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a b s t r a c t

The objective of this work is to illustrate how a mathematical model of plant growth could be possibly used
to design ideotypes and thus leads to new breeding strategies based on the guidance from optimization
techniques. As a test case, maize (Zea mays L., cv. DEA), which is one of the most widely cultivated cereals
all over the world, is selected for this study. The experimental data reported in a previous study are used
to estimate parameters of a functional–structural plant growth model, namely, “GreenLab”. As the corn
cob and its leaves and stem can be benefited from economically, a single objective optimization problem
(maximization of cob weight) and a multi-objective optimization problem (maximization of cob weight,
maximization of leaf and stem weight) are formulated, respectively. The Particle Swarm Optimization
approach is applied to solve these two kinds of optimization problems based on the GreenLab model.
The optimized variables are specific parameters of the GreenLab model, which are the cob sink strength
ulti-objective optimization and the coefficients of the cob sink variation function. The optimization results revealed that to achieve
breeding objectives, the optimal trade-offs of source–sink dynamics should be considered. Moreover,
the optimization results of the multi-objective optimization problem revealed that the harvest index
may not be the evaluation factor for yield improvement. The work described in this paper showed that
such optimization approaches relying on plant growth models may help improve breeding strategies and
design ideotypes of high-yield maize, especially in the current agricultural context with the increasing

ts wh
importance of co-produc

. Introduction

In plant breeding, the concept of ideotype is first defined in
onald (1968): “a plant model which is expected to yield a greater
uantity or quality of useful product when developed as a cultivar”,
plants with model characteristics known to influence photosyn-
hesis, growth, and (in cereals) grain yield”. Since then, the design of
deotype has been a major issue in genetic improvement in order
o optimize crop yield. There are two main strategies to investi-
ate ideotype breeding: experimental based and plant model based

pproaches. The critical drawback of experimental based approach
s that the time consumed for experiments is long (10 years needed
y Dencic, 1994 and by Lauri and Costes, 2004, and 20 years by
eng et al., 2008) and it consumes resources that are limited (field,

∗ Corresponding author at: Institute of Automation, Chinese Academy of Sciences,
IAMA, No.95, ZhongGuanCun Dong Lu, HaiDian District, Beijing 100190, China.
el.: +86 0 10 82 61 45 06; fax: +86 0 10 62 64 74 58.
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en designing cultivation practices.
© 2010 Elsevier B.V. All rights reserved.

water, labor) due to the cultivation of thousands of plants (Dencic,
1994). Moreover, the performance of the improved plant might
prove disappointing in terms of grain yield compared with the orig-
inal variety when the environmental conditions vary (Peng et al.,
2008). Nowadays, it becomes widely accepted that plant growth
models may provide efficient tools to study plant growth behav-
ior (Tardieu, 2003; Herndl et al., 2007; Letort et al., 2008a), since
they can not only complement field experiments, but also save
time and resources. Therefore, researchers dedicated themselves
to study ideotype breeding based on plant models (Yin et al., 2003;
Cilas et al., 2006). Even though Cilas et al. (2006) investigated ideo-
type breeding from the architectural point of view, and Yin et al.
(2003) from the physiological point of view using a process-based
plant growth model, they all agree that there exist critical rela-
tionships between plant architectures and physiological processes

during plant growth, with other researchers like Rasmusson (1987),
Kaitaniemi et al. (2000), Sievänen et al. (2000), Luquet et al. (2006),
and Fourcaud et al. (2008). The design of ideotypes should thus take
into account both architectural and physiological aspects. In paral-
lel, functional–structural plant growth models were developed (see

http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag
mailto:qiruitree@gmail.com
dx.doi.org/10.1016/j.compag.2009.12.008
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ievänen et al., 2000 or de Reffye et al., 2008 for reviews), combining
he description of organogenesis (plant development), photosyn-
hesis and biomass partitioning. They offer interesting perspectives
o improve plant breeding.

For this study, the GreenLab plant growth model (Cournède et
l., 2008) is chosen. It can be considered as a process-based model
aking into account the dynamics of organogenesis. Its mathemat-
cal formalism as a dynamic system has allowed the estimation
f model parameters from experimental data for a wide range
f species and environmental conditions. The relative stability of
arameters among seasons and treatments (Ma et al., 2007, 2008)

eads us to consider a possible link of model parameters to the geno-
ype of the species (Letort et al., 2008b), even though assessing
uch links would claim a considerable amount of work. Moreover,
reenLab’s mathematical formulation makes it suitable for solving
ptimization problems arising in breeding.

Maize (Zea mays L., cv. DEA) is chosen for ideotype breeding in
he present work, as it is one of the most widely cultivated cereals
ll over the world. Moreover, it has been studied in depth with
he GreenLab model in different environmental conditions (Guo et
l., 2006; Ma et al., 2007, 2008) and the model was shown to well
escribe the source–sink dynamics of maize growth.

