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Abstract One significant problem in tile-based texture

synthesis is the presence of conspicuous seams in the tiles.

The reason is that sample patches employed as primary

patterns of the tile set may not be well stitched if carelessly

picked. In this paper, we introduce a robust approach that

can stably generate an x-tile set of high quality and pattern

diversity. First, an extendable rule is introduced to increase

the number of sample patches to vary the patterns in an x-

tile set. Second, in contrast to other concurrent techniques

that randomly choose sample patches for tile construction,

ours uses artificial immune system (AIS) to select the

feasible patches from the input example. This operation

ensures the quality of the whole tile set. Experimental

results verify the high quality and efficiency of the pro-

posed algorithm.

Keywords Texture synthesis � x-tile �
Sample patches selection � Clonal selection �
Artificial immune system

1 Introduction

Generating novel photo-realistic imagery from smaller

examples has been widely recognized as a significant

problem in computer graphics. A wide number of appli-

cations require realistic textures to be synthesized for

object decoration in virtual scenes. Texture refers to the

class of imagery which is usually defined as an infinite

pattern consisting of stochastically stationary repeating

elements. The global repeatability within texture images is

essential to texture synthesis techniques. This inherent

property also makes it possible to express adequate texture

information with limited portions.

Texture synthesis is an alternative way to create textures

because synthetic textures can be made any size, visual

repetition is avoided. Texture synthesis can also produce

tileable images by properly handling the boundary condi-

tions. The objective of texture synthesis can be stated as

follows. Given an example texture (Fig. 1), synthesize a new

texture that, when perceived by a human observer, appears to

be generated by the same underlying process (Fig. 1).

Non real-time texture synthesis techniques can be

roughly categorized into local region-growing methods and

global optimization-based methods. Local methods gener-

ate the texture by growing one pixel or patch at a time with

the constraint of maintaining coherence of neighboring

pixels in the grown region [1–4]. Such approaches always

suffer the time-consuming neighbor searching in the

example, so they do not sufficiently meet real-time appli-

cations. On the other hand, global methods use some

criteria to evaluate the similarity of the input, then the

entire texture can be evolved as a whole. Most existing

global approaches either model only pixel-to-pixel inter-

actions which are insufficient to capture large-scale

structures of the sample texture [5, 6], or introduce too
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complex formulations to optimize [7, 8]. Kwatra et al. [9]

defined a texture energy function to quantitatively measure

the quality of the synthesized texture, unfortunately the

synthesizing speed is still quite slow.

An alternative approach is to use texture synthesis to

pre-compute a set of small tiles (textures) and use these

tiles to generate arbitrary size of non-periodic images at run

time [10, 11–14]. The tile-based method usually employs a

set of sample patches which are extracted from the input

example as texturing primitive. Tiles are then constructed

by stitching sample patches together following some given

rules. The technique requires only a small amount of

memory and is very useful in many real-time applications,

although sometimes achieving low-quality results or dull

patterns for the lack of optimization on the tile set.

In this paper, we present an approach for tile-based image

synthesis, based on the optimization of tile set quality with

respect to a clonal selection operator. This operator is

motivated by the artificial immune system (AIS)-driven

clonal selection algorithm which is frequently used in solv-

ing complex numerical optimization problems [15–18]. Our

main contribution is to merge some locally defined optimi-

zation measures into a global objective function that can

jointly optimize the quality of the entire tile set. This

objective function balances the qualities among tiles and can

be optimized using the clonal selection operator within a

simple AIS framework with reasonable computational cost.

As shown in Fig. 2, an x-tile is a square block with a

specific color at each corner. A given number of small

patches (sample patches) are extracted from an input tex-

ture to form different texturing blocks. As shown in Fig. 2

(the left-most column), a tile is cut from the center of each

block to obtain the intermediate tile, which is the combi-

nation of four sample patch quarters. The seams in each

intermediate tile are removed by replacing the interior of

the tile with other pattern (matching patch) from the input

example to generate an x-tile. The color at each corner of

an x-tile indicates the color of the patch that contributes to

the corner. We propose a global optimization algorithm to

search for a feasible set of sample patches. The algorithm

insures the intermediate tiles formed by these patches to

satisfy both local and global optimal conditions. The local

condition implies that each intermediate tile in the set

could find an adequately well matching patch (the texture

patch picked from the input example to merge into the

intermediate tile for erasing junctions) from the input,

while the global condition means that the tile qualities are

balanced according to their matching errors with closest

matching patches. The two conditions are interpreted

together as an evaluation measure. This function is defined

as the linear combination of the sum of the matching errors

(the distance between the intermediate tile and the candi-

date matching patch) between intermediate tiles and their

closest matching patches (the candidate matching patch

with the smallest distance), and the standard variance of all

the errors. Sample patches selection proceeds by optimiz-

ing this evaluation function using AIS. We use the graph-

cut [4] method to merge the matching patches into the

intermediate tiles.

The rest of the paper is organized as follows. In Sect. 2,

we review some related work. An extendable rule for

deriving new tile sets is described in Sect. 3. We present

the AIS-based sample patches selection algorithm in

Sect. 4. Finally, we show results and conclude the paper in

Sects. 5 and 6.

2 Related work

2.1 Texture synthesis

A number of work has been presented toward synthesizing

textures from input examples. Local region-growing tech-

niques generate textures one pixel or one patch at a time.

