-DNA, we also devel-

oped two clinical nomograms, one using only clinical factors (age,
gender, smoking, drinking, family history of cancer, lactate dehy-
drogenase, hemoglobin, albumin, C-reaction protein, T category,
N category, and overall stage) without pre-DNA (nomogram A),
and another using these clinical factors with pre-DNA (nomo-
gram B). The radiomics nomogram was defined as nomogram C.

To evaluate the reproducibility of our model's prognostic
performance and the stability of the feature selection, we repeated
the randomized assignment of training/test sets 10 times. Sub-
sequently, the model was retrained and validated repeatedly.

Statistical analysis was conducted with R software (version
3.4.4; http://www.Rproject.org) and MATLAB. A two-sided
P value < 0.05 was used as the criterion to indicate a statistically
significant difference.Detailed informationon statisticalmethods
was shown in Supplementary Methods.

Results
Baseline information of participants

In total, 707 patients were recruited for this study, among them
436 (61.7%) and 271 (38.3%) patients had stage III and IVA
disease, respectively. Additionally, 469 (66.3%) received IC plus
CCRT and 238 (33.7%) received CCRT alone. We then used
computer-generated random numbers to divide patients into a
training set (n¼ 470) and a test set (n¼ 237; Table 1). Themedian
follow-up duration of the whole cohort was 55.7 months (range,
1.3–93.6 months). Upon the last follow-up, 109 (23.2%) in the
training set and 52 (21.9%) patients in the test set experienced a
confirmed disease progression (P ¼ 0.708).

Radiomics signature building and validation
Five and 13 radiomics features were selected from the CT-based

andPET-based feature sets, respectively, and the detailed selection
process was presented in Supplementary Tables S1 and S2. The
selected features and corresponding coefficients in the formula of
each Rad-score were listed in Supplementary Table S3. In the
training set, the CT-based and PET-based Rad-score yielded
C-indexes of 0.738 (95% CI, 0.690–0.786) and 0.730 (95% CI,
0.683–0.776), respectively. Good prognostic performances were
validated with the corresponding C-indexes of 0.707 (95% CI,
0.635–0.779) and 0.683 (95% CI, 0.610–0.755) in the test set.
Furthermore, as presented in Supplementary Table S4, the radio-
mics signature achieved the best discriminatory ability when it
combined both handcrafted features and deep learning features.

Figure 2.

A, Radiomics nomogram; B,
Radiomics nomogram calibration
curves. PET, positron emission
tomography; CT, computed
tomography.
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Development of an individualized prediction model
For univariate analysis, clinical factors including pre-DNA, N

stage, and overall stage were found significantly associated with
DFS (Supplementary Table S5). When multivariate Cox pro-
portional hazard model was performed, the two radiomics
signatures (CT-based signature [per 1 increase]: HR, 2.99;
95% CI, 1.84–4.86; P < 0.001; PET-based signature [per 1
increase]: HR, 2.32; 95% CI, 1.55–3.46; P < 0.001) remained
significant for DFS after adjustment for various cofactors (Sup-
plementary Table S6). Then, a radiomics nomogram for indi-
vidualized DFS estimation was built using the above regression
coefficients (Fig. 2A).

Performance and validation of the radiomics nomogram
The radiomics nomogram was significantly associated with

DFS (all P < 0.001), with C-indexes of 0.754 (95% CI, 0.709–
0.800) in the training set and 0.722 (95% CI, 0.652–0.792) in
the test set. The calibration curves of nomogram for DFS are
shown in Fig. 2B, which showed better agreement between the
estimated outcomes and the observed outcomes (all P > 0.05).
Moreover, the prognostic accuracy of the radiomics nomogram
at 1, 3, and 5 years was also satisfactory (all P < 0.01; Supple-
mentary Fig. S4).

We identified the cutoff score of radiomics nomogram as 0.311
corresponding to the total point of 79 in Fig. 2A. Consequently,
135 (28.7%) in the training set and 71 (30.0%) in the test set with
scores�0.311were classified as high-risk group, and335 (71.3%)
and166 (70.0%) in the training and test setswith scores <0.311 as
low-risk group (Supplementary Fig. S5). Baseline information of
thehigh-risk and low-risk groupswas presented in Supplementary
Table S7. For high-risk versus low-risk group, the 5-year DFS rate

was46.7%versus 88.6%(HR, 6.29; 95%CI, 4.24–9.35;P<0.001)
in the training set, and 57.4% vs. 85.6% (HR, 3.90; 95%CI, 2.24–
6.76; P < 0.001) in the test set (Fig. 3). Similarly, patients in the
low-risk group also achieved better OS, DMFS, and LRRFS (all P <
0.01; Fig. 3; Supplementary Table S8).When stratifiedby age (>45
or � 45 years), gender (female or male), and pre-DNA (>4,000
copies/mL or � 4,000 copies/mL), the radiomics nomogram
remained a clinically and statistically significant prognosticmodel
(Supplementary Fig. S6). The KM curves of the low/high-risk
groups crossed approximately at 2 years for DFS on the patients
with overall stage IVA, which suggested that a finer-grainedmodel
constructed based on a larger-scale training set was needed.
Meanwhile, our model successfully split the patients for different
OS in all stratification cases, except for the female group in which
only four patients died during the follow-up (Supplementary
Fig. S7).