Commonly, maize is used in the human diet in both fresh and
rocessed forms; the grain and vegetative parts of maize are fed
o livestock, and the components of the grain (e.g. starch) may be
efined for direct consumption (Pratt, 2001). Moreover, the fact that
he cob, and leaves and stem can be used as biofuel becomes of
mportant economical interest (Baenziger et al., 2006). Therefore,
he objective of this work is to optimize maize first with the poten-
ial best cob yield, and second with high yields of both cob and the
egetative part consisting of leaves and stem.

Haverkort and Grashoff (2004) and Herndl et al. (2007) have
lready used plant models to find ideotypes of plants with the
ptimum product with respect to physiological parameters. The
esults they found were through trial and error method based on
imulations, as well as Habekotté (1997) through a sensitivity anal-
sis approach. In the domain of agriculture, several works studied
ulti-objective optimization problems (Raju and Kumar, 1999;
ngelis and Stamatellos, 2004; Francisco and Ali, 2006; Buddadee
t al., 2008). However, these works mainly focused on agricul-
ural systems and logistics. The objectives are land utilization,
abor employment, crop production, water management, measure-

ent techniques, for various crops (e.g. maize, wheat, tomato). The
actors they considered are all related to cultivation modes (e.g. irri-
ation planning, water planning). None of them did optimization
n the parameters that describe the inner physiological processes
f plant growth, the factors related to genetic parameters or new
enotype investigations for a specific species. In this study, we
ake advantage of the GreenLab dynamic system of plant growth
o formulate proper optimization problems with respect to plant
hysiological processes in order to exhibit ideotypes of maize that
atisfies the requirement of high-yield capacity in a given envi-
onment. Numerical methods are used to solve these optimization
roblems.

In the first section of this article, we recall the principles of the
reenLab model of maize growth and introduce the DEA cultivar
n which our study is based. An experimental data set is used to
stimate the model parameters which will serve as the reference
hen designing the ideotype. As mentioned above, from an eco-
omical point of view, there are potential benefits from both cob
eight and the total weight of leaves and stem (to feed animals
s forage, or to be used as biofuel). Firstly, an optimization prob-
em with single objective maximization of cob weight is formulated
nd investigated, and then, a multi-objective optimization problem
ith two conflict objectives: maximization of cob weight and of the

otal weight of leaves and stem at the same time, is formulated with
in Agriculture 71 (2010) 96–105 97

a constraint. The constraint is that the tassel weight should be big-
ger than a threshold. A heuristic optimization algorithm, Particle
Swarm Optimization (PSO) (He et al., 2004), is then used to solve
both problems. Finally, the optimization results and their potential
use as guidance for breeding are discussed.

2. Materials and methods

2.1. Description of the GreenLab model

GreenLab is a functional–structural plant growth model com-
bining the descriptions of plant architecture and physiological
processes of plant growth at organ level, in interaction with the
environment (light, water, temperature and density). The dynamic
mechanisms to generate plant architecture (organogenesis) and
to calculate plant biomass production and partitioning to organs
are introduced in detail in de Reffye et al. (2008). Here, only the
necessary points to understand our approach are recalled.

In the usual cultivation conditions, maize is a single stem crop.
The phytomer appearance is controlled by thermal time in the
GreenLab model for maize. The model time step, also called growth
cycle (GC), is thus equivalent to thermal time requirement for each
phytomer appearance. The topology of maize cultivar ND108 as
observed in the field is as follows: first six phytomers with short
internodes appear; they are followed by 15 phytomers with longer
internodes; the last one bears the male flower (tassel). Therefore,
the organogenesis terminates at the end of the 21st growth cycle,
but the plant is still alive until the 33rd growth cycle. Even though
several phytomers may bear female flowers (cobs), Guo et al. (2006)
chose to gather all the potential cob weights on the 15th phytomer.
This simplification was proved very effective for plant modelling
and model calibration (Guo et al., 2006).

The functional processes of plant growth are described by a
source–sink model in GreenLab, with a common pool of biomass.
GreenLab simulates plant growth from the seed stage, hence the
initial plant biomass is from seed and the initial organs are driven
by seed. And then, at the following growth cycle n, biomass produc-
tion Qn (g) of an individual plant is calculated by Beer–Lambert’s
law (McMurtrie, 1985) as expressed by Eq. (1). It depends on the
total green leaf surface area at the end of the previous growth cycle
n − 1 (Sn−1 (cm2)), on environmental factors gathered in the func-
tion En (g/cm2) and on light use efficiency � (unitless) and light
interception coefficient k (unitless):

Qn = En�Sp
(

1 − exp
(

− k

Sp
Sn−1

))
, n ≥ 1

Q0 = Qseed

(1)

where Qseed (g) is seed biomass; Sp (cm2) is the total ground pro-
jection area available of the leaf surface for plant modulated by the
effects of self-shading and neighbour competition that is related to
planting density; hence, Sn−1/Sp is leaf area index (LAI) adapted to
individual plant.

