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a b s t r a c t

In this paper, we propose an improved principal component analysis based on maximum entropy

(MaxEnt) preservation, called MaxEnt-PCA, which is derived from a Parzen window estimation of

Renyi’s quadratic entropy. Instead of minimizing the reconstruction error either based on L2-norm or

L1-norm, the MaxEnt-PCA attempts to preserve as much as possible the uncertainty information of the

data measured by entropy. The optimal solution of MaxEnt-PCA consists of the eigenvectors of a

Laplacian probability matrix corresponding to the MaxEnt distribution. MaxEnt-PCA (1) is rotation

invariant, (2) is free from any distribution assumption, and (3) is robust to outliers. Extensive

experiments on real-world datasets demonstrate the effectiveness of the proposed linear method as

compared to other related robust PCA methods.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Subspace learning has been a fundamental problem in the
study of machine learning and computer vision. It is a common
preprocessing step to find a low-dimensional data representation
from the raw input samples which may be strongly relevant and
redundant [1]. It plays an important role in many learning tasks
due to the curse of dimensionality [2].

From different standpoints, there are two major categories of
subspace learning: supervised and unsupervised. In supervised
subspace learning, class labels are known and incorporated to
learn a discriminant low-dimensional representation [3]. The
linear discriminant analysis (LDA) [4] is the most representative
of these discriminators. In unsupervised subspace learning, the
labels of data are unknown. The low-dimensional representation
is formulated by minimizing the reconstruction error or by
preserving the local relationships on a local patch [5–7]. The
best-known representative of unsupervised methods is the
principal component analysis (PCA) [8–10]. In this paper,we focus
on the unsupervised learning.

In subspace learning, PCA is a linear data transformation
technique which is often used as a data pre-processing step
of other subspace learning methods. Many commonly used
discriminators like LDA, Locality Preserving Projections (LPP)
[5,11], and marginal Fisher analysis (MFA) [12] are typically
performed on the principal component space produced by PCA.
ll rights reserved.
However, PCA also has some limitations. First, PCA is sensitive to
outliers, which means that outliers may significantly change the
principal subspaces [13–15]. Second, PCA is intrinsically based on
the Gaussian distribution (i.e., with a single maximum) and thus
is unable to derive a good approximation from multimodal
distributions [16].

In order to alleviate above the two problems of PCA, many
investigations have been reported. One important approach is to
use more robust metric rather Euclidean distance to measure the
reconstruction error in PCA. Typically, the L1-norm has widely
discussed and used in PCA for years. In [17,18], L1-norm PCA was
formulated by applying a maximum likelihood estimation to the
original data. And a heuristic estimation method and convex
programming methods were developed to detect outliers in
[17,18], respectively. A major drawback of these work is that
they are not rotationally invariant. To overcome this drawback,
two rotationally invariant PCA methods have been recently
developed [19,20] by relaxing the objective function of L1-norm.
R1-PCA in [19] weights each sample using Huber’s M-estimator
and removes the outliers by an iteration algorithm. PCA-L1 in [20]
provided a greedy algorithm to solve a simplified L1-norm
objective function. TPCA-L1 in [21] further generalized PCA-L1 to
robust tensor analysis. However, those methods assume that the
data mean is fixed, for example zero mean. When outliers occur,
the data mean will be biased. Other important variants of PCA
include robust PCA [22,23], Locally PCA [24–26], manifold
learning based PCA [27,28], and generalized PCA [29].

Another important approach to develop new PCA is based on
information theoretic learning (ITL) [30,31]. It has been shown
that PCA can be formulated as a maximum entropy (MaxEnt)
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problem under Gaussian distribution assumption. An earlier work
of unsupervised MaxEnt was EMMA based component analysis
[32], where entropy and density are estimated iteratively on two
data sets. But when dimensionality of data is high, there will be a
large number of parameters in EMMA have to be estimated. In
[33], the connection between Renyi’s entropy and robust function
is discussed. Recently, the close connection between the kernel
methods and ITL has been discussed [34–36]. In [37], the kernel
PCA has been proven to be equal to a MaxEnt problem. In [38], a
new kernel-based nonlinear subspace technique is proposed
based on MaxEnt preservation.

In this paper, the maximum entropy (MaxEnt) criterion, which
provides a natural way to process information with constraints, is
introduced to produce a robust linear subspace. A linear subspace
technique, called MaxEnt-PCA, is proposed based on the Renyi’s
quadratic entropy estimated via a non-parametric Parzen window.
A gradient based fixed-point algorithm is proposed to solve the
MaxEnt problem. From the entropy point of view, MaxEnt-PCA is a
natural extension of PCA and has several appealing advantages: (1)
it has a solid theoretical foundation based on the concept of
MaxEnt; (2) it is rotation invariant and its solution consists of
eigenvectors of a Laplacian probability matrix corresponding to the
MaxEnt distribution; (3) it makes use of high order statistics to
estimate the energy matrix and is robust to outliers; and (4) it is
free from any distribution assumption and thus it can effectively
capture the underlying distribution of multimodal data statistics.

The rest of this work is organized as follows. We start our work
with a brief review of PCA and its extensions in Section 2. In
Section 3, a fixed-point algorithm is proposed to solve the
MaxEnt-PCA, followed by the theoretical analysis. In Section 4,
we evaluate our method in real-world datasets. Finally, we
conclude the paper in Section 5.
2. PCA and related work

Consider a data set of samples X¼[x1,y,xn] where xi is a
variable with dimensionality d, U ¼ ½u1, . . . ,um�ARd�m is a projec-
tion matrix whose columns constitute the bases of an
m-dimensional subspace, and V ¼ ½v1, . . . ,vn�ARm�n is the projec-
tion coordinates under the projection matrix U.

