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Robust Principal Component Analysis Based on
Maximum Correntropy Criterion
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Abstract—Principal component analysis (PCA) minimizes the
mean square error (MSE) and is sensitive to outliers. In this paper,
we present a new rotational-invariant PCA based on maximum
correntropy criterion (MCC). A half-quadratic optimization
algorithm is adopted to compute the correntropy objective. At
each iteration, the complex optimization problem is reduced to
a quadratic problem that can be efficiently solved by a standard
optimization method. The proposed method exhibits the following
benefits: 1) it is robust to outliers through the mechanism of MCC
which can be more theoretically solid than a heuristic rule based
on MSE; 2) it requires no assumption about the zero-mean of data
for processing and can estimate data mean during optimization;
and 3) its optimal solution consists of principal eigenvectors of
a robust covariance matrix corresponding to the largest eigen-
values. In addition, kernel techniques are further introduced in
the proposed method to deal with nonlinearly distributed data.
Numerical results demonstrate that the proposed method can
outperform robust rotational-invariant PCAs based on � norm
when outliers occur.

Index Terms—Correntropy, half-quadratic optimization, prin-
cipal component analysis (PCA), robust.

I. INTRODUCTION

P RINCIPAL component analysis (PCA) [1] and [2] is
a linear data transformation technique which plays an

important role in image processing and machine learning. It has
been widely used for the representation of high-dimensional
data such as image data for appearance, shape, and visual
tracking and is also popularly used as a preprocessing step
to project high-dimensional data into a low-dimensional sub-
space. However, PCA also has limitations. Since large errors
will dominate the mean square error (MSE), standard PCA is
prone to the presence of outliers that are significantly far away
from the rest of the data points [3]–[5].
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In order to alleviate the negative effect of outliers, various ro-
bust alternatives have been proposed. In [6] and [7], -norm
PCA was formulated by applying maximum-likelihood estima-
tion to input data. Heuristic estimation method and convex pro-
gramming methods were proposed to detect outliers in [6] and
[7], respectively. In [8], hard redescending nonconvex -esti-
mators were used as objectives to learn a robust representation
of color images. Despite the robustness of these three methods,
they have a common limitation that they are not rotationally
invariant, which is a fundamental property in the context of
learning algorithms [9]. Hence, rotationally invariant PCA algo-
rithms are developed [4], [10], [11]. R1-PCA [4] utilizes Cauchy
robust function to calculate the weight of each data point and re-
moves outliers by a subspace iteration algorithm. PCA- [10]
adopts a greedy strategy to maximize a -norm dispersion.

-PCA [11] formulates the objective function as a twice-dif-
ferentiable and convex function that can be optimized by the
Newton gradient algorithm. However, R1-PCA and PCA- as-
sume that data are already centered, which is difficult to en-
sure in practice especially when outliers occur [12]. Outliers
will make the data mean biased so that the robustness of algo-
rithms decreases. -PCA needs to calculate the Hessian matrix
and can only optimize the data mean and principal components
separately.

In this paper, we address the issue of the robustness of
the rotational invariant PCA algorithm based on maximum
correntropy criterion (MCC) [13] that is a useful measurement
to handle nonzero mean and non-Gaussian noise with large
outliers. Gaussian kernel function is selected as the objective in
MCC, which also belongs to redescending -estimators [14]
and [15]. Since the correntropy objective can be optimized effi-
ciently via Half-Quadratic (HQ) optimization framework in an
iterative manner, we denote the new PCA method as HQ-PCA.
The complex optimization problem can thereby be reduced to
a quadratic optimization problem so that it can be efficiently
solved by a standard optimization method. The HQ framework
can also be easily extended to solve other correntropy problems
or robust PCAs based on M-estimators. From the viewpoint
of Information Theoretic Learning [16], HQ-PCA is a
natural extension of PCA by replacing MSE criterion by MCC
and has several appealing advantages, which are given here.

1) It is rotationally invariant and robust to outliers.
2) It can handle noncentered data and can naturally estimate

data mean.
3) Optimal solutions of the proposed method are the principal

eigenvectors of a robust covariance matrix corresponding
to the largest eigenvalues.

In addition, a kernel method for performing a nonlinear form of
HQ-PCA is developed to deal with nonlinearly distributed data
[17], [18].
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The remainder of this work is organized as follows. In
Section II, we briefly review previous robust PCA methods and
point out their main limitations. In Section III, we discuss a
new objective for robust PCA and propose an algorithm based
on half-quadratic optimization. In Section IV, we evaluate
our method on face reconstruction, clustering and dimension
reduction tasks. Finally, we summarize the paper in Section V.