All living organs (blades, sheaths, internodes, cob and tassel) are
sinks among which biomass is distributed according to their sink
values. The total demand of plant for biomass at growth cycle n,
denoted by Dn (unitless), is given by

Dn =
∑

o

min(n,tx o)∑
j=1

No
n−j+1po(j) (2)

where po(j) (unitless) is the sink of organ o of age j; o represents

blade (a), sheath (s), internode (e), female (f) and male (m) organs;
tx o (growth cycle) is the expansion duration of organ o; No

n (unit-
less) is the number of organ o generated at growth cycle n.

The biomass increment of an organ o of age j at growth cycle n,
denoted by �qo(n,j) (g), is proportional to its sink value po(j) and
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he ratio of biomass production to the total demand of plant, as
etailed in Eq. (3):

qo(n, j) = po(j)
Qn

Dn
(3)

The accumulated biomass, denoted by qo(n,j) (g), for an organ o
f age j at growth cycle n is given by

o(n, j) =
j∑

k=1

�qo(n − j + k, k) (4)

As a consequence, the total green leaf surface area at growth
ycle n, denoted by Sn (cm2), is

n =
∑ta

j=1Na
n−j+1 · qa(n, j)

slw
(5)

here ta (growth cycle) is the blade functioning duration, and slw
g/cm2) is the specific leaf weight.

The family of Beta functions was chosen to describe the sink
ariation during the expansion, as expressed by Eq. (6):

fo(j) =
{

beo(j)/Mo (1 ≤ j ≤ tx o)
0 (j > tx o)

with beo(j) = (j − 0.5)ao−1 · (tx o − j + 0.5)bo−1

and Mo = max
j

(beo(j), 1 ≤ j ≤ tx o)

(6)

here ao (unitless) and bo (unitless) are the coefficients of the
ink variation function beo; Mo (unitless) is normalization factor.
iverse sink variations can be obtained by adjusting values of the
oefficients: ao and bo.

The sink value of an organ of age j, denoted by po(j), is fo(j) multi-
lied by the sink amplitude (also called sink strength) Po (unitless)
s expressed by Eq. (7):

o(j) = Pofo(j) (7)

.2. Field experiment and field measurements on maize

Maize cultivar ND108 (Z. mays L., cv. DEA) seed was sown
.6 m apart in north–south-oriented rows that were 0.6 m apart,
t the China Agricultural University (CAU) (39◦50′N, 116◦25′E).
he resulting plant population (28 000 plants ha−1) is about half
hat commonly used by local farmers and was chosen to mini-

ize competition among plants. Plants emerged on the 18th May
000. Soil, irrigation and fertilizer inputs were managed so as to
void any mineral and water limitation to plant growth, and plant
isease, pest or stress symptoms. The experiments had four replica-
ions. Samples were taken destructively on 12 dates. One plant was
ollected per replication and sampling date. Only above-ground
rgans are considered like in Guo et al. (2006). Fresh weights of
lades, sheaths, internodes, cob and tassel; lengths and widths of
heaths; lengths, widths and areas of blades; and lengths and diam-
ters of internodes, were measured and recorded individually at
ach sampling date. The specific leaf weight is 0.025 g/cm2, for all
eaves. The detailed information about the environmental condi-
ions, sampling strategy, measured data and expansion duration
nd longevity of organs is given by Guo et al. (2006).

.3. Parameter estimation of GreenLab

In GreenLab, the parameters are classified into two categories:

easurable parameters, e.g. functioning duration of blades, num-

er of organs emerged at each growth cycle, and hidden parameters
hich cannot be measured directly in the field, e.g. organ sink. To

uarantee that GreenLab can describe dynamic processes of plant
rowth well, it is necessary to estimate the hidden parameters
in Agriculture 71 (2010) 96–105

through minimizing the difference between the measured data and
the corresponding simulation results of GreenLab.

The same set of parameters is estimated simultaneously by
fitting with several plants of a species at different develop-
ment stages, which is called multi-fitting. In this paper, the
data of fresh weight of all organs measured at three stages (8th
growth cycle corresponding to vegetative stage, 18th growth cycle
approximately corresponding to flowering stage and 33rd growth
cycle corresponding to physiological maturity) are used as target
data. A generalized non-linear least-square method adapted from
Levenberg–Marquardt algorithm is used to estimate parameters of
GreenLab (Zhan et al., 2003).

2.4. Multi-objective optimization

In multi-objective optimization problems, several objectives are
optimized (maximization or minimization) simultaneously. The
mathematical formulism of a multi-objective optimization prob-
lem is given by

Maximize(J1, J2, . . . , Jm)
subject to gi(x1, x2, . . . , xn) ≤ 0, i = 1, 2, · · ·, k

hj(x1, x2, . . . , xn) = 0, j = 1, 2, . . . , l
. (8)

where xi is the ith element of the vector X on which we optimize
and n is the dimension of the problem; Ji is the ith objective which
is a function of X and m is the number of objectives; gi is the ith
inequality constraint of the problem and k is the number of inequal-
ity constraints; hj is the jth equality constraint and l is the number
of equalities.