Fig. 1 Texture synthesis using

our algorithm. The size of the

input example in (a) is

128 9 128. We construct the

x-tiles (same sizes of 80 9 80)

in (b) with our robust tile

construction algorithm. The

output texture in (c) has

256 9 256 pixels and is

generated in real time using the

x-tiles in (b)
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Pixel-based synthesis algorithms [1, 2, 19, 20] grow an

output texture pixel by pixel, normally using spatial

neighborhood compare to match across different frequency

bands. These approaches are fit for stochastic textures, but

usually fail on textures with more coherent structures.

Patch-based methods [3, 4, 21, 22] copy selected source

regions into the output instead of single pixels. They are

generally more successful on synthesizing structural tex-

tures. Some intermediate techniques [9, 23] between pixel

and patch-based methods have also been presented, which

somewhat combine the advantages of both. None of the

techniques above can avoid laborious neighborhood

matching in the input example and this time-consuming

process limits their use to only off-line synthesis applica-

tions. Recently, efficient GPU-based texture synthesis

techniques [24, 25] have also been proposed; however, they

always demand a high performance graphics hardware, and

their methods suffer from the pixel-based synthesis issue of

performing poorly on textures with semantic structures not

captured by small neighborhoods. On the other hand, some

near real-time texture synthesis methods usually achieve

low-quality results for the lack of optimization in the pre-

processing [26, 27] or need very complex pre-computation

and storing data structures [28]. They are also not available

in many real-time environments.

In the work concurrent with ours, Cohen et al. [11]

developed a stochastic algorithm to non-periodically tile

the plane with a small set of Wang-tiles at run time. Wei

[12] extended this work with GPU to improve tile-based

texture mapping. Ng et al. [10] presented another approach

to generate a set of small texture tiles from an input

example. These tiles can also be tiled together to synthesize

large textures. Our technique uses their x-tiles as the tile

set pattern. Figure 2 shows a typical x-tile set in [10]. All

these approaches require a set of sample patches extracted

from the input example to generate the intermediate tile

patterns, so the quality of their texture tiling results is not

stable due to the uncertainty of the sample patches. Dong

et al. [13, 14] used genetic algorithm (GA) to select an

optimal set of sample patches from the input and achieved

better tiling quality than [11]. Unfortunately, the limitation

of GA sometimes plunges the objective into a local optimal

solution.

2.2 Artificial immune system and clonal selection

The human immune system (HIS) protects the body

against damages from an extremely large number of

harmful bacteria and viruses, termed as pathogens. It

realizes this largely without any prior knowledge of the

structure of these pathogens. An increasing amount of

work is being carried out attempting to understand and

extract the key mechanisms through which the HIS is able

to achieve its detection and protection capabilities. A

number of artificial immune systems (AISs) have been

built for a wide range of applications including document

classification, fraud detection, and network- and host-

based intrusion detection [29–31]. These AISs have met

with some success and in many cases have rivalled or

bettered existing statistical and machine learning tech-

niques. It is also a powerful technique that can be applied

to texture synthesis.

The clonal selection algorithm is used by the natural

immune system to define the basic features of an immune

response to an antigenic stimulus. It establishes the idea

that only those cells that recognize the antigens are selected

to proliferate. The selected cells are subject to an affinity

maturation process, which improves their affinities to the

Fig. 2 The previous x-tile set formation process. The four texture patches in the left-most column of (b) are sample patches, corresponding to

the four color squares {R, G, B, Y}. The sample patches are robustly selected using AIS in this paper
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selective antigens. Our approach uses a new adaptive

dynamic clonal selection algorithm (ADCSA) as the

selector (immune algorithm) of the AIS, similar to the

structure of the clonal selection algorithms described in

[16] and [17]. On the basis of the antibody–antibody

affinity, antibody–antigen affinity and their dynamic

allotting memory units along with the scale of antibody

populations, this algorithm combines the stochastic

searching methods with evolutionary searching based on

the probability. Its performance is better than the classical

genetic algorithm and the traditional clonal selection

algorithm like [29].

3 Tile set formation

We choose the size-8 x-tile set in [10] as the basic tile set,

as shown in Fig. 3. We use B to represent it in this paper. A

set of squares P ¼ fR;G;B; Yg are used to compose blocks

and then slice the central parts to construct the x-tiles.

The previous x-tile construction process is shown in

Fig. 2. The approach starts with randomly obtaining a set T

of square sample patches from the input example S; the

number is always equal to the members in P (four in [10]).

Each patch is assigned to be related with one color square.

Then an intermediate tile I can be cut from the middle of

the texture block, as shown in the left two columns of

Fig. 2. Different intermediate tiles are generated according

to the different arrangements of the sample patches (cor-

responding to the arrangements of the color squares). We

note that the cross junctions where four quarters meet have

to be carefully erased. This process is shown in the middle

two columns of Fig. 2. Similar with [10], we also pick a

matching patch (patch offset) C from the input and merge it

into the intermediate tile by graph-cut. The matching patch

is the same size as the intermediate tile. A circle is

employed to constrain the boundary of the cutting curve to

maintain the continuity of the patterns between matching

sides in the tiling image.

3.1 Tile patterns analysis

The tiling process using x-tiles is carried out in the scan-

line order. Once the tile in the left-top corner is fixed, the

rest tiles in the tiling are laid one by one from left to right,

and top to bottom, consistent with the square colors of their

neighbors. A valid tiling using B is shown in Fig. 3. The

basic tile set composed of only eight tiles will draw

undesirable repetitive patterns in a large synthesis image.

