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A B S T R A C T

Modeling and the prediction of material flows (plant production, CO2/O2 concentrations, H2O) is an important
but challenging task in the design and control of closed ecological life support systems (CELSS). The aim of this
study was to develop a novel knowledge-and-data-driven modeling (KDDM) approach for simultaneously si-
mulating plant production and CO2/O2 concentrations in a closed system of plants and humans by integrating
mechanistic and empirical models.

The KDDM approach consists of a ‘knowledge-driven (KD)’ sub-model and a ‘data-driven (DD)’ sub-model.
The KD sub-model describes hourly and up to daily plant photosynthesis, respiration and assimilation parti-
tioning using the components of GreenLab and TomSim models. The DD sub-model describes the dynamics of
CO2 production and O2 consumption by the crew member using a piecewise linear model. The two sub-models
were integrated with a mass balance model for CO2/O2 concentrations in a closed system.

The KDDM was applied with a two-person, 30-day integrated CELSS test. This model provides accurate
computation of both the dry weights of different plant compartments and CO2/O2 concentrations. The model
also quantifies the underlying material flows among the crew members, plants and environment.

This approach provides a computational basis for lifetime optimization of cabin design and experimental
setup of CELSS (e.g., environmental control, planting schedule). With extension, this methodology can be applied
to a half-closed system such as a glasshouse.

1. Introduction

Closed Ecological Life Support Systems (CELSS) are self-supporting
life support systems for space stations and colonies, typically using
controlled closed ecological systems. To date, CELSS have been widely
acknowledged as playing a vital role in future regenerative life support
systems for long-term human deep space exploration, space technology
development, and space colonization (Guo et al., 2014a; Wheeler and
Sager, 2006). These systems can provide basic life-support require-
ments for crew members, such as food, oxygen and drinking water,
using plants as the central recycling component. Therefore, research

programs on CELSS have been implemented at the national space
agencies and universities, such as the University of Arizona (Biosphere
2, USA), the Institute of Biophysics in Krasnoyarsk (BIOS-3, Russia),
Beijing University of Aeronautics and Astronautics (Yuegong-1, China),
and the European Space Agency (MELiSSA). One of the most important
elements of CELSS is the growth of higher plants in a controlled en-
vironment for the production of food and oxygen (O2) from ‘waste’
carbon dioxide (CO2) (Finetto et al., 2008; Guo et al., 2008; Hezard
et al., 2012;Wheeler, 2015).

Since the experiments of CELSS are high-cost and time-consuming, a
mass-balance model for life support systems needs to be developed in at
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least two dimensions: firstly, it must predict important fluxes (e.g.,
edible biomass, CO2/O2 concentrations), and secondly, it must provide
environmental control of the plant and human compartments. As plants
are complex and dynamic systems, their growth and development in-
volves a large number of interconnected ecophysiological processes.
Significant progress has been reported in studies of modeling, simula-
tion and visualization of plant growth in recent decades (Diao et al.,
2012; de Reffye and Hu, 2003; Fan et al., 2015; Vos et al., 2009; Yin and
Struik, 2016). Early process-based models (PBMs) consider the en-
vironment as the main variable driving plant growth and focus on plant
functioning in relation to environmental conditions, such as TomSim
(Heuvelink, 1995, 1999). Typically, PBMs include modeling of growth
mechanisms (e.g., leaf and crop photosynthesis, light interception,
maintenance respiration, biomass production) and the interactions be-
tween plants and environmental conditions (e.g., temperature, light,
CO2). A relatively weak component of PBMs is the allocation of as-
similates among different organs (leaves, internodes and fruits), which
limit their potential application in various environmental scenarios.

More recently, a new generation of plant models, often known as
functional-structural plant models (FSPMs), has emerged, which aim to
explicitly describe the topology and spatial geometry of plant structure,
the interactions among plant structural elements (e.g., shape and or-
ientation of organs), the function of organs (e.g., leaf photosynthesis),
the allocation of assimilates among organs, and the feedback between
plant growth and development (Vos et al., 2007). To date, FSPMs have
been regarded as potential tools for predicting and simulating plant
growth and structural development (Renton, 2013), such as with the
GreenLab model (de Reffye and Hu, 2003). GreenLab is a generic and
mechanistic functional-structural plant model that was developed to
simulate plant growth at an organ scale during the organogenesis
process. To date, GreenLab has been successfully applied to various
species of agricultural crops (Guo et al., 2006; Kang et al., 2012; Qi
et al., 2010; Vavitsara et al., 2017); its key advantage over other plant
models, which are commonly limited to simulation, is its parametric
identification (Christophe et al., 2008). Because of the mathematical
formalism of GreenLab, hidden model parameters can be identified
using inverse methods from measurement data (Guo et al., 2006; Zhan
et al., 2003). Although FSPMs aim to simulate plant-level production in
a mechanistic way, the sub-models that simulate a certain process, such
as photosynthesis, sometimes take a simplified, empirical approach.