For multi-objective optimization problems, generally, objec-
tives are in conflict with each other. In comparison with single
objective optimization problems for which we may have results
on the existence and uniqueness of the solution, the situation of
multi-objective problems is more complex, since there is no canon-
ical relationship in the solution space. Thus, the optimal solutions
for multi-objective optimization problems are defined such that for
these solutions, performance on one objective cannot be improved
without sacrificing performance on at least another. The solutions
satisfying this property form the Pareto front (Mostaghim and
Teich, 2003).

For maize, one of our objectives is to maximize cob weight,
which is used for food or biofuel. The formula for calculating the
final weight of cob when plant age is n is as follows:

J1 =
tx f∑
k=1

pf (k)
Qn−(tx f −k)

Dn−(tx f −k)
(9)

It is also of economical interest to maximize the total weight
of leaves and stem, which is the second objective of the multi-
objective optimization problem. The equation for calculating the
total weight of leaves and stem when plant age is n is given by

J2 =
n∑

j=1

Na
n−j+1

min(j,tx a)∑
k=1

pa(k)
Qn−j+k

Dn−j+k
+

n∑
j=1

Ni
n−j+1

min(j,tx i)∑
k=1

pi(j)
Qn−j+k

Dn−j+k

(10)

In Eq. (10), the first item corresponds to the total weight of
leaves, and the second item to the stem weight.

Cob weight and tassel weight are interrelated. Cob weight is con-

trolled by pollen production, while pollen production depends on
tassel size of maize. Moreover, Uribelarrea et al. (2002) showed that
if the tassel size is reduced, the cob size will be limited. Therefore,
a constraint on tassel weight that should be beyond a threshold is
imposed to the multi-objective optimization problem. The formula
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or calculating the tassel weight when plant age is n is as follows:

=
tx m∑
k=1

pm(k)
Qn−(tx m−k)

Dn−(tx m−k)
(11)

Finally, the formula of the multi-objective optimization for
aize is given by

Maximize (J1, J2)
s.t. g ≥ threshold

(12)

here the threshold value is referred to experimental data.
It is acknowledged that cob weight is highly dependent on

rowth conditions during the early stages of grain filling and the
nal cob weight reflects the source–sink ratio of the entire grain fill-

ng period (Borrás et al., 2002); final cob weight of maize depends
n the relationship between cob sink and availability of assimi-
ates resulting from the biomass production of plant to fill this sink
Borrás et al., 2003). In addition, for potential applications in breed-
ng, the parameters we optimize should be linked to plant genetics
nd therefore should be representative of some physiological pro-
esses. Therefore, for this preliminary study, we concentrate on the
ynamics of biomass allocation to the cob, and the optimized vari-
bles of the problem are cob sink strength Pf and the coefficients of
ts sink variation function: af and bf.

.5. Particle Swarm Optimization (PSO)

The optimization problems that we study revealed non-
onvexity and multimodality as shown in Fig. 1, particularly there
s no unique solution for multi-objective problems. Therefore, the
terative, population-based heuristic optimization algorithm PSO

as used in our study.
PSO is first proposed by Kennedy and Eberhart (1995), which

riginally simulates the behavior of bird flocking. The feasible solu-
ions found at the current iteration are recorded separately in each
ndividual in the population as their current positions. The direction

nd the distance controlling how individuals move are determined
y their velocities and their experiences during the searching. With
he help of social and cognition knowledge of each individual (also
alled particle), the population (also called swarm) converges to
he optimal solution (or position). In this paper, PSO with passive

ig. 1. Simulation results of the cob fresh weight (g) of maize ND108 with respect
o the coefficients (af , bf (unitless)) of the cob sink variation function, the other
arameter values of GreenLab being the estimated ones as listed in Table 1.
in Agriculture 71 (2010) 96–105 99

congregation (He et al., 2004) is used to solve the single objective
optimization problem, thanks to its generalization capacities and
robust performance. The equations used to calculate velocities and
the new positions are given by

vk+1
ij

= ωkvk
ij

+ c1r1(Bij − xk
ij
) + c2r2(Bgj − xk

ij
) + c3r3(Brj − xk

ij
)

xk+1
ij

= xk
ij

+ vk+1
ij

(13)

where vk
ij

is the jth coordinate of the velocity of the ith particle at
iteration k; Bij is the jth coordinate of the best position recorded
by the ith particle during the previous iterations; Bgj is the jth
coordinate of the position of the global best particle among all the
particles in the swarm, which is marked by g; Brj is the jth coordi-
nate of the best position recorded by a random selected particle
r during the previous iterations; xk

ij
is the jth coordinate of the

current position of particle i at iteration k; wk is inertia weight
value at iteration k, which decreases linearly from the maximal
inertia weight to the minimal one; c1 and c2 are acceleration coef-
ficients; r1 and r2 are uniformly distributed random values between
0 and 1.