Two methods are proposed in [10] to overcome this arti-

fact. One way is to pick two patches from the input for each

original tile. This method doubles the number of the tiles

but assumes at least two choices for each tiling step.

However, it can only partly eliminate the repetitive patterns

in the tiling. We should not neglect the repetitive patterns

caused by the central parts of the sample patches. As shown

in the rightmost column of Fig. 2, the central pattern of the

sample patch still possesses an important role in the tiling.

To solve this problem, we develop an effective method to

Fig. 3 Tile set formation from basic size-8 x-tile set
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directly increase the number of the sample patches which

are used to form the intermediate x-tiles, without losing

the characteristics of the whole tile set. The other way used

in [10] to eliminate repetition is to increase the tiles

number by using more arrangements of the sample patches.

This method is also suitable for our approach. However, it

still cannot avoid the repetitive patterns caused by the

sample patches themselves.

3.2 Increase sample patches

We add new patterns into the x-tile set by enlarging the

size of the sample patches set T: This operation is pro-

ceeded directly on B: We derive new tiles with the

following steps:

1. Randomly pick a square from set P as the ‘‘reference’’

square (or reference color). Without losing generality,

we choose the yellow square as the reference square.

2. Add a new square to the set P: Here, we use C (Cyan)

to represent it. Then the new square set is enlarged to

be P1 ¼ fR;G;B; Y ;Cg:
3. Generate new tiles by replacing the yellow squares

with cyan squares in B:

4. Add another two tiles by replacing only one yellow

square with cyan in the tile hB, Y, Y, Ri.
The new tiles formed by the above method is shown in

Fig. 3. The last two tiles are the additional tiles generated

by step 4. The new tiles together with B forms the new x-

tile set N1: Despite the two ‘‘additional’’ tiles, the other

new tiles plus the tile hR, G, G, Bi can be considered as a

copy of the basic set B: It can be used independently to tile

arbitrary size area. We use N
0
1 to indicate the tile set which

possesses all the tiles in N1 except the two additional tiles.

During the tiling process, if only N
0
1 is used, there will be

no problem if no yellow square and cyan square need to be

matched at the same time when placing a tile. This can be

treated as a pattern duplication with the basic tile set. The

cases shown in Fig. 4a, b appear where yellow square and

cyan squares are needed to be matched simultaneously;

there will be no matching tile in N
0
1: Apparently, here the

two additional tiles are necessary to complete the tiling

process. In fact, these two patterns are just the extensions

of the pattern in Fig. 4, which is one of the tiling patterns

using the basic set B: Therefore, the new tile set N1 can be

used to tile any large area and contains all the properties of

the x-tile set which are stated in [10].

Comparing with the size-16 tile set shown in Fig. 2,

with the similar number of tiles, our new set N1 enriches

the patterns brought by sample patches in the tiling. And

the patterns of the tiles themselves are also more diverse

because of the integration of more sample patches than

simply using more different arrangements of the squares.

We note, additionally, the diagonal repetition tiles (same

color squares share a diagonal) are also reduced. This also

avoids some repetitive patterns in a tiling.

We can continue to increase the number of sample patches

into six by following the same rule. On the basis of the tile set

N1;we pick red as the reference color, and generate new tiles

by replacing the red squares with magenta. The tiles with

double red squares also need to be derived into two additional

tiles by replacing only one square at a time. The new tiles are

shown in Fig. 3. Packed with set N1; we get another new x-

tile set N2: Here the square set is enlarged to P2 ¼
fR;G;B; Y ;C;Mg: Obviously, we can keep on increasing

the sample patches in P2 by following this rule if there is

enough memory during the rendering process. Then in the

tiling process, this method can effectively eliminate the

repetitive patterns caused by both the tiles and the sample

patches themselves. Usually, the set N2 which contains 38

tiles is enough to achieve a less-repetitive tiling result.

4 Tile construction

The quality of tiling is decided by the quality of the final tile

set. As illustrated in Fig. 2, the graph-cutting result per-

formed between the intermediate tile and the matching

patch will directly affect the quality of the tile. Thus, special

care should be taken when picking sample patches from the

input, so that the intermediate tiles can get feasible

matching patches for graph-cut operations. The random

picking method used in [11] and [10] is not robust for this

situation. The intermediate tile formed by randomly chosen

sample patches cannot assure of finding a good matching

patch C from the example. On the other hand, because of the

great quantity of pixels in an image, it is almost impossible

to use brute-force searching method to find the best sample

patches extraction. For example, for an input example of

size 128 9 128, if we set the tile size to be 80 9 80, there

will be (48 9 48)n choices for the sample patches extrac-

tion (n is the number of sample patches). This is an

unacceptable computational requirement for a normal PC in

reasonable time. The GA-based sample patches selection

technique in [13] achieves better results for Wang-tiles than

[11]. However, it sometimes looses the best solution due to

the limitation of the evolutionary framework. Our approachFig. 4 The cases why the two additional tiles in Fig. 3 are required
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can efficiently and accurately solve the sample patches

selection problem.

4.1 Algorithm overview

Our robust sample patches selection algorithm is essen-

tially based on AIS. AISs use ideas gleaned from

immunology to develop adaptive systems which are capa-

ble of performing a wide range of optimization tasks in

various research areas. A standard AIS starts with an initial

set of random-generated antibodies (immune cells) called a

population where each antibody encodes a solution of the

optimization problem. All antibodies are evaluated with the

antigen by an evaluation function which is some measure

of affinity. A selection process based on the affinity values

will form a new population. A cycle from one population to

the next is called a generation. During each new genera-

tion, all antibodies will be updated by the immune

operations. Then, the selection process selects antibodies to

form a new population. After performing a given number

of cycles, or when other termination criteria are satisfied,

we denote the best antibody as a solution, which is regar-

ded as the optimal solution of the optimization problem.