PCA can be defined as an orthogonal projection of the samples
onto a lower dimensional subspace such that the variance of the
projected data is maximized [8]. Equivalently, it can also be
defined as an orthogonal projection that minimizes the average
reconstruction error, which is the mean squared distance between
the samples and their projections [39].

From reconstruction error point of view, PCA can be formu-
lated as the following optimization problem:

min
U,V

Xn

i ¼ 1

Jxi�ðmþUviÞJ
2

ð1Þ

where m is the center of X. The optimization problem in (1) can
also be written below

min
U,V

Xn

i ¼ 1

Xd

j ¼ 1

xij� mijþ
Xm
p ¼ 1

vipupj

 ! !2

ð2Þ

By projection theorem [40], for a fixed U, V that minimizes (1) is
uniquely determined by V¼UTX. Because (1) is based on L2-norm
(Euclidean distance), the PCA is often denoted as L2-PCA. In order
to develop a fast and robust subspace algorithm, the expectation
maximization (EM) algorithm [41,42] and fixed-point algorithm
are developed to solve (2).

The global minimum of (1) is provided by singular value
decomposition (SVD) [43], whose optimal solution is also the
solution of the following alternative formulation of PCA:

max
UT U ¼ I

TrðUTSUÞ ð3Þ

where S¼
Pn

i ¼ 1ðxi�mÞðxi�mÞT is the covariance matrix , Trð�Þ is
the matrix trace operation, and T denotes the transpose. The (3)
searches for a projection matrix where the variances of UTX are
maximized. Based on (3), PCA can also be further unified in the
patch alignment framework [44].

In graph embedding (GE) framework [12], PCA can also be
formulated as the following optimization problem:

max
UT U ¼ I

Tr UT XðI�WÞXT U
� �

ð4Þ

where I is the identity matrix, W is a n�n matrix whose elements
are all equal to 1/n. The solutions of PCA can be obtained by
solving the following eigenvalue decomposition problem:

XðI�WÞXT u¼ lu ð5Þ

In graph embedding, the matrix L¼ I�W is often denoted as
Laplacian matrix.

Since L2-norm based PCA is sensitive to outliers [20], L1-norm
was used to substitute L2-norm. From a statistical point of view,
those methods based on L1-norm are more robust to outliers than
L2-norm based ones [45,18,20]. In this case, the problem of PCA
becomes finding the U that minimizes the following reconstruc-
tion error function:

min
U,V

Xn

i ¼ 1

Xd

j ¼ 1

xij� mijþ
Xm

p ¼ 1

vipupj

 !�����
�����

L1

ð6Þ

Since the PCA based on L1-norm is not invariant to rotations of
coordinates, two rotationally invariant PCA methods are proposed
[19,20].

Instead of using L1-norm, weighted PCA is also developed. The
temporal weighted PCA [46] produces a robust subspace by
putting different weights on each xi in X. The temporal weighted
PCA tries to minimize the following weighted squared reconstruc-
tion error:

min
U,V

Xn

i ¼ 1

wiJxi�ðmþUviÞJ
2

ð7Þ

where wi is a given weight on xi. The spatial weighted PCA [46]
produces a robust subspace by putting different weights on each
entry of xi. It tries to solve the following optimization problem:

min
U,V

Xn

i ¼ 1

Xd

j ¼ 1

wij xij� mijþ
Xm

p ¼ 1

vipupj

 !�����
�����

2

ð8Þ

where wij is the weight of the j th entry in the xi. The EM algorithm
[46] and Iteratively Reweighted Least Squares (IRLS) [22] were
used to solve (8).

Table 1 summarizes PCA and its several major variations of PCA.
The second column shows the objective of each method. The ‘‘R’’
indicates minimizing reconstruction error and the ‘‘S’’ indicates
maximizing scatter matrix. The ‘‘A’’ means to solve an
approximation problem. According to (15), MaxEnt-PCA aims to
maximize a robust scatter matrix. The third column shows the
distribution assumptions of some methods, while it is difficult to
tell the distribution assumption of most PCA’s extensions. Different
distribution assumption will lead to a different subspace (see Fig. 4
for detail). In the fourth column, the ‘‘Y’’ indicates that the
algorithm makes use of a given data mean or assume data is zero
mean and the ‘‘N’’ indicates that the algorithm can calculate data
mean by itself or they do not need to calculate data center. In the
fifth column, the ‘‘Y’’ indicates that the algorithm is rotation
invariant and the ‘‘N’’ indicates that the algorithm is not. In the
sixth column, the ‘‘Y’’ indicates that the algorithm needs additional
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Table 1
PCA and major variations of PCA (see text for details).

Objective(s) Distribution estimation Zero mean Rotational invariant Additional weight Robust oriented Linear subspace Entropy

PCA [47] R & S Gaussian Y Y N N Y MaxEnt

KPCA [48] S – Y Y N – N MaxEnt

kernel MaxEnt [38] A – N Y N – N MaxEnt

Local PCA [24] S – N Y N N Y –

TWPCA [46] R & S Gaussian Y Y Y Y Y –

R1-PCA [19] R Gaussian Y Y N Y Y –

WPCA [46] R – N N Y Y Y –

RPCA [22] R – N N N Y Y –

L1 PCA [18] R – N N N Y Y –

PCA L1 [20] S – Y Y N Y Y –

EMMA [32] A A N Y N Y Y MaxEnt

MaxEnt-PCA S(Renyi) Parzen N Y N Y Y MaxEnt

‘‘R’’ represents minimizing reconstruction error; ‘‘S’’ represents maximizing scatter matrix; ‘‘A’’ represents ‘‘approximation’’; ‘‘-’’ represents ‘‘unknown’’ or ‘‘unavailable’’;

‘‘Y’’ represents ‘‘yes’’; and ‘‘N’’ represents ‘‘no’’.
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weights as input parameters and the ‘‘N’’ indicates that the
algorithm does not. In the seventh column, the ‘‘Y’’ indicates that
the algorithm is robust to outliers and the ‘‘N’’ indicates that the
algorithms are not. In the eighth column, the ‘‘Y’’ means a linear
subspace and the ‘‘N’’ means a nonlinear subspace. The last column
shows whether the algorithm can be formulated as a problem of
entropy maximization.