II. PCA AND PCA

Consider a data set of samples , where
is a variable in Euclidean space with dimensionality ,

is a projection matrix whose columns
constitute the bases of a -dimensional subspace and

is the principal components that are pro-
jection coordinates under the projection matrix . Based on
MSE, PCA can be formulated as the following optimization
problem:

(1)

where is the -norm and is the center of . By projection
theorem [19], for a fixed , the that minimizes (1) is uniquely
determined by . Because (1) is based on -norm
(Euclidean distance), the PCA is often denoted as -PCA.

The global minimum of (1) is provided by singular value de-
composition (SVD) [20], whose optimal solution is also the so-
lution of the following alternative formulation of PCA:

(2)

where is the covariance ma-
trix, denotes the matrix trace operation and denotes the
transpose. The (2) learns a projection matrix where the variances
of are maximized.

Since the -norm based PCA is sensitive to outliers [10],
-norm was applied in (1) to substitute the -norm. From the

statistical viewpoint, those methods based on -norm are more
robust to outliers than -norm based ones [7], [10] and [21].
In this case, the problem of PCA becomes finding the that
minimizes the following reconstruction error function:

(3)

Although methods based on (3) can improve robustness to out-
liers, those methods based on -norm [6], [7] and [21] are not
invariant to rotation of input feature space and the equidistance
surface will be very skewed [4]. To overcome these problems,
rotational invariant -norm PCAs are developed by relaxing
the objective function in (3) [4], [10]. Rotational invariant PCAs
show their superiorities in clustering tasks [4].

However, those rotationally invariant PCAs are often based
on heuristic strategy to remove outliers and lack theoretical
foundations. Furthermore, they assume that data are already
centered, which is difficult to ensure in practice especially

when outliers occur [3], [5] and [12]. A single outlier may pull
the data mean outside the range of data cluster [3]. In ITL [16],
it has been shown that PCA can also be formulated as a max-
imum entropy problem and this work follows the line of ITL to
develop a novel robust and rotational invariant PCA algorithm
based on the maximum correntropy framework, which enables
a close relationship between the proposed robust PCA and a
deep investigation of ITL.

III. ROBUST PCA BASED ON MCC

Here, we propose a new robust PCA algorithm based on
MCC and then develop a half-quadratic optimization algorithm
to maximize the objective, along with convergence analysis.

A. Maximum Correntropy Criterion

Recently, the concept of correntropy [13] was proposed for
ITL. It is derived from the generalized correlation function of
random processes and is directly related to the information po-
tential (IP) of Renyi’s quadratic entropy [16] in which Parzen
windowing method is used to estimate the data’s probability
distribution [22]. Based on the information potential, the cor-
rentropy is defined as a generalized similarity measure between
two arbitrary random variables and

(4)

where is the kernel function that satisfies Mercer’s theory
[23] and denotes the mathematical expectation. It takes ad-
vantage of the kernel technique that nonlinearly maps the input
space to a higher dimensional space. Different from conven-
tional kernel methods, it works independently with pairwise
samples. It has a clear theoretical foundation and is symmetric,
positive, and bounded.

In practice, the joint probability density function is often
unknown, and only a finite number of data are
available, which lead to the following sample estimator of
correntropy:

(5)

When is the Gaussian kernel , we can
rewrite (5) as

(6)

The maximum of correntropy of error in (5) is called the
maximum correntropy criterion (MCC) [13]. Compared with
the global measure—mean square error (MSE), MCC is local,
which means that the value of correntropy is mainly decided
by the kernel function along the line [13]. Correntropy
has a close relationship with -estimators [14]. If we define

, (6) is the robust formulation of Welsch -es-
timator [13]. A main merit of correntropy is that the kernel size
controls all of the properties of correntropy [13]. It establishes
a close relationship between the -estimation and methods of
ITL and provides a practical way to choose an appropriate kernel
size [13]. Moverover, the optimization of MCC-based criterion
is easier than that of the methods based on -norm.
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B. PCA Based on MCC

Substituting and into (5), we obtain
the following maximum correntropy problem:

(7)

where , and we have

(8)
Compared with (1), (8) replaces the -norm with the Welsch

-estimator in the objective function. Hence, (8) is a robust
m-estimator formulation of -PCA. Provided that the is or-
thonormal, i.e., , we can obtain

(9)

Substituting (projection theorem [19]) into
(7) and according to (9), we get the following optimization
problem:

(10)

where is an orthonormal matrix and . We denote
the new method to solve based on half-quadratic (HQ) op-
timization as HQ-PCA. Since the is based on the Huber’s

-estimator of reconstruction error, the large reconstruction
error in outliers makes detection easier.