From the above, we can see that to design an AIS, it is

necessary to choose an appropriate affinity measure and an

immune algorithm. For the problem of sample patches

selection, we encode each antibody as a candidate set of

sample patches, using the location of each patch at the

input as a gene. Clone selection is employed as the immune

algorithm in our AIS and we will define the affinity mea-

sure in the following section.

The theory known as clone selection is used to explain

how the immune system ‘‘fights’’ against an antigen. When

a bacterium invades our organism, it starts multiplying and

damaging our cells. One form of the immune system found

to cope with this replicating antigen was by replicating the

immune cells successful in recognizing and fighting against

this disease-causing element. Those cells capable of rec-

ognizing the antigen reproduce themselves asexually in a

way proportional to their degree of recognition; the better

the antigenic recognition, the higher the number of off-

spring (clones) generated. During the process of cell

division (reproduction), individual cells suffer a mutation

that allows them to become more adapted to (increase

affinity with) the antigen recognized: the higher the affinity

of the parent cell is, the lower the mutation they suffer. We

apply these characteristics to design the immune algorithm

in the AIS for sample patches selection.

4.2 Robust sample patches selection

The original problem of sample patches selection is to find

the optimal n sample patches from the input example to fill

the m tiles with a maximum objective function. For example,

for the x-tile set N2; n ¼ 6; m ¼ 38: Then the intermediate

tile filled by the optimal sample patches can find a feasible

matching patch safely under the given rules for junction

flattening. We will make use of clone selection in the AIS to

avoid suboptimal solutions. The AIS framework of finding

the optimal n sample patches is described as follows.

4.2.1 Initialization

To ensure that an optimal solution can be obtained in a

reasonable runtime, an initial population consists of a

considerable amount of antibodies is necessary. To start the

algorithm, an integer Np is defined as the number of anti-

bodies. From the input texture, Np/2 antibodies are

randomly chosen, i.e. randomly choose n sample patches

from the valid region for each antibody. For the other half,

we uniformly divide the valid region into n parts and ran-

domly choose one patch from every part. Then the patches

are also randomly arranged to be the genes of each anti-

body. The antibodies are denoted by P ¼ fA1;A2; . . .;ANp
g;

we call it as a population. Every antibody contains n sample

patches (n genes) selected from the input example:

Ai ¼ ðg1
i ; g

2
i ; . . .; gn

i Þ; i ¼ 1; 2; . . .;Np

4.2.2 Evaluation

In our AIS, the clone number of antibodies is determined by

a percentage assigned to each antibody. This percentage is

proportional to its affinity relative to other antibodies in the

population, i.e. antibodies with higher affinities will have

more number of clones to produce offsprings in the clone

selection process. In the context of sample patches selec-

tion, the antigen is defined as the set of valid matching

patches in the input example. The antibody–antigen affinity

of an antibody is evaluated by an evaluation function, which

in essence, computes the minimum matching error between

the intermediate tile and the candidate matching patch. It

involves searching for translations of the input image that

match well with the intermediate tile. Let I(p) and T(p) be

the pixel colors at the position p in the input example and

the intermediate tile, the evaluation function is defined as

CjðtÞ ¼
1

jStj
X

p2St

jTðpÞ � Iðp� tÞj2; ðj¼ 1;2; . . .;m; t 2 PTÞ

ð1Þ
Dj ¼ min fCjðtÞ; t 2 PTg
Vi ¼ varianceðD1;D2; . . .;DmÞ

EðAiÞ ¼ k �
Xm

j¼1

Dj þ ð1� kÞ � Vi

ð2Þ

where Cj(t) is the matching error at translation t of the jth tile,

St is the portion of the translated input overlapping the tile,
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PT is the set of valid translations (candidate matching patches)

in the input, and Dj is the minimum matching error within all

the translations. Vi is the variance of all the minimum errors,

we add this factor to protect the global quality of the final tile

set. It avoids that intermediate tiles with extremely high and

extremely low matching errors appear together in the same

set. So the evaluation function E(Ai) is the linear combination

of the minimum error sum and the variance. We set k = 0.8

for all the experiments in this paper. Note that our evaluation

function is very similar to the energy function used in [9] for

texture optimization, while here we use AIS rather than

expectation maximization (EM) to optimize it.

To obtain an optimal tile set, we need to determine the best

set of sample patches that has the smallest evaluation value.

Hence, to be consistent with the concept of affinity, the

antibody–antigen affinity function f(Ai) is defined as the

reciprocal of the evaluation function, i.e. f(Ai) = 1/E(Ai). As

previously addressed, it is also the objective function to be

optimized by our AIS. On the basis of the affinity value of

each antibody, the population P is rearranged from high

affinity to low affinity.