Although shown some more robust metric such as L1-norm
rather than the L2-norm has been used to improve PCA, they still
cannot explore high order statistical information about the
difference between input variables. In this paper, we then develop
a robust high-order PCA algorithm in terms of MaxEnt.
3. MaxEnt-PCA

3.1. Objective function

The aim of MaxEnt-PCA is to learn a new data distribution in a
subspace such that entropy is maximized. Here we consider the
Renyi’s quadratic entropy of a random variable X with probability
density function (P.D.F.) fX(x) defined by

HðXÞ ¼�log

Z
f 2
X ðxÞdx ð9Þ

If fX (x) is a Gaussian distribution, the estimate of Renyi’s
quadratic entropy is obtained by [31,49]:

HðXÞ ¼
1

2
logðjSjÞþ

d

2
log2pþ d

2
ð10Þ

where j � j is the absolute value of determinant [49, p. 254]. If
Parzen window method is used to estimate the P.D.F., fX (x) can be
obtained by

f
_

X;sðxÞ ¼
1

n

Xn

i¼1

Gðx�xi;s2Þ ð11Þ

where Gðx�xi,s2Þ is the Gaussian kernel with bandwidth S¼ s2I

Gðx�xi,s2Þ ¼
1

ð2pÞd=2
jSj1=2

exp �
1

2
ðx�xiÞ

TS�1
ðx�xiÞ

� �

¼
1

ð2pÞd=2sd
exp �

Jx�xiJ
2

2s2

 !
ð12Þ

By substituting fX (x) in (9) with (11), the estimate of entropy by
Parzen window method can be formulated as [50]:

HðXÞ ¼�log
1

n2

Xn

i ¼ 1

Xn

j ¼ 1

Gðxj�xi,s2Þ

0
@

1
A ð13Þ
In unsupervised subspace learning, one considers the following
constraint MaxEnt problem:

max
U

HðUT XÞ s:t: UT U ¼ I ð14Þ

Note that the orthonormal constraint is necessary and important
for extracting non-reductant features. When the formula of fX(x) is
given, the MaxEnt distribution about fUT XðxÞ in (14) is only relative
to the subspace U. When Parzen window density estimation of
entropy in (13) is adopted, the optimization problem in (14)
becomes

max
U

�log
1

n2

Xn

i ¼ 1

Xn

j ¼ 1

G UT xj�UT xi,s2
� �0

@
1
A

0
@

1
A

s:t: UT U ¼ I ð15Þ

We denote the above method as MaxEnt-PCA. From the entropy
point of view, MaxEnt-PCA is a natural extension of PCA from
Gaussian distribution assumption to Parzen window density
estimation. Obviously the superiority of MaxEnt-PCA lies in the
non-parametric density estimation from training data set, which
can be more flexible and robust.

Furthermore, it is obvious that (15) is a robust M-estimator [51]
formulation of scatter matrix in (4) with robust function
r(x)¼exp(�x2) [51]. The r(x) belongs to the so called redescending
M-estimators, which have some special robustness properties in
theory [52]. Therefore MaxEnt-PCA can be viewed as a robust
extension of the classical PCA.

3.2. Algorithm of MaxEnt-PCA
Proposition 1. The optimal solution of MaxEnt-PCA in (15) is given

by the eigenvectors of the following generalized eigen-decomposition

problem:

XLðUÞXT U ¼ 2UL ð16Þ

where

LðUÞ ¼DðUÞ�WðUÞ ð17Þ

WijðUÞ ¼
G UT xi�UT xj,s2
� �

s2
Pn

i ¼ 1

Pn
j ¼ 1 G UT xi�UT xj,s2

� � ð18Þ

DiiðUÞ ¼
Xn

j ¼ 1

WijðUÞ ð19Þ

This can be figured out by applying the Lagrangian factor on
(15), where entries of L are the Lagrangian coefficients associated
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to the orthonormal constraint on U as follows:

JH9�log
1

n2

Xn

i ¼ 1

Xn

j ¼ 1

G UT xi�UT xj,s2
� �

�TrðLðUT U�IÞÞ

where Trð�Þ is the matrix trace operation. The KKT condition for
optimal solution specifies that the derivative of JH with respect to
U must be zero:

@JH

@U
¼
Xn

i ¼ 1

Xn

j ¼ 1

WijðUÞðxi�xjÞ xT
i �xT

j

� �
U�2UL¼ 0

Then we have

XLðUÞXT U ¼ 2UL ð20Þ

Intuitively, an optimal U is the eigenvectors of the symmetric
matrix XL(U)XT and the Lagrangian multipliers L then becomes a
diagonal matrix: L¼ diagðl1, . . . ,lmÞ.

In Proposition 1, Wij(U) is an approximation of probability
distribution on xi under the j th Parzen estimate, and the Dii (U) is
an approximation of probability value on xi under the Parzen
estimate. We follow the notation of graph embedding, and denote
W(U) and L(U) as Parzen probability matrix and Laplacian
probability matrix, respectively. Compared to (5), MaxEnt-PCA is
actually a special weighted PCA. However, PCA is based on Gaussian
assumption,while MaxEnt-PCA is derived from Parzen estimation.

Since L(U) in (16) is also a function of U, the eigenvalue
decomposition problem in (16) has no closed-form solution.
Fortunately, we can solve this MaxEnt problem by gradient-based
fixed-point algorithm [53,19,54,55] which is often used in sub-
space learning. As a result, we use the following steps to update
the projection matrix U.