C. Optimization Procedure via Half-Quadratic

In ITL, the half-quadratic technique [8], [24]–[26] is often
used to solve nonlinear ITL optimization problem. In this sec-
tion, we derive an algorithm to solve (10) based on the half-
quadratic. Based on the theory of convex conjugated functions
[24], we can easily derive the following proposition.

Proposition 1: There exists a convex conjugated function
of such that

(11)

where is a scalar variable, and, for a fixed , the max-
imum is reached at , [25], [27].

Substituting (11) into (10), we have the augmented objective
function in an enlarged parameter space

(12)
where is storing the auxiliary variables intro-
duced in the Half-Quadratic optimization. According to Propo-
sition 1, for the fixed , the equation
holds true. It follows that

(13)

Then, we can conclude that maximizing is identical to
maximizing the augmented function . Obviously, one
local maximizer can be calculated in an alternating max-
imization way

(14)

(15)

(16)

where is the th iteration, ,
, and matrix is a diagonal matrix

whose diagonal entity . The optimization
problem in (16) is the optimization problem of weighted PCA.
The subspace on the right-hand side in (16) is a variable that
should be estimated in the alternating maximization. Its solution
is given by the following eigenvalue problem:

(17)

where is a diagonal matrix whose diagonal elements are
the largest eigenvalues. consists of eigenvectors of
the weighted covariance matrix which
corresponds to the largest eigenvalues. If the number of data
points is smaller than the number of dimension , the can
be calculated by the following eigenvalue problem [28]:

(18)

(19)

We first compute a subspace according to (18). We then obtain
the desired subspace according to (19).

The algorithm of HQ-PCA is summarized in Algorithm 1.
The HQ-PCA reduces the complex optimization problem to a
weighted PCA problem and increases the objective step by step
until it converges (Proposition 2). Compared with (2) and (16),
the problem of (16) is actually a weighted PCA. Its solution

consists of the principal eigenvectors cor-
responding to the largest eigenvalues. Hence, HQ-PCA’s
optimal solution consists of the principal eigenvectors of

, which is computed in the last iteration
when it converges. Furthermore, it can naturally estimate data
mean during optimization.

If we want to learn a dimensional
subspace, we can directly learn the subspace by calculating the
eigenvectors of matrix (Step 10) where
outliers have received small values in . This property also
suggests that if we want to learn a dimensional subspace
that is robust to outliers, we can first learn a
dimensional subspace where outliers can be detected. This can
significantly reduce the computation cost of HQ-PCA.

Proposition 2: The sequence
generated by HQ-PCA

converges.
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Proof: According to (15), (16) and Proposition 1, we have

The cost function increases at each alternating maximization
step. Therefore, the sequence

is non-decreasing. It can be verified that is bounded
(property of correntropy [13]) and by (13) we get that

is also bounded. Consequently we can
conclude that HQ-PCA will converge.

In ITL, it has been pointed out that MCC is a local measure-
ment whereas MSE is a global measurement [13]. By global,
all the data points in the joint space will contribute equally to
the value of the measurement and the locality of MCC means
that the value is mainly determined by the kernel function along
the [in (4)] line [13]. Since an outlier is far away from
the data cluster, its contribution to estimating correntropy will
be smaller so that it always receives a low value in the matrix

. Therefore, the outliers will have weaker influence on the
estimation of as correntropy increases. As a result, HQ-PCA is
robust against outliers. Algorithm 1 also provides a new means
to solve the maximum correntropy problem and an alternative
viewpoint to analyze the relationship between MCC and MSE.
MCC achieves its locality by softening the data points far away
from the step by step.

Algorithm 1 HQ-PCA

Input: data matrix , a small positive value and an
orthonormal matrix

Output: and

1: repeat

2: Initialize .

3: Update according to (14),

4: Update according to (15),

5: Update according to (17) or (19).

6: if the difference of the correntropy in (10) is smaller
than then

7:

8: end if

9: until

10: Calculate that consists of eigenvectors of
corresponding to the largest

eigenvalues if it is necessary to learn a higher
dimensional subspace.