4.2.3 Antibody partition

According to the affinities, we adaptively allot the antibody

population. P is divided into the memory unit M and the

generic antibody unit Ab :

P ¼ fM;Abg
Nm ¼ bNp �minðsMmin þ h; sMmaxÞc; ðsMmin; s

M
max 2 ð0; 1ÞÞ

M ¼ fA1;A2; . . .;ANm
g; Ab ¼ fANmþ1;ANmþ2; . . .;ANp

g

where sMmin is a constant set to assure the minimum size of the

memory unit, while sMmax is the upper limit of it. Otherwise

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðNp � 1Þ � Np

XNp

i¼1

XNp

j¼1
Hij

s

ju� lj

which is used to measure the diversity of antibody

population, 0 \ h \ 1, the bigger h is, the better is the

diversity. u and l are separatively the upper and lower limit

of the antibody genes, here in our algorithm are the left-top

and right-bottom coordinate of the valid region for sample

patches at the input example. Hij represents the antibody–

antibody affinity, which is defined as

Hij ¼ kAi � Ajk ¼
Xn

k¼1

kgk
i � gk

j k; i; j ¼ 1; 2; . . .;Np

where k � k denotes the Euclidean distance of two sample

patch locations. Apparently, H is a symmetrical matrix

which indicates the diversity of the antibody population.

In this case, the memory unit is corresponding to the

memory cells in the human immune system which are able

to bind successfully to an antigen. Different mutative

principles will be used for memory unit and generic unit in

the clone selection process.

4.2.4 Mutation regulation

We dynamically regulate the mutative probabilities of the

antibodies inversely proportional to their antigenic affini-

ties: the higher the affinity, the smaller the mutation rate.

Following this rule, the corresponding mutative probability

pmu
i of each antibody is evaluated as

pi
mu ¼ pc

mu þ 1þ exp n � f ðAiÞPNp

j¼1 f ðAjÞ

 !" #�1

where pmu
c is a constant to assure the minimum mutative

probability of the antibody. Then a further correction is

made by

pi
mu ¼

pMmu; pi
mu [ pMmu; 1� i�Nm

pAb
mu; pi

mu\pAb
mu; Nm þ 1� i�Np

�

where pMmu and pAb
mu are mutative threshold value of

memory unit and generic antibody unit respectively,

generally, pMmu � pAb
mu\1: In our program, given the

minimum memory unit size sMmin; it yields

pc
mu ¼ ðsMmin þ hÞ=2:0

pMmu ¼ min ð1:4 � pc
mu; 0:3Þ

pAb
mu ¼ min ð3:0 � pMmu; 0:8Þ

These probabilities will be used in the mutation step of

clone selection.

4.2.5 Clone selection

The process of clone selection in an AIS can be treated as a

refinement of the population. It is the most important part

of our sample patches selection algorithm. All the anti-

bodies will be applied to this operator independently. We

describe our clone selection operator as follows:

1. Clone the ith antibody proportionally to its antibody–

antigen affinity, generating a repertoire

Ri ¼ fA1
i ;A

2
i ; . . .;ANc

i g

of clones: the higher the affinity, the higher the number of

clones. The clone number Nc

0i is given by

l ¼ b � Np � f ðAiÞPNp

j¼1 f ðAjÞ

Ni
c ¼

maxða � Np; Np=3Þ; 1� i�Nm

minða � Np; Np=3Þ; Nm þ 1� i�Np

�

where a is the threshold value for both memory unit and

generic unit, b is a multiplying factor, Np is the total
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number of antibodies. The antibody with the highest

affinity will produce the most clones.

2. The repertoireRi is submitted to an affinity maturation

process according to its mutative probability and

generate a population R0i of mutated clones. We use

a method similar to BGA mutation [32] in this step.

Let Aj
i ¼ gj

i;1; g
j
i;2; . . .; gj

i;n

n o
be the jth cloned anti-

body of Ai which is selected to be mutated with

probability pmu
i , we randomly pick a gene gj

i;k (k = 1,

2, …, n) for this mutation, then the offspring is

denoted as A0ji ¼ gj
i;1; g

j
i;2; . . .; g0ji;k; g

j
i;kþ1; . . .; gj

i;n

n o
: In

BGA mutation, g0ji;k is gj
i;k þ 0:1 � d � ðu� lÞ

� �
or

gj
i;k � 0:1 � d � ðu� lÞ

� �
with equal probability. Here

d ¼
P15

i¼0 ci2
�i; ci 2 f0; 1g and ci takes 1 with

probability of 1/16. u and l is the upper limit and

lower limit of the gene as addressed previously in the

Antibody Partition step. If g0ji;k exceed the interval [l,

u], we will change it to g0ji;k þ 0:2 � ðu� lÞ=1:4
� �

:

This mutation method tests frequently the patches

which are close to gi,k
j , so it trends toward local search.

Furthermore, it is independent of the location in the

phenotype space.

3. Determine the affinity f A0ji
� �

of the mutated clones R0i:
4. From this set of mutated clones R0i; reselect the one

with highest antigenic affinity A0ji to be a candidate to

enter the set of new antibody population. If the affinity

of this antibody is larger than its respective original

antibody Ai, then A0ji will replace Ai in the new

population.

4.2.6 Antibody regulation

Resort the antibodies from high affinity to low affinity,

replace (antibody death) the Nd lowest affinity antibodies

from the population by new randomly chosen

individuals.

4.2.7 Termination

Two termination criteria are used. Either the process is

executed to produce a fixed number Ng of generations, or

no further improvement for the best solution is observed

in No consecutive generations. If the termination

condition is satisfied, the AIS will be terminated and the

best solution (the antibody with highest affinity) among

all the individuals is chosen. Otherwise, the AIS

goes back to the evaluation step and begins the next

iteration.

4.3 Working flow

The AIS-enhanced sample patches selection algorithm can

effectively reduce the boundary artifacts caused by the

mergence of the intermediate tile and its matching patch

during the graph-cut process. The whole working flow of

our optimized tile-based texture synthesis algorithm is, in

pre-computation, first randomly initialize a considerable

number of sample patches sets (as the antibodies) from

the input example, then use AIS to find the best one.