U ¼ IþbXLðUÞXT
� �

U ð21Þ

U ¼ svdðUÞ ð22Þ

where b is a step length to ensure an increment of the objective
function, and svd(U) returns an orthonormal base by the Singular
Value Decomposition (SVD) on matrix U. In (21), the U is updated
by the gradient direction. In (22), an orthonormal solution of U is
obtained. The convergence of the fixed-point algorithm is actually
guaranteed by [19,43].

The fixed-point algorithm of MaxEnt-PCA is outlined in
Algorithm 1. The step length b can be decided by the line search
method [56]. Note that the estimate of fX(x) is performed on the
reduced dimension instead of original input feature space. The
bandwidth s is an important parameter in MaxEnt-PCA, which is
used in Parzen estimate of fX(x). Considering the theoretical
analysis of non-parametric entropy estimators [38,32], we present
a tunable way to set the bandwidth as a factor of average distance
between projected samples:

s2 ¼
1

sn2

Xn

i ¼ 1

Xn

j ¼ 1

JUT xi�UT xjJ
2

ð23Þ

where s is a scale factor. The bandwidth s is also a function of
subspace U. In each update, the bandwidth s is also updated on
the projection dataset UTX.
Algorithm 1. MaxEnt-PCA
Input: data matrix X, random orthonormal matrix U and a
small positive value e

Output: orthonormal matrix U
1:
 repeat

2:
 Initialize converged¼FALSE.

3:
 Calculate s according to (23), and L(U) according to (17)

4:
 Select a suitable b, and update U according to (21) and (22)
5:
 if the entropy delta is smaller than e then

6:
 converged¼TRUE

7:
 end if

8:
 until converged¼¼TRUE
During each update in MaxEnt-PCA, the probability distribution
is estimated by Parzen method. Since an outlier is far away from
the data cluster, its contribution to estimation of the probability
density function will be smaller so that it always receives a low
value in the Parzen probability matrix W. Therefore, the outliers
will have weaker influence on the estimation of the MaxEnt
probability distribution as entropy increases. Hence, MaxEnt-PCA
is robust against outliers.

Fig. 1 illustrates examples of principal direction produced by
PCA and MaxEnt-PCA. In Figs. 1(a) and (b), we see the instability of
PCA and the robustness of MaxEnt-PCA to outliers. When the data
is drawn from Gaussian, the principal directions of PCA and
MaxEnt-PCA overlap each other; when an outlier occurs, MaxEnt-
PCA can still produce a robust principal direction. Fig. 1(c) further
show an example of a bimodal Gaussian distribution where a small
set of outliers exist. Group 1 is normally distributed with mean
(0,0) and covariance matrix¼diag(5,1), whereas the second group
has mean (0,10) and covariance matrix¼diag(1,3). The number of
points in group 2 is 10% of that in group 1. The second group is used
to simulate the outliers. The MaxEnt-PCA still find a robust
principal direction.

3.3. Convergence analysis

In this subsection, we further discuss the convergence of
MaxEnt-PCA in terms of (21) and (22). We begin the analysis with
two theoretical properties of differential entropy.

Proposition 2. The differential entropy is invariant to orthonormal

linear transformations, i.e.,

HðUT XÞ ¼HðXÞ ð24Þ

where UARd�d and UT U¼ I

Proof. According to the properties of differential entropy [49], we
have

HðUT XÞ ¼HðXÞþ logðjUT jÞ ð25Þ

Because U is an orthonormal matrix, we can obtain logðjUT jÞ ¼ 0,
hence

HðUT XÞ ¼HðXÞþ logðjUT jÞ ¼HðXÞ & ð26Þ

We can easily prove that the objective in (15) is also rotationally
invariant (i.e., GðUT xi�UT xj,s2Þ ¼ Gðxi�xj,s2Þ,UT U ¼ I). Rotational
invariance is a fundamental property of Euclidean space with
L2-norm and has been emphasized by [57]. For any orthonormal
rotation, data transformation U is invariant under L2-norm, i.e.,
JUT xJ2 ¼ JxJ2. Proposition 2 illustrates that the maximum entropy
objective is also invariant to rotation. It is independent of the
selection of a coordinate system for subspace learning.

Proposition 3. The differential entropy is bounded under orthonor-

mal linear transformations, i.e.

0rHðUT
F XÞrHðXÞ ð27Þ

where UT
F : Rd-Rm, mod and UF

T UF¼ I.

Proof. Let UBARd�ðd�mÞ be a matrix whose columns constitute the
complement subspace of UF, and define a matrix U as

UT X ¼ UT
F X UT

B X
	 


, U ¼ ½UF UB� ð28Þ
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Fig. 1. Principal directions produced by PCA and MaxEnt-PCA. (a) Points are drawn from a Gaussian distribution. (b) Points are drawn from a Gaussian distribution with

single outlier. (c) The data contains two groups. Group 1 is normally distributed with mean (0,0) and covariance matrix¼diag(5,1), whereas the second group has mean

(0,10) and covariance matrix¼diag(1,3). The number of points in group 2 is 10% of that in group 1.

1 http://users.jyu.fi/�samiayr/DM/demot/LIBRA/
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Since U is a d � d orthonormal matrix, it follows from Proposition
2 that H(X)¼H(UT X). Consider that

HðXÞZ0 ð29Þ

and the chain rule for entropies ([58, p.22]), we have

HðXÞ ¼H UT
F XUT

BX
� �

¼H UT
F X

� �
þH UT

B XjUT
F X

� �
ZH UT

F X
� �

hence

0rH UT
F X

� �
rHðXÞ &

Proposition 3 states that the differential entropy of orthonormal
subspace of the original feature space is bounded. We can easily
prove that the Renyi entropy in (15) is also bounded
(JUT

F xi�UT
F xjJ

2rJUT xi�UT xjJ
2). Since the entropy is a concave

function of fX(x), there is at least one local maximum of (14).
In Algorithm 1, the objective is upper bounded and a new U is

produced along gradient ascend direction in each update. Hence
Algorithm 1 will increase the value of entropy until it converges.
Fig. 2 demonstrates the convergence curves and eigenvalues of
MaxEnt-PCA on two UCI datasets. Fig. 2(a) illustrates that
MaxEnt-PCA increases the entropy step by step, and Fig. 2(b)
shows the diagonal elements of Lagrangian multipliers at
convergence. Figs. 2(c) and (d) list the top-left matrix of L on
an Australian dataset at first iteration and at convergence,
respectively (the rest has similar format). We can learn that
the Lagrangian multiplier L becomes a diagonal matrix at
convergence.