The specific algorithm that we used for the multi-objective opti-
mization problem is the mixture of the algorithms proposed by
Mostaghim and Teich (2003) and by Tripathi et al. (2007). To extend
the original PSO to solve multi-objective problems and to find the
Pareto front, the equations for changing the velocity and position
of each particle are improved slightly, as given by Eq. (14):

vk+1
ij

= ωkvk
ij

+ ck
1r1(Bij − xk

ij
) + ck

2r2(Blij − xk
ij
)

xk+1
ij

= xk
ij

+ vk+1
ij

(14)

To make the balance between exploration and exploitation, the
acceleration coefficient ck

1 decreases linearly, and the acceleration
coefficient ck

2 increases linearly. The aim of multi-objective opti-
mization problems is to find all the optimal solutions that form the
Pareto front. Therefore, to obtain various solutions at a given itera-
tion, the algorithm is changed by replacing the unique global best
position with a local guide best position for each particle, denoted
by Blij for the jth coordinate of particle i in Eq. (14). For the prob-
lems with constraints, there are two criteria to decide whether the
jth coordinate of the best position of each particle Bij is updated by
the jth coordinate of the new position xk+1

ij
: if xk+1

i
satisfies the con-

straints while Bi does not, or if one of the objective function value
with respect to xk+1

i
is better than the one with respect to Bi, no

matter whether the constraints are satisfied, replace Bij with xk+1
ij

.
All the optimal solutions are recorded in an archive with limited

size. The Sigma method (Mostaghim and Teich, 2003) is used to
determine the local guide best position of each particle. The solu-
tion in the archive which has the nearest distance from a given
particle is decided to its local guide best position. For more details,
we refer to Mostaghim and Teich (2003). The optimization pro-
gram is developed in C++ by the authors and is run on Windows XP
platform.

3. Results

3.1. Multi-fitting results

The estimated values of the hidden parameters of GreenLab
by a generalized non-linear least-square method adapted from
Levenberg–Marquardt method, which are listed in Table 1, are dif-

ferent from the ones in Guo et al. (2006) and Ma et al. (2007), as
the sink variation function (Beta function) in this work is slightly
improved as shown in Eq. (6): the sink strength is defined as
the maximum sink value (sink amplitude) in this work, while it
is defined as the total sink capacity in the previous studies. The
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ig. 2. Simulation of biomass partition to (a) blade, (b) sheath, (c) internode, (d) c
ethod. “�” represents measured data at the 8th growth cycle corresponding to ve

tage; “�” measured data at the 33rd growth cycle corresponding to physiological m
rowth cycle; “- - -” simulation result at the 33rd growth cycle.

imulation results of organ fresh weight by GreenLab with the esti-
ated parameters are given in Fig. 2, compared with the measured

ata. The root mean squared error (RMSE) is 10.50 for all data of

hree stages and the coefficients of determination (R2) for blade,
etiole, internode, cob and tassel at the maturity (33rd growth
ycle) are 0.98, 0.95, 0.94, 1 and 1, respectively. The optimization
esults in the following sections are based on the maize modelled
y GreenLab with the estimated parameter values listed in Table 1.
) tassel, with estimated parameter values by generalized non-linear least-square
ive stage; “©” measured data at the 18th growth cycle corresponding to flowering
y; “—” simulation result at the 8th growth cycle; “. . .” simulation result at the 18th

3.2. Single optimization problem of maximization of cob weight

The variation of the parameters on which we optimize is limited

to a reasonable range referred to Ma et al. (2007, 2008), as listed
in Table 2. The optimal cob sink as shown in Fig. 3 is almost zero
at the beginning of cob development, in order to reduce the com-
petition for biomass with source organs and to let leaf surface area
increase. And then the sink increases monotonously till the end of
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Table 1
Estimated parameter values of GreenLab by multi-fitting of maize ND108 mea-
sured at three different development stages simultaneously, using a generalized
non-linear least-square method.

Parameters (definition) Values Unit

Pa (sink strength of blade) 1.00 (fixed) –
aa/ba (coefficients of beta function for

blade)
3.59/5.38 –

Ps (sink strength of sheath) 0.60 –
as/bs (coefficients of beta function for

sheath)
3.05/3.69 –

Pe (sink strength of internode) 1.4 –
ae/be (coefficients of beta function for

both long and short internode)
3.34/1.65 –

Pf (sink strength of cob) 806.47 –
af/bf (coefficients of beta function for

cob)
8.34/2.60 –

Pm (sink strength of tassel) 4.23 –
am/bm (coefficients of beta function for

tassel)
1.00/1.00 –

Ke (proportional coefficient of sink
strength for short internode)

0.21 –

� (light use efficiency) 3.43E−3 –
Sp (plant projection area on the

ground)
3600 cm2

k (light interception coefficient) 0.68 –

“–” represents that the parameter is unitless.

Table 2
Definitions and variation ranges of the GreenLab parameters that are optimized in
the optimization problems.

Parameter* Definition Range

“

p
i

s
t
g
t
m
o
f

F
b
m

Pf Sink strength of cob [0,1500]
af Coefficient of beta function for cob [0,25]
bf Coefficient of beta function for cob [0,25]

*” represents that the parameters are unitless.

lant growth. The cob weight with the optimal cob sink variation
s 1032 g.