Finally graph-cut is employed for junction elimination.

The run-time tiling process is the same as [10], we can

synthesize arbitrary size of texture images in real time.

Note that we also use Poisson smoothing [33] to remove

the prominent seams in x-tiles after the graph-cut

operations.

4.4 Parameters and optimizations

The basic parameters of the AIS are the antibody pop-

ulation size Np, the upper and lower limit of memory

unit size sMmin and sMmax; the threshold a and multiply-

ing factor b for mutative probabilities, the antibody death

number Nd, the maximum iteration times Ng, and the

maximum no-improvement times No. In our approach,

we use the same settings for all the experiments with

fNp ¼ 40; sMmin ¼ 0:2; sMmax ¼ 0:4; a ¼ 0:4; b ¼ 4;Nd ¼
10;Ng ¼ 50;No ¼ 6:g:

The most time-consuming procedure in our AIS is the

fitness evaluation of the chromosomes. In this procedure,

we use approximate-nearest-neighbor search (ANN) [34]

to accelerate the neighborhood matching operation

between each intermediate tile and the input example.

Note that the other techniques such as TSVQ [2, 35], FFT

[36, 37] and mixture trees [38] can also be employed

here.

5 Results and discussions

Figure 5 shows some texture synthesis results using our

algorithm. All the results are tiled in real-time with the x-

tile set N2 which contains 38 tiles (illustrated in Fig. 3).

Execution times of the AIS-based sample patches selec-

tion process are listed in Table 1. All timing results are

reported for our unoptimized C++ code on a Pentium 4

3.2 GHz PC with 1 GB RAM. The sequence of the

example names is consistent with the image positions in

Fig. 5, from left to right and from top to bottom. The

timings indicate that using AIS is an efficient way to

select feasible sample patches. We could see that our

algorithms could generate high-quality results for random

and semi-structural texture examples, while still causes
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apparent artifacts for high-structural textures, like the

eggs example.

We can generate the distance function defined in Eq. 1

to incorporate other characteristics of the texture besides

color. For example, to use image gradients as an additional

similarity metric, we could define the distance as

CðtÞ ¼
X

p2St

jTðpÞ � Iðp� tÞj2

lðkrTk þ krIkÞ ð3Þ

or

CðtÞ ¼
X

p2St

jTðpÞ � Iðp� tÞj2 þ l
X

p2St

jrT �rIj2 ð4Þ

where r ¼ o:
ox ;

o:
oy

h i
is the gradient operator and l is a rel-

ative weighting coefficient (l = 10 in our experiments).

Figure 6 shows the synthesis results using different distance

metrics. Even though we have experimented with color and

gradient, one could use other distance metric which measures

some property of the texture patch. For most textures, we can

Fig. 5 Results for image texture synthesis. For each texture, the input is on the left and the output on the right. All results are generated in real-

time with the corresponding x-tiles
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simply use the color as the distance metric, as all the

experiments in Fig. 5 do.

The most important parameters in AIS are the population

size pop_size and the generation number Ng. In Figs. 7

and 8 we show comparisons of using different population

sizes and different generation numbers in AIS. The other

parameters are set to be the same as in Fig. 5. The input

examples are the same as the input texture in the first row in

Fig. 9. We can see the quality increase of the output textures

when the parameters change. Table 2 shows the compari-

sons of the AIS training results using different population

sizes and generation numbers. For each result, the left value

in the brackets is the antibody–antigen affinity value of the

best antibodies when AIS terminates, and the right value is

the AIS training time. The random operation means that we

calculate the average evaluation value of 100 randomly

obtained sample patches sets. And the semi-random oper-

ation means that we compute the minimum evaluation value

Table 1 Sample patches selection timings for the examples in Fig. 5

Example name Example size Tile size AIS timing

Beans 128 9 128 80 9 80 1 min 8 s

Yellow leaves 160 9 160 140 9 140 2 min 38 s

Tree barks 128 9 128 80 9 80 1 min 12 s

Caustics 128 9 128 80 9 80 1 min 10 s

Stones 128 9 128 80 9 80 0 min 58 s

Bread 108 9 99 70 9 70 1 min 5 s

Grape 144 9 144 100 9 100 1 min 56 s

Grass 128 9 128 80 9 80 1 min 18 s

School 128 9 85 70 9 70 1 min 5 s

Flowers 128 9 128 80 9 80 1 min 9 s

Tomatoes 128 9 128 80 9 80 1 min 14 s

Fabric 128 9 128 80 9 80 1 min 17 s

Bricks 128 9 128 80 9 80 1 min 1 s

Eggs 128 9 102 80 9 80 1 min 54 s

Fig. 6 Results comparison

when using different distance

metrics. From left to right: the

input example, result using

Eqs. 1, 3 and 4

Fig. 7 Results comparison of using different number of antibodies in AIS. The size of input example is 64 9 64 and the tile size is 48 9 48.

Ng = 50. From left to right: Np = 10, 20, 40, 80, the antibody–antigen affinity f = 0.988, 1.211, 1.396, 1.412, training time: 800, 1300, 2600, 4800

Fig. 8 Results comparison of using different generation numbers in AIS. The size of input example is 64 9 64 and the tile size is 48 9 48.