The computation of MaxEnt-PCA mainly involves two steps:
calculation of a gradient and singular value decomposition. The
cost of calculating matrix XL(U)XTU is o(2n �d �m+n2

�m) and
SVD requires o(d �m2). Thus the cost of MaxEnt-PCA for each
update requires o(2n �d �m + n2

�m+d �m2). For occlusion
problem in Section 4.4, PCA-L1, R1-PCA, and MaxEnt-PCA take
46 s, 59 s and 67 s, respectively. When the number of samples n is
large, the complexity of MaxEnt-PCA will be relatively high.
Fortunately, there have been several methods in ITL to address
this issue. The stochastic gradient algorithm [50] can be used to
draw part of the data to estimate the gradient without sacrificing
the accuracy. Furthermore, we notice that L(U) is a dense matrix
derived from Parzen probability estimate. It is reasonable to
assume that the probability at point x can be estimated from its
several nearest Gaussian kernels. Then the L(U) can be treated as a
sparse matrix to reduce complexity.
4. Experiments

In this section, we applied the proposed MaxEnt-PCA algo-
rithm to several real-world pattern recognition problems and
compared it with PCA, spherical PCA [14], R1-PCA [19], PCA-L1

[20], RoPCA [23],1 RPCA [22], and local coordinates alignment
(LCA) [7]. In all of the experiments, the Cauchy robust function
was used for R1-PCA, and the convergence condition for R1-PCA,
PCA-L1 and MaxEnt PCA were set if the difference between the
norms of projection matrix U in successive iterations was less
than 10�5 or the maximum number of iterations (e.g. 50) was
reached [19,20]. The Gaussian kernel is used in LCA. The size of
nearest neighbors k and kernel parameter s in LCA are set to 4 and
2, respectively. The scale factor s in (28) of MaxEnt-PCA is set to 2
and the b in (21) is always fixed to 1. All of the experiments were
implemented by MATLAB on a P4 2.40 GHz Windows XP machines
with 2 GB memory.

4.1. UCI balance scale data set

In this subsection, UCI Balance Scale data set was selected to
demonstrate the iterative procedure of MaxEnt-PCA as well as to
discuss the relationships and differences between entropy based
PCA and the typical L1-norm based PCA methods.

The Balance Scale data set [59] is a benchmark data set and is
frequently used to verify the effectiveness of subspace learning
algorithms. It consists of 625 examples in three categories. The
numbers of instances in all three categories are 288, 288 and 49,
respectively. Each instance has four raw attributes, i.e., Left-
Weight, Left-Distance, Right-Weight, and Right-Distance. Table 2
lists a brief summary of this data set. Each dimension of raw data
is normalized (with zero mean and standard variance). The data
were projected into a two-dimensional subspace for visualization.

Fig. 3(d) plots the scatter of data with the first three
dimensions. We see that the data were arranged in 25 clusters.
It seems that the red circle instances occupy the top-left corner
and the blue cross instances occupy the bottom-right corner.
Fig. 3(a) shows a 2D scatter plot under an orthonormal projection
matrix. Since this projection matrix was randomly initialized, the
data in Fig. 3(a) are out-of-order. Figs. 3(b) and (c) further depict
the visualization results of MaxEnt-PCA after the 10th and 30th
iteration, respectively. After 10 iterations, the data distribution
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(b) The eigenvalues at convergence. (c) Top-left matrix of L at first iteration on Australian datatset. (d) Top-left matrix of L at convergence on Australian datatset.

Table 2
Description of data sets used in the experiments.

Data set Australian Balance Ionosphere Isolet Pima Yeast FRGC

No. of

dimension

14 4 33 617 8 8 1024

No. of classes 2 3 2 26 2 9 186

No. of samples 690 625 351 1559 768 1479 3720

2 UCI machine learning repositories [59] are well-known datasets to evaluate

the performance of an algorithm for dimension reduction [50,60].
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becomed similar to the real data distribution. After 30 iterations,
the data clusters in 25 groups and the margins between different
groups were maximized. The corresponding variation of entropy
is drawn in Fig. 3(e). The entropy increased step by step until the
algorithm converged. It is interesting to observe that the entropy
of structural data in Fig. 3(c) is larger than that of out-of-order
data in Fig. 3(a).

The update process in Fig. 3 not only illustrates the principle of
MaxEnt-PCA but also yields an interesting structure of the Balance
dataset. If we make use of dash lines to link the black square
instances, we see that the dash lines are all nearly on the
boundaries between blue cross category and red circle category. It
seemed that in the raw four-dimensional space the data were
distributed in many clusters and in each cluster one category
could separate the other two categories. This example also
illustrates that MaxEnt-PCA can be used to find intrinsic structure
of high-dimensional data.

Different from PCA, which has a unique global solution,
MaxEnt-PCA and PCA-L1 may in practice always learn a local
maximum. Different initial projection matrices could lead to
different local maximums. To alleviate the randomness, we have
selected the first two eigenvectors of PCA as the initial projection
the matrix to fairly compare different methods. Fig. 4 shows the
2D scatterplots of PCA, MaxEnt-PCA, and R1-PCA. We should note
that the 2D scatterplot of MaxEnt-PCA are different in Fig. 3(c).
This is due to random initialization of projection matrix.