Comparing the estimated and optimal cob sink variations as
hown in Fig. 3, we can separate the cob development process into
hree stages. The first stage is from the 15th growth cycle to the 21st

rowth cycle. Even though the optimal cob sink is a little larger than
he estimated one, it does affect the source organ (leaves) develop-

ent. The cob competes for biomass with the source organs and the
ther organs. This competition leads to the decrease of the leaf sur-
ace area as shown in Fig. 4. During the second stage from the 22nd

ig. 3. Comparison of optimal and estimated cob sink variations. The curve marked
y “—�—” represents the corresponding optimal cob sink variation; the curve
arked by “–©–” represents the estimated cob sink variation.
Fig. 4. Simulation result of leaf area index for maize with estimated parameter
values marked by “—�—” and with the optimal one marked by “–©–”.

growth cycle to the 31st growth cycle, the optimal cob sink value
keeps increasing, but smoothly. On the contrary, for the observed
plant, the cob sink increases significantly, biomass allocation to the
cob is done to the detriment of leaves (i.e. less biomass is allocated
to leaves). Hence, the leaf surface area begins to decrease. During
the last stage of plant growth within two growth cycles, the opti-
mal cob sink begins to increase significantly and quickly. Since the
other organ sinks are negligible, all the biomass is allocated to the
cob as shown in Fig. 5: the ratio of cob weight to total weight of
leaves and stem in this period tends to infinity.

The comparison results of the cob sink variation reveal the
source–sink dynamics. The increment of the cob weight is the
product of the cob sink value and the ratio of the plant biomass
production, which depends on the leaf surface area, to the plant
demand that is the sum of all the organ sinks, as described in Eq.
(3). Even though the cob sink value is smaller than the estimated
one, the leaf surface area is higher and the biomass production may

thus be bigger. On the contrary, even though bigger cob sink value
results in more biomass allocated to the cob instantaneously, it
leads to less biomass allocated to other organs, especially leaves
and less biomass production at the following cycles. Hence, to

Fig. 5. Comparison of the ratio of cob weight to total weight of leaves and stem
during the plant growth. “—�—” represents the result with estimated parameter
values and “–©–” represents the result with the optimal parameter values.
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Fig. 6. Pareto front of the multi-objective optimization problem.

btain maximal cob weight, the optimal trade-offs between sources
nd sinks should be considered. Compared with the estimated cob
eight (1013 g), the optimal cob weight (1032 g) is 2% greater. The
aize cultivar ND108 that we study, which results from long-term

reeding programs, may already be close to optimum regarding cob
ield. Hence, multi-objective optimization considering co-products
s more interesting than the single objective optimization of max-
mization of cob weight for maize cultivar ND108, since it may
rovide new information.

.3. Multi-objective optimization problem

The optimal result of the multi-objective optimization problem
s described by Eqs. (9)–(12), known as Pareto front, is shown in
ig. 6. Pareto front is given by about 500 optimal solutions of cob
ink variation. Hence in Fig. 7, we outlined the area covered by all
he optimal solutions of cob sink variation. Particularly, one exam-

le of the optimal cob sink variation is given, the corresponding
ob weight being 503 g and total weight of leaves and stem being
050 g.

The Pareto front of our multi-objective optimization problem is
haracteristic of source–sink dynamics and reveals the necessary

ig. 7. Area covered by all the optimal cob sink variations associated with the Pareto
ront. One example of the optimal cob sink variations is given. “—�—” represents
he optimal cob sink variation for maize where the cob weight is 503 g and the total
eight of leaves and stem is 2050 g.
Fig. 8. Tassel weight with respect to cob weight, associated with the Pareto front.

balance between both objectives. Maximization of the total weight
of leaves and stem leads to a zero cob sink strength. On the other
hand, to maximize the cob weight, the cob sink value cannot be
maximal all the way, otherwise there would not be enough leaf
surface area, and the reduced biomass production would decrease
the final cob weight. For this reason, the left extremity of the Pareto
front corresponds to a zero cob weight whereas the right extrem-
ity corresponds to a strictly positive weight of stem and leaves.
For maize cultivar ND108 (Z. mays L., cv. DEA), the tassel appears
and begins to develop at the 21st growth cycle, with a very quick
expansion (2 growth cycles). From the optimal results shown in
Fig. 7, we found that the tassel expansion corresponds to the early
stages when the cob sink begins to increase.

In Fig. 8, the evolution of the tassel weight corresponding to the
points on the Pareto front is illustrated. We see that for a wide range,
the tassel weight does not vary since its expansion corresponds to
growth cycles when the cob sink is still very low. However, we
found that for the maximal cob weights (above 900 g), the tassel
weight is decreasing. It corresponds to experimental observations
of Westgate et al. (2003) who indicated that there is a potential gain
of cob yield by decreasing the tassel weight.