From the robust M-estimator point of view, HQ-PCA can
also be treated as a generalized one of R1-PCA, -PCA1 and

1�-PCA also minimizes the robust objective in (8). However, the ���� in
�-PCA needs to be a twice-differentiable and convex function so that �-PCA
can be optimized by Newton’s gradient method.

M-Scale PCA2 [5]. However, R1-PCA has to assume that the
data are already centered, and -PCA requires that the objec-
tive function must be a twice-differentiable and convex function
and in comparison the proposed HQ-PCA is free from these re-
quirement. Compared with the -estimators used in other ro-
bust PCAs, there is no threshold in the Gaussian function of
correntropy. The kernel size controls all properties of this ro-
bust estimator [13]. The Gaussian-like weighting function in the
alternating maximum step of HQ-PCA attenuates the large error
terms so that outliers would have a less impact on the adaptation.

Furthermore, when the dimension is very high, HQ-PCA
can avoid directly optimizing on the original dimension of data,
which can reduce the computation cost. The computation cost
of HQ-PCA mainly involves the eigen-decomposition in Step 5
of Algorithm 1. Assuming that , when ,
the computation cost of eigen-decomposition is ; when

, the computation cost of eigen-decomposition is .
It is clear that the computation cost of HQ-PCA mainly depends
on . When and dimension of input space is large,
the computation cost of HQ-PCA does not depend on the di-
mension . For R1-PCA, the cost of the Gram–Schmidt method
to maintain orthogonality of requires [29].
In image-based recognition, the dimension of a visual feature
vector is usually high so that

. Therefore, HQ-PCA can be smoothly applied to high
dimensional data without adding much computation cost.

D. Kernel Extension

Like kernel PCA, the linear projections of HQ-PCA can be di-
rectly extended to the nonlinear case by using kernel trick under
the half-quadratic optimization framework. The main idea of
kernel trick is to map the input data to another higher dimen-
sional Hilbert space through a nonlinear mapping
and then perform the linear algorithm in this new feature space
[30], [31]. This approach is well suited to algorithms that only
need to compute the inner product of data pairs

without knowing the nonlinear mapping explic-
itly. Assuming that the projection matrix , where

and is the kernel Gram matrix with
entity , by adopting a similar strategy in
[25], we have the following kernelization of model (7):

(20)

where indicates the th column vector of the kernel Gram
matrix . Accordingly, we can derive the so called HQ-KPCA
algorithm for robust kernel-based PCA.

IV. EXPERIMENTS

Here, we verify the robustness of our proposed rotationally
invariant HQ-PCA algorithm and compare the performance
with two state-of-the-art PCAs: R1-PCA [4] and PCA- [10].
The parameters of R1-PCA and PCA- follow the suggestion
in [4] and [10], respectively. The convergence condition for
R1-PCA, PCA- and HQ-PCA was set if the difference
between norms of projection matrix in successive iterations
was less than or the maximum number of iterations of 50

2M-Scale PCA yields the eigenvectors corresponding to the ����� smallest
eigenvalues.
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Fig. 1. Cropped facial images and their corresponding noisy images.

Fig. 2. Cropped facial images and their corresponding occluded images.

was reached [4], [10]. The data mean of both R1-PCA and
PCA- is the same as that of PCA. The Huber’s M-estimator
is used for R1-PCA. As pointed out in [32], the redescending

-estimators are sensitive with respect to the scale parameter
. This work follows the lines of correntropy [13] and estimates

the bandwidth by Silverman’s rule [33]

(21)

where is the standard deviation of the distance
and is the interquartile

range.

A. Data Sets

Two public face databases, the MNIST handwritten database3

and the TDT2 Document Database4 were selected for perfor-
mance evaluation. Some basic information about four data sets
is given here.

1) Yale Face Database: The Yale face database [34] con-
sists of 165 grayscale images of 15 individuals. There are 11
images per subject, with variations of facial expressions or dif-
ferent configurations. Each facial image is in 256 gray scales per
pixel and resized to 64 64 pixels aligned by the positions of the
two eyes. Fig. 1 shows four facial images (first four images) in
Yale database.

2) AR Database: The AR database [35] consists of over 4000
facial images of 126 subjects. For each subject, 26 facial im-
ages were taken in two separate sessions. These images are with
different facial variations including various facial expressions,
illumination variations and occlusion modes. This database is
always used for the evaluation of robust face recognition algo-
rithm. Fig. 2 shows four facial images and their corresponding
occluded images in AR database.