Different distribution assumption will lead to an entirely
different subspace. We see that the scatterplots of MaxEnt-PCA
and PCA-L1 are significantly different from those of PCA and
R1-PCA. It is known that PCA is based on Gaussian assumption
and MaxEnt-PCA is free from this assumption. Since the Balance
Scale data set is obviously drawn from non-Gaussian distribution,
PCA failed to keep the structure of data in the low dimensional
subspace. Note that of R1-PCA is to produce a robust subspace to
minimize the reconstruction error, and PCA-L1 is to produce a
robust subspace to maximize the variance, but they still did
not keep the structure of data as well as MaxEnt-PCA
because MaxEnt-PCA preserves the high order data distribution
information.
4.2. Numerical results on dimension reduction

In this subsection, we quantitatively compared MaxEnt-PCA
with PCA, R1-PCA [19], and PCA-L1 [20] so as to see the how
entropy is different from the other typical metrics including
L2-norm, R1-norm, and L1-norm for PCA. All methods are applied
to six data sets in the UCI machine learning repositories.2

Table 2 give a brief of these data sets, which have been used in
many subspace learning studies [50,60]. For each data set, we
performed 10-fold cross validation (CV) 10 times and computed
the average correct classification rate. Each dimension of raw data
was normalized using by the mean and variance. The 1-nearest-
neighbor [20] algorithm was used, which is popularly used in
subspace learning.
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Fig. 5 shows the average correct classification rates on each
data set with various numbers of extracted features. The number
of extracted features m varied from two to the dimension of
original input space d. The results for all algorithms were the
same when the number of extracted features were equal to d. For
data sets with high dimension such as the ‘‘Ionosphere’’ and
‘‘Isolet’’, the dimension of subspace in Fig. 5 was truncated to 30
for a clear view.

Compared with other methods as shown in Fig. 5, MaxEnt-PCA
can achieve better results except in Fig. 5(c). When the dimension
of subspace was low, the curves of MaxEnt-PCA were higher than
the others. As MaxEnt-PCA preserves the entropy of data, it can
learn a subspace that model the variance of data more accurately.
If the data is drawn from a noise-free Gaussian distribution, all
methods yield similar subspaces.

4.3. Simulation results

Simulation studies [15,61–63] are often used to evaluate the
robustness of different PCA methods to outliers.3 In this subsec-
tion, we follow the lines of simulation study in [61] The true
principal components V are taken as n samples from the m-variate
standard normal distribution

vi �Nmð0m,ImÞ ð30Þ
3 In pattern recognition, outliers are defined as points that deviate signifi-

cantly from the rest of the data [19].
with Im the m�m identity matrix and 0m the null vector with m

components. Then the base UB(projection matrix) are defined as
an orthogonal d�m matrix of uniformly distributed pseudoran-
dom numbers. Given the principal components and the base, we
can reconstruct the data matrix X¼UBV. For simulating outliers,
we added the 100a% of observation of X with data from another
distribution. The contaminated data X̂ are constructed as
X̂ ¼ ½Xð1ÞXð2Þ�, where X(1) contains the first 100ð1�aÞ% of the
observations of X and Xð2Þ ¼ ½xð2Þ1,xð2Þ2, . . . ,xð2Þan� is a d� an matrix
taken from

xð2Þi �Ndð15d,8� IdÞ ð31Þ

with 15d a vector containing d elements equal to 15. Thus we can
make use of the multivariate normal distribution defined in (31)
for generating outlying values. Then standard normally distrib-
uted random noise (divided by 100) was added to our con-
taminated data matrix. This simulation process was repeated
for levels of outlier fractions of 0%, 5%, 10%, 20%, and 30%,
respectively. The simulations were repeated 200 times; the means
of these 200 runs are reported.

In a simulation study, a measure of performance is necessary
and important. However, it is not clear which measure [15,61,63]
is the best one to evaluate a robust PCA [61]. Here, we make use of
two measurements suggested by [61] based on the ratio of
eigenvalues. The first measurement is defined as

Pm
i ¼ 1 l̂iPd
j ¼ 1 l̂j

ð32Þ
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where l̂i are the estimated eigenvalues. And the second
measurement is defined as

l̂1=l̂2 ð33Þ

The second measure is an ancillary measure for the first measure.
A PCA method is more robust if the two measurements are close
to 1 [61].

We compare our algorithm with related methods.4 Note that
both R1-PCA and MaxEnt-PCA are rotation invariant, i.e., all
orthonormal matrices are their solutions if the projection matrix
UARd�d. Hence we should optimize the objectives in a lower
dimensional subspace (i.e. mod). Here, we set UAR10�5 for
R1-PCA and MaxEnt-PCA. However, we can only obtain 5
eigenvalues rather than d eigenvalues. A simple way to get all d

eigenvalues is to eigen-decompose the matrix XL(U)XT and
XW(U)XT(W(U) is the diagonal weight matrix in R1-PCA [19]),
respectively, when two algorithms converge.

In RoPCA, there is a default parameter to control outliers. The
value of this default parameter equals 0.25. To fairly evaluate
different methods, we also introduce this parameter to R1-PCA
and MaxEnt-PCA and set it to 0.25. A simple implementation is to
remove 0.25n samples from X̂ that have the smallest weights
when two methods calculate the final d eigenvalues. For R1-PCA,
we remove the samples according to weight matrix W(U); and for
MaxEnt-PCA, we remove the samples according to D(U) that is the
estimation of probability of xi under the Parzen estimate. We
denote the two methods as R1-PCA(0.75) and MaxEnt-PCA(0.75),
respectively.
4 Since there is no eigenvalues in RPCA [22] and PCA-L1 [20], they are not

compared in the simulation experiment.
Simulation results were reported in Table 3. As expected, the
classical PCA yields the best results if the data are not
contaminated. The MaxEnt-PCA(0.75) outperform other methods
when ar0:2. Since the outliers are far away from the data cluster,
the outliers will receive smaller values in the probability matrix
L(U) corresponding to the MaxEnt distribution. As a result,
outliers were always removed in MaxEnt-PCA(0.75) and less
affected the objective function. The MaxEnt-PCA can correctly
detect outliers and hence yields stable results.