The cob weight simulated by GreenLab with the estimated
parameter values is 1013 g, the corresponding total weight of leaves
and stem is 927 g and the tassel weight is 29 g. With the optimal
parameter values, the maximal cob weight among the Pareto front
in Fig. 6 is 1032 g, the corresponding total weight of leaves and stem
is 959 g and the tassel weight is 29 g. Comparing the Harvest Index
(HI), which is defined by the ratio of the cob weight to the weight of
plant, of the estimated and the optimal plants, HI of the optimal one
is surprisingly a little smaller than the estimated one, even though
both the cob weight and the total weight of leaves and stem are
higher than the estimated one. It revealed the trade-offs between
sources and sinks. Post-expansion and fast growing rate as shown
in Figs. 3 and 7 will enhance not only the cob weight but also the
weight of leaves and stem. This optimal cob development strategy
is in agreement with Weiner (1988) and Vega et al. (2000): there is
a threshold size for plants to produce flowers and fruits, the plant
will grow as much as it can until its biomass reaches a threshold,
and then the biomass may be distributed to fruits and flowers.
4. Discussion

In this paper, we have illustrated how the optimization of the
parameters of plant growth models could be used as the first step
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o design ideotypes for genetic selection. The GreenLab model
as chosen for the simplicity of its parameterization. Moreover,

t describes plant growth, both from ecophysiological and archi-
ectural points of view, at the individual organ scale. Breeders can
et information about physiological characteristics in determining
ield.

In plant breeding, the criteria for segregating or introducing
ccessions are mostly based on intuition or convention, but also
ncreasingly on mechanistic knowledge of how traits contribute to
he performance of interest. There is a recent agreement among
lant breeders and physiologists that plant growth models based
n ecophysiological knowledge can be applied to improve ideo-
ype breeding efficiency (Yin et al., 2003; Hammer et al., 2006).
hey can help to provide quantitative answers to “what if . . .” ques-
ions for alternative plant types (Dingkuhn et al., 1993). Dingkuhn
t al. (1993) and Yin et al. (2003) also pointed out that the model
roperties required for ideotype design are (1) to quantify feed-
ack between physiological processes and environmental variables
nd (2) to have the ability of yield prediction without restricting
o the environment in which the model parameters are derived.

a et al. (2007, 2008) studied the stability of GreenLab parame-
ers to different environmental conditions, e.g. seasonal variation
nd planting density. Most parameters revealed stable. Dong et al.
2008) also studied the stability of GreenLab parameters for tomato
n different planting densities. The parameters characterising organ
ink strengths and governing light interception were shown to be
nvironment-dependant. These two studies lead us to consider
possible genotypic determination of GreenLab parameters and

et enhance the necessity to build up more sophisticated model
ersions, in order to fully unravel the genetic and environmental
ffects. It implies a better modelling of the effects of the environ-
ental stresses. Preliminary results were introduced in Wu et al.

2005) and Le Chevalier et al. (2007) regarding water. Taking into
ccount the current time step in GreenLab, which is equal to 2 or
days corresponding to thermal time interval for successive phy-

omer appearance for maize cultivar ND108 in this study, it may
e long for the simulation of environmental stresses. However, the
ime step in GreenLab can be changed to calendar time, e.g. 1 day
r 1 h (Li et al., to appear). In this way, the environmental stresses
an be well simulated.

In quantitative genetics, many methods have been developed
o identify particular loci in plant chromosomes that contribute to
henotypic traits (de Vienne, 1998), by establishing statistical cor-
elations between quantitative traits that can be measured on plant
e.g. plant height, yield) and the values of particular genes, known as
uantitative trait loci (QTL) analysis. Many researchers have raised
he potential benefits and possibilities of coupling these genetic

odels to plant models, for genetic improvement (Tardieu, 2003;
in et al., 2004; Hammer et al., 2006). A simulation study of link-

ng the GreenLab model to a genetic model is presented by Letort
t al. (2008b). The theoretical study illustrated how QTL analysis
hould give better results when performed on model parameters
han on phenotypic traits, the latter being the results of com-
lex interacting phenomenon difficult to statically assess with QTL
nalysis.

The parameters that we optimized are oriented to those related
o the cob sink variation function, whereas the others are fixed to
e the estimated values. However, there might be some correla-
ion between parameters that we were not able to estimate. Such
orrelations could only be assessed if the model parameters were
vailable on a large number of genotypes. Therefore, in this context,

ven if the link of GreenLab model parameters to genetics has not
een proved yet and the information of correlations between all the
arameters are missing, at least optimal parameters should pro-
ide some useful information for ideotype design, by unravelling
he source–sink complex interactions.
in Agriculture 71 (2010) 96–105 103

In our test case, the ideotype of maize can be deduced from
the optimal results. It provides a reference to improve breeding
strategies. From a physiological point of view, the cob begins to
absorb biomass from about the 20th growth cycle when the leaf
area saturates. And then, it should absorb biomass smoothly or
significantly, depending on the breeding objective. If the objec-
tive is to have a maximal cob weight, the maize should have a
bigger reproductive capacity, and the cob should grow with post-
expansion (i.e. a long delay for expansion) and fast growth rate
(i.e. expand within a short period). From an architectural point
of view, the leaf size is reduced during the last vegetative and
reproductive stages of growth. The harvest index is above 50%. It
is coincident with the ideotype of maize proposed by Mock and
Pearce (1975) by analysing the research results of other people with
an experimental based approach. The Pareto front of the multi-
objective optimization problem presents all the different optimal
strategies, and the decision-maker could choose his optimal strat-
egy according to market prices or the application purposes for
example.