Np = 40. From left to right: Ng = 10, 30, 50, 80, the antibody–antigen affinity f = 0.972, 1.269, 1.385, 1.403, training time: 600, 1500, 3300, 5100
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from 100 randomly obtained sample patches sets. Results

show that the increase of population size and generation

number both increase the affinity value of the antibodies,

while simultaneously cost more training time. We can see

that normally the setting of {Np = 40, Ng = 50} is enough

for most synthesis. The setting of {Np = 40, Ng = 80} could

achieve bigger affinity value, but the training time is nearly

the double of {Np = 40, Ng = 50}.

We compare our results with other techniques in Fig. 9.

We can see that the qualities of our results are comparable

with the off-line graph-cut method [4] (even though, their

results outperform ours when synthesizing some structural

textures) while better than the other CPU-based real-time

techniques. The results in Figs. 5 and 9 show that our

method is a very good choice for textures without very

clear structures, especially for natural textures [20].

6 Conclusion and future work

We have presented a novel optimization-based technique

for tile-based texture synthesis. Our results for both texture

synthesis and image tiling are comparable to state of the

art. We define a pattern repetitive principle that allows us

to derive new x-tile sets from the existing one. An opti-

mized sample patches selection algorithm based on AIS is

used to improve the quality of the whole tile set. The

experimental results demonstrate that the quality of

Fig. 9 Comparison of texture synthesis results with various other techniques. Results for other techniques are obtained from their web pages

Table 2 The antibody–antigen affinity value of the best antibodies when AIS terminates and AIS training times using different parameters

Example name (Np, Ng)

Random Semi-random (10, 10) (20, 30) (20, 50) (40, 30) (40, 50) (40, 80)

Beans (0.179, –) (0.244, –) (0.297, 1800) (0.316, 3400) (0.339, 5600) (0.347, 5800) (0.353, 10800) (0.385, 202400)

Yellow leaves (0.069, –) (0.083, –) (0.093, 3900) (0.122, 101300) (0.129, 101700) (0.134, 103400) (0.143, 203800) (0.155, 60700)

Tree barks (0.373, –) (0.441, –) (0.468, 1600) (0.475, 3500) (0.497, 4900) (0.511, 5600) (0.532, 101200) (0.541, 20700)

Caustics (0.137, –) (0.219, –) (0.266, 1500) (0.271, 4100) (0.283, 4700) (0.296, 101100) (0.315, 101000) (0.322, 201700)

Stones (0.247, –) (0.338, –) (0.358, 1100) (0.361, 3200) (0.387, 4400) (0.392, 4600) (0.418, 5800) (0.429, 20700)

Bread (0.164, –) (0.229, –) (0.268, 800) (0.276, 2900) (0.271, 4600) (0.273, 4400) (0.285, 101500) (0.291, 201100)

Grape (0.237, –) (0.319, –) (0.362, 1700) (0.371, 4200) (0.397, 10400) (0.411, 102600) (0.435, 105600) (0.471, 404900)

Grass (0.230, –) (0.275, –) (0.351, 1400) (0.384, 3800) (0.411, 5000) (0.417, 5700) (0.423, 101800) (0.428, 202800)

School (0.271, –) (0.352, –) (0.387, 1100) (0.399, 3300) (0.416, 4200) (0.428, 5100) (0.451, 10500) (0.465, 105900)

Flowers (1.092, –) (1.171, –) (1.181, 1800) (1.202, 3600) (1.297, 4700) (1.307, 5000) (1.336, 101900) (1.368, 204000)

Tomato (0.165, –) (0.204, –) (0.257, 1900) (0.265, 3200) (0.271, 4600) (0.273, 5100) (0.296, 101400) (0.311, 201000)

Fabric (0.081, –) (0.121, –) (0.144, 2100) (0.148, 3700) (0.151, 5100) (0.153, 101100) (0.167, 101700) (0.175, 202900)

Brick (0.152, –) (0.206, –) (0.221, 1400) (0.227, 3600) (0.239, 4400) (0.242, 5100) (0.256, 101100) (0.266, 202400)

Eggs (0.558, –) (0.659, –) (0.772, 2700) (0.793, 3800) (0.831, 5900) (0.834, 101700) (0.998, 105400) (1.055, 202900)
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tile-based texture synthesis is markedly improved after

using the proposed robust sample patches selection. This

framework is also fit for quality improvement of Wang-

tile-based texture synthesis [11]. In the real applications,

the sample patches selection and x-tile set construct are

preceded as pre-processing. The tile sets of different tex-

tures are saved into a database. Then at run-time we only

need to pick the pre-computed tile set and perform the

texture tiling process in real-time. Our technique can be

nicely applied in the environment where real-time texture

synthesis is needed, such as 3D games and real-time virtual

reality systems, while the local-region-growing methods

such as image quilting, graph-cut and texture optimization

are not applicable (need seconds or minutes to generate an

image).

A limitation of our technique is that because it tries to

erase the junctions in the intermediate tiles by a single

patch from the input example, it is always constrained by

the patterns of the intermediate tiles. It is manifested as

relatively low qualities when synthesizing some structural

textures, for example, the eggs texture in Fig. 5.

For future work, we wish to extend our tile-based syn-

thesis technique to handle image or geometric textures on

3D models. Another potential direction is to experiment

with other local-region-growing texture synthesis methods,

such as texture optimization [9], fractional Fourier texture

masks [39] and appearance-space texture synthesis [25], in

the tile construction step to improve the synthesizing

quality of structural textures.
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4. Kwatra V, Schödl A, Essa I, Turk G, Bobick A (2003) Graphcut

textures: image and video synthesis using graph cuts. ACM Trans

Graph 22:277–286

5. Heeger DJ, Bergen JR (1995) Pyramid-based texture analysis/

synthesis. In: SIGGRAPH ’95: Proceedings of the 22nd annual

conference on Computer graphics and interactive techniques.