For 30% of outliers, R1-PCA(0.75) and LCA yield the best results
under the first measure and spherical PCA yields the best result
under the second measure. When a¼ 0:3, the data X̂ actually
contains two normal distributions. There are 0.7n samples in X(1)

and 0.3n samples in X(2). MaxEnt-PCA treats the data as a bimodal
Gaussian distribution and tries to yield a MaxEnt distribution to
fit the data. As a result, MaxEnt-PCA and MaxEnt-PCA(0.75) yield
the lowest results under the first measure. But we consider this
phenomenon as a coincidence with that data set.
4.4. Numerical results on FRGC data set

PCA is an important preprocessing step to reduce the
dimension in face recognition (such as Eigenface [64] and
Fisherface [4]) and discriminant methods (such as LDA and
MFA). In this subsection, we evaluated different PCA methods on a
challenging benchmark face recognition databases (FRGC version
2 face database [65]). There are 8014 images of 466 subjects in the
query set for FRGC experiment 4. These uncontrolled still images
contain the variations of illumination, expression, time,
and blurring. The first 20 facial images were selected if the
number of facial images is over 20. Finally we got 3720 facial
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Fig. 5. Correct classification rates for UCI data sets. For ease of representation, we denote MaxEnt-PCA as ME-PCA.
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images of 186 subjects. Each facial image was in 256 grey scales
per pixel and cropped into size of 32 �32 pixels by fixing the
positions of two eyes. Table 2 summarizes the information of
facial images. To simulate the outliers, we randomly blocked
part of a facial image or randomly corrupted image pixels. Fig. 6
shows the original images in FRGC, occluded, and corrupted
images.
The image set was randomly partitioned into a gallery and a probe
set with different numbers. For ease of representation, Gp means p

images per person are randomly selected for training and Pq means
the remaining q images per person is used for testing. We performed
on all extracted feature dimensions less than 200 and report the best
results. To eliminate statistical deviations, all experiments were
averaged over 10 random splits and the mean as well as the standard
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Table 3
Simulation results for different levels of outliers (n¼100, p¼10, h¼2).

Outliers 0% 5% (a¼ 0:05) 10% (a¼ 0:1) 20% (a¼ 0:2) 30% (a¼ 0:3)

Method/measure (32) (33) (32) (33) (32) (33) (32) (33) (32) (33)

PCA 1.00 1.0 0.97 2.0 0.96 2.9 0.96 4.6 0.96 5.6

LCA 1.00 1.1 0.98 2.3 0.98 3.5 0.98 6.2 0.98 9.2

spherical PCA 1.00 1.1 0.99 1.1 0.99 1.2 0.98 1.3 0.97 1.8

Ro-PCA 1.00 1.2 1.00 1.4 1.00 1.3 1.00 1.2 0.97 2.4

R1-PCA 1.00 1.3 1.00 1.3 0.98 1.4 0.98 2.3 0.97 4.1

R1-PCA(0.75) 1.00 2.0 1.00 1.2 0.99 1.2 0.99 1.5 0.98 3.0

MaxEnt-PCA 1.00 1.1 1.00 1.1 0.99 1.1 0.96 1.1 0.88 1.6

MaxEnt-PCA(0.75) 1.00 1.2 1.00 1.2 1.00 1.2 1.00 1.2 0.96 2.8

Fig. 6. Top row: original images in FRGC; middle row: occluded images; and bottom row: corrupted images.

Table 4
Comparison of PCA algorithms on FRGC database: average correct classification rate 7standard deviation.

FRGC Original image Occluded image Corrupted image

G6/P14 G8/P12 G6/P14 G8/P12 G6/P14 G8/P12

PCA 54.1 71.5 56.5 70.9 49.0 71.1 52.7 71.2 52.1 71.0 54.4 70.9

Spherical PCA 54.2 71.5 56.6 70.9 52.4 71.3 55.1 71.0 52.3 71.4 54.9 70.8

RoPCA 48.5 71.4 50.6 70.9 46.3 71.3 48.5 71.1 47.1 71.5 49.3 70.9

RPCA 54.0 71.5 56.3 71.0 52.1 71.2 54.8 71.0 52.3 71.5 54.5 70.9

R1-PCA 54.2 71.5 56.6 70.9 49.1 71.1 52.7 71.2 52.5 71.4 55.3 70.9

PCA-L1 54.1 71.5 56.5 70.9 49.0 71.1 52.6 71.2 52.9 71.1 54.9 70.9

LCA 56.3 71.9 58.4 71.4 52.4 71.2 55.1 71.1 53.8 71.2 56.5 71.3

MaxEnt-PCA 58.5 71.3 61.0 70.7 55.6 71.2 58.6 71.2 55.2 71.2 58.3 71.1

Best of all results are highlighted in bold.

Table 5
Simulation results for different levels of outliers (n¼100, p¼10, h¼2).