3) TDT2 Document Database: The TDT2 corpus consists
of 11 201 on-topic documents which are classified into 96 se-
mantic categories. We use the top nine categories for our ex-
perimental evaluation. Each document is represented as a nor-
malized term-frequency vector, with top 500 words selected ac-
cording to mutual information. We randomly selected 270, 540,
and 900 documents for training (each category has the same
number of documents) and the rest were used for testing.

4) MNIST Handwritten Digits Database: The MNIST data-
base has a training set of 60 000 examples and a test set
of 10 000 examples. The digits were centered in a fixed-size

3http://yann.lecun.com/exdb/mnist/
4http://www.nist.gov/speech/tests/tdt/tdt98/index.htm

Fig. 3. Selected digital images in MNIST Database (a) Images of “3,” “8,” and
“9.” (b) Outliers from remaining digits.

and normalized to 1. In our experiment, we use the
digits {3, 8, 9} which represent difficult visual discrimination
problem [25]. we took the {3, 8, 9} digits in the first 10 000 sam-
ples from set as our training set and those in the first 10 000
from set as our testing set. A subset with (100, 200, 300) sam-
ples per digit from set was randomly selected for training. The
number of samples in testing set was 2993.

B. Face Reconstruction

In the face reconstruction experiment, the average reconstruc-
tion error is defined by the average distance between an original
unoccluded image and the reconstructed image as follows:

(22)

where and are the original unoccluded image and the
corresponding occluded image in the training set respectively,
is the number of principal components, and is the data mean.
Eigenvectors of PCA were used as the initial projection of both
HQ-PCA and R1-PCA and the sample with the largest -norm
[10] was used for that of PCA- . The and of HQ-PCA
(Algorithm 1) were set to 30 and 70, respectively.

1) Artificial Outliers: The outliers were generated by ran-
domly blocking parts of the facial images in the Yale database.
In the first experiment, 30 images among the 165 images were
randomly selected and occluded with noises consisting of
random black and white dots. That is the numbers of outliers
and inliers are 30 and 135, respectively. All noises were within
a rectangle, size, and position of which were randomly gen-
erated. Fig. 1 shows the original unoccluded images and their
corresponding noisy images.

Fig. 4(a) shows the average reconstruction errors of different
robust PCAs. When the number of principal components is
small (less than 10), the average reconstruction errors for
different methods are almost the same. However, when the
number of principal components is larger than 20, the differ-
ence among different methods becomes more apparent and
HQ-PCA becomes to perform better than the other methods. In
this experiment, PCA- performs similarly to PCA. This may
be due to the fact that PCA- tries to maximize a -norm
dispersion instead of minimizing reconstruction error.

The principal components of PCA are often called eigenfaces.
Fig. 5(a) shows the mean faces and eigenfaces of four different
methods. The mean faces of four methods seem to be similar, but
the eigenfaces are entirely different. Since there are noisy im-
ages in the training set, most of eigenfaces in Fig. 5(a) are con-
taminated by the noise (highlighted by a red rectangle). We can
find that eigenfaces of HQ-PCA are less affected by the noise
than the other methods. There is no contamination on the first
three eigenfaces of HQ-PCA corresponding to the largest three
eigenvalues. Fig. 5(b) further shows images in the training set
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Fig. 4. Average reconstruction errors of different robust PCAs. (a) Data set with occluded images on the Yale database. (b) Data set with dummy images on the
Yale database. (c) Data set with occluded images on the AR database. (d) Data set with varying level of outliers on the AR database.

Fig. 5. (a) Mean face and eigenfaces of four different methods. The first column shows the mean face and rest of columns show the eigenfaces. The first row
shows mean face and eigenfaces of PCA, the second row PCA-� , the third row R1-PCA, and the last row HQ-PCA. (b) Reconstructed images of four different
methods. The first column shows Images in training set. The second column shows reconstructed images by PCA. The third column shows PCA-� . The fourth
column shows R1-PCA. The fifth column shows HQ-PCA.

and the reconstructed images using 70 projection vectors, re-
spectively. Although the reconstructed images by HQ-PCA still
have noisy dots, HQ-PCA performs better than other methods.̈

From Fig. 5(b), we can also observe that HQ-PCA seems to
preserve some of the facial characteristics outside the rectan-
gular outlier areas not as well as those of PCA. If a sample is an
outlier, it will obtain a small weight in the alternate maximum
process of HQ-PCA. In the ideal case, the corresponding
to the outlier would be zero. That means that outliers will be
removed from the training set so that the eigenvectors com-
puted by HQ-PCA contain no information of the outliers. Thus,
HQ-PCA could not perfectly reconstruct the unterminated part.