In predicting mass fluxes in the CELSS in previous work, photo-
synthesis and respiration reactions were modeled based on plant phy-
siology and biochemical reaction knowledge, and the mass balance
model for predicting total biomass and CO2/O2 concentrations was
developed based on stoichiometric equations. However, no humans
were involved in the closed system (Hezard et al., 2012; Maclean et al.,
2010). Moreover, the developmental stages of plant were absent from
the model, and consequently, it is difficult to demonstrate the long-term
effects of plant behavior, extending from seedling to mature plant
stages, on CO2/O2 concentrations.

In this study, we proposed a novel knowledge-and-data-driven
modeling (KDDM) approach for simulating plant growth and the dy-
namics of CO2/O2 concentrations in a CELSS that includes plants and
humans. This model consists of a ‘knowledge-driven (KD)’ sub-model
and a 'data-driven (DD)' sub-model. The KD sub-model is a combined
model of GreenLab and TomSim (GreenLab+). The DD sub-model is a
piecewise linear model (PLM) of the CO2 production and O2 con-
sumption by the crew member. The two sub-models were integrated
through a mass balance model with metabolic stoichiometries, which
were derived for CO2/O2 concentrations in a closed system. A three-step
parameter estimation method was developed to identify the proposed
model parameters. Finally, the KDDM approach was evaluated using
real data from plant cultivation experiments in a closed system of plants
and humans.

2. Materials and methods

2.1. Plant materials and measurements

The data were collected from a two-person, 30-day CELSS in-
tegrated test from Nov. 1st to Dec. 1st, 2012 in Beijing, China (Guo
et al., 2014b). Lettuce (Lactuca sativa L. var. Dasusheng) was planted in
the CELSS Integration Test Platform (CITP) of the China Astronaut
Research and Training Center, in Beijing, China. The platform was
tightly sealed and consisted of such elements as a plant cabin, crew
cabin, temperature and humidity control system, plant illumination
system, nutrient solution control system, effluent collection and dis-
posal equipment; the volume and area of the CITP was 308m3 and
88m2, respectively. During the experiment, the cultivation area of the
plant was 36m2, and the planting density was 56 plants m−2. All of the
plants were started from seeds and grew inside the plant cabin for their
entire production cycle using a recirculating nutrient hydroponic
technique. The Hoagland nutrient solution used nitrate as the sole
source of nitrogen. The solution pH was automatically controlled be-
tween 6.15 and 6.45 with additions of 1M nitric acid, and the electrical
conductivity (EC) was maintained between 0.195 and 0.205 Sm−1 with
automatic additions of a concentrated stock solution. Light emitting
diodes (LED) were used as light sources, which consisted of 90% red
light (wavelength 637 nm) and 10% blue light (wavelength 465 nm).
The photoperiod was 24 h with photosynthetically active radiation
(PAR) of 500 μmolm−2 s−1 at a distance of 30 cm below the light
source. The relative humidity was maintained between 64% and 76%.
Water consumption and displacement were monitored and controlled,
including water intake, urine, sanitary water, disposed and recycled
effluent, and water condensate used for the nutrient solution; the ef-
fluent was disposed of and then partly recycled into the nutrient solu-
tion, and the condensate water was completely transformed into nu-
trient solution. The closure of air, water and food in the CITP were at
100%, 90% and 13.9% respectively, with the total material closure at
95.1%. On November 1st, when there were approximately 17 visible
leaves, two crew members (male, 32 years, 170 cm, 72.0 kg; male,
38 years, 173 cm, 62.5 kg) entered the crew cabin, which was con-
nected to the plant cabin through ventilation. Beginning on November
24th, a gas balance regulation test was performed (Table 1). The illu-
mination area on the plants was adjusted by turning off a portion of the
overhead LED lights to test the gas exchange with less plant photo-
synthesis.

The collected (hourly average) temporal data included air tem-
perature, atmospheric pressure and CO2/O2 concentrations in the at-
mosphere of the cabin of CITP. During the 30-day experiment, the dry
weights of the blades, petioles and stem were measured destructively
during five stages along the growing period (Table 2). Furthermore,
detailed topological observations were made on six plants twice a week,
including the numbers of leaves and phytomer ranks (internode number
counting from the base) on the main stem. For a more detailed ex-
planation of the experimental setup of the environmental conditions
and the crew members, please refer to Guo et al. (2014b).