Outliers 0% 5% ða¼ 0:05Þ 10% ða¼ 0:1Þ 20% ða¼ 0:2Þ 30% ða¼ 0:3Þ

Method/Measure (32) (33) (32) (33) (32) (33) (32) (33) (32) (33)

Eq. (23) 1.00 1.1 1.00 1.1 0.99 1.1 0.96 1.1 0.88 1.6

Eq. (36) 1.00 1.1 1.00 1.1 0.98 1.1 0.96 1.7 0.92 2.6
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deviation are reported. The nearest center classifier [66] was used for
final classification. Considering that MaxEnt-PCA is based on a Parzen
density estimation, we can calculate the probability of MaxEnt
distribution in the subspace at xi as

pðxiÞ ¼DiiðUÞ
Xn

j ¼ 1

DjjðUÞ

,
ð34Þ

Then we can calculate the center xc of a class C for MaxEnt-PCA as

xc ¼
1P

xk ACpðxkÞ

X
xk AC

pðxkÞxk ð35Þ
In the first experiment, there is no contamination in the gallery
set. Table 4 tabulates the average correct classification rates of
eight methods. Since LCA and MaxEnt-PCA can better model the
data distribution, they outperformed six other methods. RoPCA
obtained the lowest classification rates because it can only
optimize at most 50 components. Still, MaxEnt-PCA achieved
the highest accuracy, which show MaxEnt-PCA is also effective for
dimensionality reduction on high dimensional data (Table 5).

In the second experiment, 20% of facial images in the gallery data
set were randomly selected and occluded by a rectangular as shown
in the second row of Fig. 6. There are obvious drops of performances
for all methods. However, MaxEnt-PCA still achieved the highest
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Table 6
Comparison of bandwidth selection methods on FRGC database: average correct

classification rate 7 standard deviation.

FRGC Original image Corrupted image

G6/P14 G8/P12 G6/P14 G8/P12

Eq. (23) 58.571.3 61.0 70.7 55.2 71.2 58.3 71.1

Eq. (36) 58.1 71.3 60.6 70.8 55.8 71.0 58.8 71.1
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correct classification rate in two galleries. The experimental results
show that MaxEnt-PCA is less affected by outliers.

In the third experiment, 20% of facial images in the gallery set
were randomly corrupted by replacing a percentage of randomly
selected pixels with random pixel value which followed a uniform
distribution over [0,255]. MaxEnt-PCA achieves the highest correct
classification rate in two galleries. The experimental results further
validate that MaxEnt-PCA is also robust to corruption.

4.5. Parameter selection

The bandwidth s is an important parameter which controls all
robust properties of entropy [33]. This adjustable parameter
provides an effective mechanism to eliminate the detrimental
effect of outliers and noise, and makes entropy intrinsically
different from the use of a threshold in conventional robust
techniques [52]. The performance sensitivity to bandwidth is
much smaller than the selection of thresholds [52]. In this work,
we simply set the Gaussian kernel size as a single function of
average distance in (23).

The selection of bandwidth is a hot issue in ITL based methods
[67,68,60]. We can adopt the technique of simultaneous regres-
sion-scale estimation [69,67], Silverman’s rule [70,52], Huber’s
rule [71,72] to select a robust bandwidth. In this paper, we follow
the lines of Correntropy [52] and provide a tunable way ((23)) to
select the bandwidth. A robust way suggested by [52] is the
Silverman’s rule [70]:

s¼ 1:06�minfsE,R=1:34g � ðn� nÞ�1=5
ð36Þ

where sE is the standard deviation of the distance (i.e.,
JUT xi�UT xjJ) and R is the interquartile range. To investigate the
robustness of bandwidth selection, we compare the results of two
bandwidth selection methods.

In the first experiment, we evaluate the performance of
MaxEnt-PCA as the function of the s in bandwidth. The experi-
mental setting is the same as that of the occlusion experiment in
Section 4.4. And the p in Gp is 6. Fig. 7 shows the experimental
results. We see that the classification rate estimated by (23) is even
higher than that estimated by Silverman’s rule when s is between
2.5 and 5. This phenomenon is coincident with the results in [52].
Although there are differences in classification rate, there is still a
large range for selection of s to achieve a better result.

In the second experiment, simulation study is used to verify
the robustness with and without contamination. The experimen-
tal setting is the same as that in Section 4.3. It is interesting to
observe that MaxEnt-PCA under (23) outperforms MaxEnt-PCA
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Fig. 7. Correct classification rate under different values of s in bandwidth s (see

text for details).
under (36) when ar0:2. It seems that the bandwidth selection of
(23) is more efficient than that of (36) in this simulation study.
Note that the bandwidth of (23) is computed on the subspace
rather than the high dimensional space. An outlier may be
significantly far away from the data cluster, but it may be not in
the subspace. Moveover, the bandwidth also controls the prob-
ability density estimation in MaxEnt. If the bandwidth can
accurately reflect the MaxEnt distribution, MaxEnt-PCA can
achieve better results. When a¼ 0:3, the data X̂ are from a
bimodal Gaussian distribution. For the two measures, it is difficult
to evaluate which bandwidth selection is better.

In the third experiment, we make use of a real-world data to
investigate the bandwidth selection with and without contam-
ination. The experimental setting is the same as that in Section
4.4. Table 6 shows the average correct classification rates for two
bandwidth selection methods. The classification rate of (23) drops
larger than that of (36). In this corruption case, the bandwidth
selection by Silverman’s rule seems more robust than that by (23).
However, as discussed in Fig. 7, we can tune the parameter s to
obtain a better result.

In this work, we study a simple method to estimate the
bandwidth and choose a conservative way to set s to 2.
Experimental results validate that MaxEnt-PCA can outperform
other methods under this choice. A tunable bandwidth selection
may be flexible for real-world unsupervised learning problems.
5. Conclusion

Based on the concept of maximum entropy (minimizing the
information loss), a MaxEnt-PCA algorithm is proposed along with
a theoretical analysis. The MaxEnt-PCA is rotation invariant and
its optimal solution consists of the eigenvectors of a Laplacian
probability matrix corresponding to a MaxEnt distribution. It has
a clear theoretical foundation and provides a natural means to
solve two major problems of traditional PCA (The sensitivity to
noise and the Gaussian assumption). Experiments on real-
world dimension reduction problems verify the superiority of
MaxEnt-PCA.
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