Furthermore, we split the whole data set into paired training
(70%) and test (30%) sets 10 times, followed by the repeating
construction and validation of the predictive model. In this
experiment, the features involved into the new models yielded
a very high possibility (144/165) to be highly correlated with the
18 selected features (i.e., with the Pearson correlation coefficients
> 0.8). Moreover, no significant difference was found between the
resultedC-indexes ranging from0.703 to 0.749 in the holdout test
sets.

Comparing radiomics signature with pre-DNA
Overall, data on pre-DNAwere available for 456 patients in the

training set and 228 patients in the test set. Independent factors
and their coefficients for nomograms A and B were shown in
Supplementary Results. In the training set, nomogramC(C-index,

Figure 3.

DFS, overall survival, DMFS, and locoregional relapse-free survival Kaplan–Meier curves between the radiomics nomogram–defined high-risk and low-risk groups
in the training and test sets.
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0.754; 95%CI, 0.709–0.800) achieved stronger prognostic ability
for DFS than nomogram A (C-index, 0.684; 95% CI, 0.621–
0.747) and nomogram B (C-index, 0.675; 95% CI, 0.619–
0.731). This finding was also validated in the test set (nomogram
C: C-index, 0.722; 95% CI, 0.652–0.792; nomogram A: C-index,
0.661; 95% CI 0.565–0.758; nomogram B: C-index, 0.671; 95%
CI 0.590–0.752). Furthermore, time-independent receiver oper-
ating curve (ROC) analysis also validated that nomogram C had
the best prognostic power (Fig. 4).

Benefit of induction chemotherapy
For the whole cohort, survival outcomes were comparable

between IC þ CCRT and CCRT-alone groups (Supplementary
Fig. S8; Supplementary Table S9). Then, we applied our radio-
mics nomogram to predict if patients could benefit from IC.
Within the high-risk group, patients receiving IC plus CCRT
(n ¼ 173) achieved significantly better 5-year DFS (53.5% vs.
32.5%, P ¼ 0.001), OS (71.8% vs. 38.1%, P < 0.001), and
DMFS (70.6% vs. 40.0%, P < 0.001; Fig. 5; Supplementary
Table S10) rates than those receiving CCRT alone (n ¼ 33).
However, for the 501 patients with low risk, 5-year DFS
(88.9% vs. 85.7%, P ¼ 0.505), OS (93.5% vs. 94.0%, P ¼
0.611), DMFS (93.6% vs. 93.9%, P ¼ 0.815), and LRRFS
(94.3% vs. 90.0%, P ¼ 0.162; Supplementary Fig. S9; Supple-
mentary Table S11) rates did not significantly differ between
IC plus CCRT (n ¼ 296) and CCRT alone (n ¼ 205). When
applying nomograms A and B to predict the benefit of IC, they

either failed or had less power than nomogram C (Supple-
mentary Results).

Discussion
Weundertook this study to develop and validate the prognostic

value of multiparametric PET/CT-based radiomics in advanced
NPC, and our findings suggested that the radiomics nomogram
was powerful in risk stratification and guiding the individual IC.
Moreover, the radiomics signatures performed better than current
TNM staging system and prognostic biomarker plasma EBVDNA,
indicating that it could act as a novel and useful tool for the future
management of advanced NPC. The prediction models built in
this study are available on our website (www.radiomics.net.cn/
platform.html).

One of the main challenges of our study is the extraction and
selectionof radiomics features,whichweremostly associatedwith
DFS, to develop radiomics signatures. Initially, 136 deep learning
and 133 handcrafted features from each ROI were extracted. For
deep learning feature extraction, we constructed 4 DCNNs and
trained the weighted parameters through a patch-based strategy.
After data augmentation, the size of training samples reached the
order of ten thousand. Moreover, instead of using the DCNNs as
the predictive tools directly or collecting the outputs of some
layers as the features, we quantified the characteristics of the
feature maps (Supplementary Fig. S10) from many aspects using
the statistical algorithms to extract more comprehensive features,

Figure 4.