In the second experiment, we added 30 dummy images that
consisted of random black and white dots added to the original
165 Yale images, that is, the number of outliers and inliers are
30 and 165, respectively. When computing reconstruction error,
30 dummy images were excluded, and then and in (22)
would be the same as those in this dummy case. Fig. 4(b) shows
the average reconstruction errors of four methods with various
numbers of principal components. It is clear that HQ-PCA per-
forms the best over the other methods in reconstructing original
images.

2) Malicious Occlusion: In this subsection, we made use of
occluded faces as outliers to evaluate different PCA methods.
The tests were performed on a subset of the AR database.
Seventy subjects were selected from the AR database and two

frontal face images per subject were used. Then we obtained
140 face images for inliers. First, 60 occluded face images by
scarf corresponding to the first 60 subjects in the training set
were selected as outliers. Fig. 4(c) shows the average recon-
struction errors of different methods. As expected, HQ-PCA
outperforms other PCA methods.

We next simulated various levels of outliers, from 0% to
50%. We selected two occluded face images per subject to
form the outlier dataset. Then, 15, 35, 60, 93, and 140 face
images from the outlier dataset were added to the set of inliers,
corresponding to 10%, 20%, 30%, 40%, and 50% of outliers
contained in the training set, respectively. The number of inliers
is always set to 140. Fig. 4(d) shows average reconstruction
errors of all four methods under varying levels of outliers.
We see that the differences in average reconstruction errors
between different methods becomes insignificant as the percent
of outliers increases. Note that the outliers are significantly far
away from the rest of the data points [3]–[5]. When the percent
of outliers is larger than 40%, the occluded images by scarf
become another group and could not be treated as outliers any
more. Hence, the average reconstruction errors of different
methods are close.

Fig. 4(d) also shows the reconstruction errors of different
methods in the absence of any outliers (i.e., when the percentage
is 0). We observe that PCA achieves the lowest reconstruction
error, and the following are R1-PCA, HQ-PCA, and PCA- .
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Fig. 6. Two-dimensional subspaces of four methods. The circle points belong to digit “3”; the pentagram points belong to digit “8”; the cross points belong to
digit “9.” (a) PCA. (b) PCA-� . (c) R1-PCA. (d) HQ-PCA.

TABLE I
CLUSTERING ACCURACY OF K-MEANS ON SUBSPACES

This suggests that, when there are no outliers, PCA achieves the
lowest reconstruction error and no robust PCA can outperform
PCA. However, when there are 10% outliers, the reconstruction
error of PCA increases rapidly, while the other PCA methods,
especially the proposed HQ-PCA, are less affected.

C. Clustering

Theoretical analysis and experimental results [4], [36] show
that PCA relates to K-means in a relaxed solution given by prin-
cipal components and PCAs can be used as a preprocessing step
to further improve the clustering accuracy of K-means. We per-
formed experiments to show that HQ-PCA’s subspace also is
better than the other PCAs’ subspaces for clustering when out-
liers exist. The K-means was initialized with the same starting
vectors for all methods, and experiments were performed on a
subset of the MNIST database. Fig. 3(a) shows the images of
three digits in the training set. To simulate outliers, we randomly
selected 60 samples from the remaining digits in the first 10 000
samples from set . The numbers of outliers and inliers are 60
and 300, respectively. Fig. 3(b) shows the outliers from the re-
maining digits.

Fig. 6 shows the clustering results on the subspace spanned by
the eigenvectors corresponding to the two largest eigen values.
The circle points belong to digit “3”; The pentagram points be-
long to digit “8”; the cross points belong to digit “9.” There
are obviously three clusters in all of the PCAs’ subspace. How-
ever, the data points overlap each other on the boundaries of
three clustering in subspaces of PCA, PCA- , and R1-PCA. It
is more evident that the three clusterings are well separated in
HQ-PCA’s subspace.