Table 1
Setup of the gas balance regulation test.a

Duration Illumination area on the plants

Before test 36m2

Day 24–27 24m2

Day 27–29 30m2

Day 29–30 27m2

a Each time, the illumination area on the plants was adjusted at
09:00 h by turning off a portion of the overhead LEDs.
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2.2. Models

2.2.1. Knowledge-driven model (GreenLab+)
The GreenLab model was used as the framework for simulating the

dynamics of plant organogenesis, biomass production and allocation
(de Reffye and Hu, 2003; Kang et al., 2012; Yan et al., 2004). GreenLab
obtains source and sink parameters with inverse method, but the bio-
mass production is highly simplified using equations based on the Beer-
Lambert Law (Christophe et al., 2008; Guo et al., 2006), considering the
environmental conditions in an implicit way. The TomSim model cal-
culates biomass production based on an explicit link to physical plant
growth factors (e.g., light, temperature, CO2), whereas biomass alloca-
tion is modeled empirically. To take advantage of both models, the
biomass production of GreenLab was replaced with that of the photo-
synthesis-driven model TomSim. Consequently, a new combined model
was developed, called GreenLab+. The framework of GreenLab+ is
shown in Fig. 1.

In this work, the time step for calculating crop photosynthesis and
maintenance respiration was 1min. Summing these data provides the
daily dry matter production estimate. Biomass allocation and organ
expansion were computed daily, with an implicit assumption that plant
morphology was stable during a one-day period.

2.2.1.1. Biomass production. Biomass production was simulated using
the TomSim model of linking the external conditions (e.g., light,

temperature, and CO2) (Heuvelink, 1995). The daily dry matter (DM)
production, dW/dt, is calculated as in Eq. (1):

= −
W
t

C P Rd
d

·( )f gd m (1)

where dW/dt is the crop growth rate (g DMm−2 d−1); Cf is the
conversion efficiency from assimilates to dry matter
(g DM g−1 CH2O); Pgd is the daily crop gross assimilation rate per unit
ground area (g CH2Om−2 d−1); and Rm is the daily maintenance
respiration rate per unit ground area (g CH2Om−2 d−1). More
information about Pgd, Rm and Cf is provided in Supplementary
Material, (a), (b) and (c).

2.2.1.2. Biomass partitioning. In GreenLab+, the assimilate is
proportionately distributed to each growing organ according to its
sink strength; therefore, the assimilate allocated to an organ of type o
appeared at the growth cycle (GC) k, qo,k, is calculated as in Eq. (2):
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where τ(t) is the thermal time (°Cd) of a plant at time t, that is,
∫= −τ t T s T s( ) max(0, ( ) )dt

b0 , with a base temperature for lettuce of
Tb=4 °C; γ is a constant and called phyllochron, indicating the
thermal time elapsing between successive appearances of phytomers;
k (GC) is the observed number of phyllochron of a plant; ASRo is the
assimilate requirement for producing 1 g dry weight of organ o. D(t) is
the total demand of all expanding organs at time t, as in Eqs. (3) and
(4):
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where Dpg(t) is the primary demand of a plant at plant age t, indicating
the sum of the individual organ sink strengths; Si is the sink of the
internode layer for the secondary growth, linked to the thickening of
the stem (Table 3); Na(t) and No(k) are the total living number of leaves
at age t and the number of organs of type o at growth cycle k,
respectively, which were determined by the resulting leaf appearance
from detailed topological observations. Po(u) is the sink strength of the
organ type o, which is a function of its thermal age u, as in Eq. (5):

=u p f uP ( ) ( )o o a b,o o (5)

where fa b,o o is a sink variation function of the organ type o, described by
a normalized beta function (Li et al., 2009); po is the relative sink
strength of the organ type o, indicating the competitive ability of an
organ to accumulate biomass, which needs to be estimated as unknown
sink parameters (Table 3). Note that the sink strength of blade (pb) was
set to 1 as a reference.

Moreover, the total weight of the given organ o, Wo, can be calcu-
lated by summing the biomass of all individual organs of the same type,
which is the corresponding data for the measurement, as in Eq. (6):

Table 2
Dry weight of different types of organs from one harvested plant at each of the
five sampling dates.