Particle Swarm Optimization (PSO), which is a population-based
heuristic optimization algorithm, is used to solve the single and
multi-objective optimization problems. As it does not require the
differentiation of the objective functions, and it returns several
solutions at the same time, we can benefit from it to solve non-
convex, single objective or multi-objective optimization problems,
with potentially non-unique solutions. Theoretically speaking, it
obtains global optimal solutions of optimization problems. Com-
pared to other population-based heuristic optimization algorithms,
such as Genetic Algorithm, the PSO has a high convergence rate
for some problems and a better accuracy (Kennedy and Eberhart,
2001). Moreover, it has few parameters to adjust and is easy to
implement thanks to its simple single operator, contrary to Genetic
Algorithm that has evolutionary operators such as crossover and
mutation. It is computationally inexpensive in terms of both mem-
ory and speed. Even though the optimal solutions found by the
PSO cannot be proved to be global, it is generally good enough to
practically guide genetic selection.

The maize that we optimized is assumed to have only one cob
like the experimental data used for parameter estimation. How-
ever, the methodology that we used in this work is not restricted
by the number of cobs on the stem. For the objective of the opti-
mization problem, which is the maximization of cob weight, the
crucial factor is not the number of cobs, but the optimal trade-offs
between sources and sinks. However, in order to have more realis-
tic optimal values, more constraints should be concerned. Since the
cob growth requires pollen from the tassel and since there exists
a strong interaction between cob and tassel (Borrás et al., 2002;
Uribelarrea et al., 2002), we integrate the tassel weight into the
multi-objective optimization problem as a constraint. A threshold
is set for tassel weight (not less than 10 g referred from experimen-
tal data). However, for all optimal solutions this constraint is not
active (tassel weights strictly above 10 g). One reason is that so far
we do not know the relationship between cob and tassel quanti-
tatively. Hence, it is difficult to set the threshold value. Another
reason is that tassel sink variation is fixed and it does not change
according to the cob sink variation, in this work. The understand-
ing of the interaction between cob and tassel should be improved
in our future works. Finally, in cobs, only kernels give the food for
human beings or for livestock. The number of kernels is a critical
factor that affects the final kernel weight (Borrás and Otegui, 2001).
Therefore, taking into account the number of kernels per cob could

be an interesting complement to this study. So far, we do not have
the information about the proportion of the kernel weight to the
cob weight, which raises the difficulty to estimate the correspond-
ing model parameters. Experiments are conducted in 2009 for this
purpose.
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. Conclusion

Two kinds of optimization problems were formulated: maxi-
ization of cob weight or maximization of cob weight and total
eight of leaves and stem simultaneously. The non-convex, multi-
odal or non-unique solution problems were solved by a heuristic

ptimization algorithm, Particle Swarm Optimization.
In this study, the optimization problems investigate the optimal

ource–sink dynamics and results provide a reference for decision-
akers to improve the breeding strategies or to design ideotypes

f plants, especially in the current context of biofuel development,
ncrease in agricultural products’ prices and necessity to consider
o-products when designing cultivation practices. Finally, the cru-
ial and difficult issue that remains to be solved for a more efficient
se of this methodology is to establish quantitative relationships
etween genes and model parameters.
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ppendix A.

Symbol list
Plant variables (symbols in the parenthesis after the variable

efinition represent the variable units, while “–” represents that
he variables are unitless.)

biomass production of an individual plant (g)
seed seed biomass (g)

total demand of plant for biomass (–)
environmental function (g/m2)
total green leaf surface area (cm2)
light use efficiency (–)
light interception factor (–)

p plant projection area on the ground (cm2)
o
n number of organ o born at growth cycle n (–)

x o expansion duration of organ o (growth cycle)
a blade functioning duration (growth cycle)
o(j) sink value of organ o of age j (–)
o sink amplitude (or sink strength) of organ o (–)

sink variation function (–)
e beta function (–)

normalization factor (–)
o coefficient of beta function for organ o (–)
o coefficient of beta function for organ o (–)
qo(n,j) biomass increment of organ o of age j, when plant age is

n (g)
o(n,j) accumulated biomass of organ o of age j, when plant age

is n (g)
lw specific leaf weight (g/cm2)

plant age (growth cycle)
organ age (growth cycle)

ptimization problem variables
objective function
inequality constraint function

equality constraint function
variable of optimization problem

article Swarm Optimization algorithm variables
velocity
in Agriculture 71 (2010) 96–105

w inertia weight
c acceleration coefficient
r uniformly distributed random value between 0 and 1
B particle best position
Bl particle local best position
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