To quantitatively evaluate the robustness of different
methods, we compared the clustering accuracy of K-means
algorithm on four subspaces. Clustering accuracy was com-
puted by using the known class labels. Table I tabulates the
cluster accuracy for each digit. The clustering accuracy of PCA
and PCA- are very close, and both R1-PCA and HQ-PCA
can significantly improve the clustering accuracy. HQ-PCA
achieves the highest clustering accuracy on three digits. The
results indicate that MaxEnt-PCA’s subspace outperforms other
methods’ subspaces for clustering.

D. Dimension Reduction

Here, we evaluate the robustness of different PCA methods
for dimension reduction. Since automatic selection of principal
components is still an ongoing research problem in PCA, we
search the optimal dimension of principal components of PCA
on which PCA performs the best by following the approach
in [37]. The learned dimension was then used for all PCA
methods. Therefore, the dimensions of principal subspaces
are 127, 246, and 181 for three different datasets in TDT2,
respectively, and the dimensions of principal subspaces are 64,
52, and 66 for three different datasets in MNIST, respectively.
Classification was then performed in the reduced space. Note
that, for HQ-PCA, the value of was the same as that of .

1) Artificial Outliers: In computer vision, one assumes that
outliers are significantly far away from the rest of the data
points [4]. Here, we used nonnormalized samples as outliers,
e.g., the outlier’s norm is significantly larger than 1. We ran-
domly selected 2% of samples in the training set as outliers
and the remaining 98% of samples as inliers. To eliminate
statistical deviations, all experimental results were reported
over 20 random trials. Random orthonormal matrices were
used for the initial projection of both HQ-PCA and R1-PCA,
and the sample with the largest -norm [10] was used for that
of PCA- . The nearest center classifier was finally used as
the evaluation metric. In addition, the center of a class for all
methods was calculated as

(23)

(24)

where is calculated by (21).
Tables II and III show the classification rates of different ro-

bust methods on the MNIST database and the TDT2 database,
respectively. When outliers occur, PCA learns a bias subspace
so that its correct rate significantly decreases and its deviation is
large. Although PCA- can achieve higher classification rates
than PCA, there are still large declines compared with HQ-PCA.
It is clear that HQ-PCA achieves the highest correct rate and the
deviation of HQ-PCA is small. HQ-PCA performs better than
the two other -norm PCAs when outliers occur.

Fig. 7(a) shows the classification rates of HQ-PCA under two
conditions: updating data mean and fixing data mean . This
experiment was performed on MNIST database and 2% of the
samples were selected from 100 3 training samples as out-
liers. The outliers were generated by , where
is a normalized data and is used to control the magnitude of
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TABLE II
COMPARISON OF PCA ALGORITHMS ON MNIST DATABASE: AVERAGE

CORRECT RATE � STANDARD DEVIATION

TABLE III
COMPARISON OF PCA ALGORITHMS ON TDT2 DATABASE: AVERAGE CORRECT

RATE � STANDARD DEVIATION

Fig. 7. (a) Correct classification rates of HQ-PCA under two conditions: up-
dating data mean and fixing data mean. The axis presents the magnitude of out-
liers. (b) Correct classification rates under different numbers of principal com-
ponents on the TDT2 dataset.

TABLE IV
COMPARISON OF PCA ALGORITHMS WITH REAL-WORLD OUTLIERS: AVERAGE

CORRECT RATE � STANDARD DEVIATION

outliers. We can find that, if we fixed the data mean (weights of
data are equal), the accuracy of HQ-PCA will drop rapidly when

increases. However, if we update the data mean according to
(15), HQ-PCA can achieve a stable correct rate. Fig. 7(b) shows
correct classification rates under different numbers of principal
components on the TDT2 dataset. We can observe that the vari-
ation of classification rates is small as the number of principal
components increases.

2) Real Outliers: To simulate outliers, 60, 120, and 180 sam-
ples were randomly selected from the remaining digits in the
first 10 000 samples from set , corresponding to 300, 600, and
900 inliers, respectively. The nearest center classifier [25] was
finally used as the evaluation metric. All experiments were av-
eraged over 20 random trials.

Table IV tabulates the correct classification rates and standard
deviations of different PCA methods. HQ-PCA still achieves the
highest classification rates on all three training sets. Although
PCA- can work well on the artificial outliers, PCA- per-
forms no better than PCA on the real outliers.