ACM Press, New York, pp 229–238

6. Paget R, Longstaff ID (1998) Texture synthesis and unsupervised

recognition with a nonparametric multiscale markov random field

model. IEEE Trans Image Process 7:925–931

7. Portilla J, Simoncelli EP (2000) A parametric texture model

based on joint statistics of complex wavelet coefficients. Int J

Comput Vis 40:49–70

8. Freeman WT, Jones TR, Pasztor EC (2002) Example-based

super-resolution. IEEE Comput Graph Appl 22:56–65

9. Kwatra V, Essa I, Bobick A, Kwatra N (2005) Texture optimization

for example-based synthesis. ACM Trans Graph 24:795–802

10. Ng TY, Wen C, Tan TS, Zhang X, Kim YJ (2005) Generating an

x-tile set for texture synthesis. In: Proceedings of computer

graphics international 2005 (CGI’05), Stone Brook, NY, USA, pp

177–184

11. Cohen MF, Shade J, Hiller S, Deussen O (2003) Wang tiles for

image and texture generation. ACM Trans Graph 22:287–294

12. Wei LY (2004) Tile-based texture mapping on graphics hard-

ware. In: HWWS ’04: Proceedings of the ACM SIGGRAPH/

EUROGRAPHICS conference on graphics hardware. ACM

Press, New York, pp 55–63

13. Dong W, Sun S, Paul JC (2005) Optimal sample patches selection

for tile-based texture synthesis. In: CAD-CG ’05: Proceedings of

the 9th international conference on computer aided design and

computer graphics (CAD-CG’05). IEEE Computer Society,

Washington, pp 503–508

14. Dong W, Zhou N, Paul JC (2007) Optimized tile-based texture

synthesis. In: GI ’07: Proceedings of graphics interface 2007.

ACM, New York, pp 249–256

15. Kim J, Bentley PJ (2001) Towards an artificial immune system

for network intrusion detection: an investigation of clonal

selection with a negative selection operator. In: Proceedings of

the 2001 Congress on evolutionary computation CEC2001. IEEE

Press, Seoul, pp 1244–1252

16. de Castro LN, Zuben FJV (2002) Learning and optimization

using the clonal selection principle. IEEE Trans Evol Comput

6:239–251

17. Du H, Jiao L, Gong M, Liu R (2004) Adaptive dynamic clone

selection algorithms. In: Lecture notes in computer science

(RSCTC’2004 proceedings) , vol 3066, pp 768–773

18. Ishida Y (2004) Immunity-based systems: a design perspective.

Springer, New York

19. Bonet JSD (1997) Multiresolution sampling procedure for

analysis and synthesis of texture images. In: SIGGRAPH ’97:

Proceedings of the 24th annual conference on Computer

graphics and interactive techniques. ACM Press, New York, pp

361–368

20. Ashikhmin M (2001) Synthesizing natural textures. In: SI3D ’01:

Proceedings of the 2001 symposium on interactive 3D graphics.

ACM Press, New York, pp 217–226

21. Wu Q, Yu Y (2004) Feature matching and deformation for tex-

ture synthesis. ACM Trans Graph 23:364–367

22. Liu Y, Lin WC, Hays J (2004) Near-regular texture analysis and

manipulation. ACM Trans Graph 23:368–376

23. Nealen A, Alexa M (2003) Hybrid texture synthesis. In: EGRW

’03: Proceedings of the 14th Eurographics workshop on rendering,

Aire-la-Ville, Eurographics Association, Switzerland, pp 97–105

24. Lefebvre S, Hoppe H (2005) Parallel controllable texture syn-

thesis. ACM Trans Graph 24:777–786

25. Lefebvre S, Hoppe H (2006) Appearance-space texture synthesis.

ACM Trans Graph 25:541–548

26. Zelinka S, Garland M (2002) Towards real-time texture synthesis

with the jump map. In: EGRW ’02: Proceedings of the 13th

234 Neural Comput & Applic (2009) 18:223–235

123



Eurographics workshop on Rendering, Aire-la-Ville, Eurograph-

ics Association, Switzerland, pp 99–104

27. Zelinka S, Garland M (2004) Jump map-based interactive texture

synthesis. ACM Trans Graph 23:930–962

28. Liang L, Liu C, Xu YQ, Guo B, Shum HY (2001) Real-time

texture synthesis by patch-based sampling. ACM Trans Graph

20:127–150

29. de Castro LN, Zuben FJV (2000) The clonal selection algorithm

with engineering applications. In: Proceedings of GECCO’00:

Workshop on Artificial Immune Systems and Their Applications,

Las Vegas, Nevada, USA, pp 36–39

30. de Castro LN, Timmis J (2002) Immune systems: a new com-

putational intelligence approach. Springer, Berlin

31. de França FO, Zuben FJV, de Castro LN (2005) An artificial

immune network for multimodal function optimization on

dynamic environments. In: GECCO ’05: Proceedings of the 2005

conference on Genetic and evolutionary computation, ACM

Press, New York, pp 289–296

32. Pan Z, Kang L (1997) An adaptive evolutionary algorithm for

numerical optimization. In: Simulated evolution and learning:

First Asia-Pacific Conf. (SEAL’96), Selected papers, Springer,

Berlin, pp 27–34
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