ROC curves comparing the predictive power of three nomograms for DFS in the training and test sets. ROC, receiver operator characteristic; AUC, area under the
curve.
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aswell as to improve stability and generalization. Byusing LASSO,
18 features were finally selected. It should be noted that LASSO is
suitable for handling amass of radiomics features with a relatively
small sample size and avoid overfitting (25, 26). The radiomics
features selected by LASSOare usually accurate, and the regression
coefficients of extracted features are shrunk to zero during the
process ofmodel fitting, allowing the selection of features that are
most strongly associatedwithDFS andmaking themodel easier to
interpret (27). Most importantly, LASSO allows radiomics signa-
tures to be constructed by combining the selected features. In our
study, the identified features were highly associated with DFS in
both training and test sets.

As shown by our results, radiomics nomogram performed
better than the clinical TNM staging system in risk stratification
(C-index: 0.754 in the training set and 0.722 in the test set). There
may be two major reasons for this: First, the TNM system was
developed based on tumor size, lymph node status, and meta-
stasis status, which only reflect anatomic information. Patients
even with the same tumor stage could have different progno-
sis (28). Second, our signature features carry information on
intratumor heterogeneity, which is an established prognostic
factor (29, 30). Radiomics extracts the tumor imaging character-
istics on medical images, providing a powerful means of inter-
preting intratumor heterogeneity; traditional clinical tumor stages
cannot provide this information. This may be the main reason
why the radiomics signatures and proposed nomogram per-
formed better than TNM classification in predicting prognosis
and stratifying risk.

As plasma EBVDNAhas beenwidely identified as a reliable and
useful biomarker at clinical practice (31–34), we then compared
radiomics signatures with it. Intriguingly, the C-index of nomo-
gram C is higher than that of nomogram B (0.785 vs. 0.683 in the
training set, 0.771 vs. 0.671 in the test set), indicating that the
prognostic ability of radiomics signatures was better than that of
pre-DNA.Moreover, this conclusion was further supported by the
results of time-independent ROC analysis (Fig. 5). When using
these nomograms to predict the benefit of IC, nomogram C
significantly performed better than both nomogram A and B.
Taken these together, radiomics signatures were more powerful
than plasma EBV DNA in prognosis prediction. Notably, we did
not include EBV DNA into the radiomics nomogram initially
because a few patients lost the data.

Currently, distant metastasis after radical radiotherapy has
emerged as the predominant failure pattern for advanced NPC
as IMRT has improved local and regional control greatly (3, 35).
IC, given before radiotherapy, has been proven as a robust tool
against this treatment failure (6–9). Although the most effective
triplet IC regimen of docetaxel plus cisplatinwithfluorouracil was
delivered, the absolute benefit was observed only in 8% of the
patients (8), meaning that more than 70% of patients could not
benefit from IC.Meanwhile, these patients have to suffer from the
severe toxicities and economic burden brought by IC.Given these,
it is of great importance to identify patients with non-IC benefit.
Although previous studies found that pre-DNA may play this
role (12, 13), these studies were retrospective and had small
sample size, making the results inconclusive. In our study, we

Figure 5.

A–D, Kaplan–Meier survival curves between ICþ CCRT and CCRT alone within the radiomics nomogram–defined high-risk group. IC, induction chemotherapy;
CCRT, concurrent chemoradiotherapy.
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established PET/CT-based radiomics as a strong indicator for IC,
i.e., high-risk patients could benefit from IC while low-risk could
not. These findings provided a new insight into the future delivery
of IC.

Compared with previous studies regarding radiomics (36–39),
there were mainly four advantages in our study. First, the sample
size was larger, thus improving the test power and the predictive
ability of the model. Second, all patients were staged by PET/CT,
which achieved higher diagnostic accuracy than conventional
staging workup inNPC (40, 41). Undoubtedly, this accurate stage
classification enables the robust prognostic prediction by radio-
mics signatures. Third, all patients received the standard care of
CCRT with or without IC, which could reduce treatment-related
bias on our conclusion. Finally, a deep learning method, named
convolutional neural network (42), was applied for feature
extraction. Deep learning radiomics method could learn features
included inneural nets' hidden layers automatically from imaging
data, and thus do not need object segmentation and hard-coded
feature extraction (43). Limitations of our study should also be
acknowledged. Follow-up duration may not be long enough;
therefore, we constructed nomograms based on DFS. Study data
were collected froma single center, and external validationmaybe
warranted in the future. Moreover, potential patient selection
biases confounded with radiomics signatures and outcomes may
exist because IC treatment was not randomly assigned to parti-
cipants as a result of retrospective nature, indicating that our
results should be further validated in prospective and well-
designed studies.

In summary, this study identified PET/CT-based radiomics as a
powerful approach for predicting prognosis in patients with
advanced NPC. The radiomics nomogram successfully stratified
patients into high-risk and low-risk groups for all endpoints, and
thereby may act as a potential tool for individualized treatment
strategies: high-risk patients should receive more intensity treat-
ment like IC plus CCRT; for low-risk patients, CCRT may be
enough. Future prospective studies with external validation are
needed to validate our findings.
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