Table V further shows the correct classification rates and
standard deviations of two kernel PCA methods. The Laplacian
kernel (i.e., ) was used

TABLE V
COMPARISON OF KERNEL PCA ALGORITHMS WITH REAL-WORLD OUTLIERS:

AVERAGE CORRECT RATE � STANDARD DEVIATION

in this experiment. The was set as ( is the feature
dimension). Since there are no kernel extensions of PCA-
and R1-PCA, we only compare kernel PCA and HQ-KPCA.
HQ-PCA can also improve the robustness in the kernel space.

E. Parameter Selection

There are two parameters ( and in Algorithm 1) affecting
the performance of HQ-PCA. For demonstration, Fig. 8 shows
the average reconstruction errors as functions of values of
and . The reconstruction errors were calculated with 70 prin-
cipal components. The experimental setting in Fig. 8(a)–(c) is
the same as that of the first experiment in Section IV-B1), and
the experimental setting in Fig. 8(d) is the same as that of the
first experiment in Section IV-B2).

The average reconstruction errors as a function of the values
of (Algorithm 1) are given in Fig. 8(a). We can find that
different values of will lead to different reconstruction er-
rors. However, compared with the reconstruction error of PCA
in Fig. 4(a) that is larger than 1000 with 70 principal compo-
nents, the variation of reconstruction errors of HQ-PCA is very
small. Hence, HQ-PCA is less sensitive to the choice of , and
can achieve smaller reconstruction errors over a large range of

. We can detect outliers under a small value of and then
obtain additional principal components by eigen-decomposition
of .

The kernel size is an important parameter which controls
all robust properties of entropy [13]. A well-tuned kernel size
value can effectively eliminate the effect of outliers and noise.
We further investigated the kernel size as follows:

(25)

where is a scale factor to control the value of the kernel size.
Fig. 8(b) compares the average reconstruction errors as the
scale factor increases from 0.7 to 2. We see that the average
reconstruction error increases rapidly when is decreased from
1.1 to 0.9. However, compared with the improvements of other
methods in Fig. 4(a) (more than 200), the variation of HQ-PCA
is less than 20 and hence is relatively small. HQ-PCA can
achieve a good robustness over a large range of .

Fig. 8(c) shows the convergence curves of HQ-PCA. Each
convergence curve shows a variation of the under a fixed
parameter. It is clear that HQ-PCA increases the objective
function step-by-step and converges rapidly (less than ten
iterations). The rapid convergence of HQ-PCA may be due
to the fact that maximization (or minimization) using HQ
optimization can speed up computation [38].

Fig. 8(d) shows the convergent curves of HQ-PCA as the size
of the training set increases from 130 to 620. We selected 1, 2,
4, and 8 images per subject and 60 occluded images as outliers.
We can observe that the value of the increases rapidly over
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Fig. 8. (a) Reconstruction errors under different values of � in Algorithm 1. (b) Reconstruction errors under different values of � in kernel size � estimated by
(25). (c) Convergent curves of � under different values of � . A special color curve is corresponding to a value of � . (d) Convergent curves of � under
different values of the training size. The number in the legend is the size of training set.

the first several iterations. Although HQ-PCA would take more
iterations to converge as the size of training set increases, it still
converges less than ten iterations.

V. SUMMARY

This paper proposes a rotationally invariant PCA algorithm
by replacing MSE criterion with MCC. The proposed objective
function is robust to outliers and can be efficiently optimized
by the half-quadratic optimization technique. At each iteration,
the complex correntropy objective can thereby be reduced to
a quadratic optimization problem. The proposed method is
rotation-invariant and can correctly update the data mean. Its
principal components are the principal eigenvectors of a robust
covariance matrix corresponding to the largest eigenvalues.
Experimental results illustrate that the proposed method can
outperform the other robust PCAs which are based on -norm.

APPENDIX

INFORMATION POTENTIAL

To better understand the relationship among correntropy,
information potential, and Renyi’s quadratic entropy, here we
briefly review some derivations in information theory learning.

The Renyi’s quadratic entropy of a random variable with
probability density function (pdf) is defined as

(26)

If Parzen window method is used to estimate the pdf,
can be obtained by

(27)

where is the Gaussian kernel with bandwidth
, i.e.,

(28)

By substituting in (26) with (27), the estimate of entropy
by Parzen window method can be formulated as

(29)

(30)

where stands for the information potential (IP).

According to IP in (30), correntropy is defined as a general-
ized similarity measure between two arbitrary random variables
A and B. It is directly related to Renyi’s quadratic entropy in
which Parzen windowing method is used to estimate the data’s
probability distribution [13], [22].
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