Sampling date Dry weights of different types of organs (g m−2)

Blades Petioles Stems

Day 5 50.75 11.50 2.75
Day 8 60.00 13.75 6.00
Day 15 84.75 29.00 10.75
Day 22 141.00 37.38 44.75
Day 30 112.75 35.00 61.25

Leaf photosynthesis

Radiation CO2 Temperature

Leaf area index (LAI)

Crop photosynthesis Maintenance respiration

Dry mass production

Dry mass partitioning

Blade

Leaves

Petiole Pith Layer

Stem

Eqn S3

Eqn S1 Eqn S11

Eqn 1

Eqn S2

Eqn S4

Fig. 1. Framework of GreenLab+ (see Supplementary Material, Eqs. (S1)–(S4)
and (S11)).

Table 3
Description of model parameters.

Parameter Definition Units

p p,p i
a Organ sink strength (Eq. (5)) –

Si Sink of the internode layer (Eq. (3)) –
κ κ κ κ, , ,CO2,S CO2,W CO2,M CO2,P

b CO2 production rate by the crew
member (Eq. (9))

g h−1 person−1

κ κ κ κ, , ,O2,S O2,W O2,M O2,P O2 consumption rate by the crew
member (Eq. (9))

g h−1 person−1

a p, petiole; i, internode.
b S, sleeping; W, normal working; M, morning exercises; P, physical ex-

ercises.
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and the total dry weight (W) is the sum of the dry weights for all of the
organs, as in Eq. (7):

∑=W W
o

o
(7)

GreenLab+ computes the plant growth by simulating the plant
process recursively with the principle of the source-sink equilibrium
and was thus also called a knowledge-driven model (KDM) (Fan et al.,
2015). For the sake of simplicity, GreenLab+ can be rewritten as in Eq.
(8):

=y f x θ( , )k k (8)

where x represents the environmental variables related to plant growth;
y denotes the output of GreenLab+; fk is the function associated with
KDM (i.e., GreenLab+); k is the subscript associated with KDM; θk is a
vector of the model parameters, including the organ sink strength (pp
and pi) and the sink of the internode layer (Si) controlling plant biomass
partitioning, which need to be estimated as the unknown sink para-
meters (Table 3).

2.2.2. Data-driven model (piecewise linear model)
Human metabolism involves a large number of life-sustaining che-

mical processes and reactions that occur within a person. The modeling
of human metabolism as it relates to CO2 production and O2 con-
sumption is a daunting task (Cannon, 2014). However, each person in
the crew cabin strictly follows the same work and rest regime every day
during the two-person, 30-day CELSS integrated test such that their
activities may be divided into four types according to their levels of
strength (Table 4). An underlying assumption is made that routine CO2

production and O2 consumption by the crew members are stable and
identical.

A piecewise linear model (PLM) was developed to represent CO2

production and O2 consumption by the crew member, as in Eq. (9):
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∑
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where KCO2 and KO2 are the daily CO2 production and O2 consumption
rates per person, respectively; i is a label of different levels of activities
(Sleeping, S; Normal working, W; Morning exercises, M; Physical ex-
ercises, P); ni is the number of hours for the label i (Table 4); and κ iCO ,2

and κ iO ,2 are the hourly CO2 production and O2 consumption rates for
label i per person respectively, which need to be estimated as the un-
known respiratory parameters (Table 3).

The PLM was constructed based on the human activity levels rather
than the intrinsic metabolic mechanisms, and was thus also called a

data-driven model (DDM) (Fan et al., 2015). For the sake of simplicity,
PLM can be rewritten as in Eq. (10):

=y f x θ( , )d d (10)

where d is the subscript associated with DDM (i.e., PLM); y is the output
of PLM; θd is a vector of the model parameters, including CO2 pro-
duction and O2 consumption rates by the crew member, which need to
be estimated as the unknown respiratory parameters (Table 3).

2.2.3. Knowledge-and-data-driven modeling approach (KDDM)
A knowledge-and-data-driven modeling approach (KDDM) was

proposed for simulating both plant growth and the dynamics of CO2/O2

concentrations in a CELSS that includes plants and humans. The KDDM
primarily consists of two sub-models, as shown schematically in Fig. 2.
The upper part of Fig. 2 represents the ‘knowledge-driven (KD)’ sub-
model, which is derived from knowledge of growth mechanisms, in-
cluding physically based or mechanistic models (e.g., PBMs or FSPMs).
The lower part of Fig. 2 represents the ‘data-driven (DD)’ sub-model,
which is constructed solely from data or empirical expressions without
using knowledge of intrinsic mechanisms. The material flows of the
system is shown in Fig. 3.

In this work, GreenLab+ for biomass production and its parti-
tioning was adopted as the KD sub-model, and PLM was used to CO2

production and O2 consumption by the crew member as the DD sub-
model. The two sub-models were integrated into the mass balance
model with metabolic stoichiometries, which were derived for CO2/O2

concentrations in a closed system of plants and humans.

Mass balance model for CO2/O2 concentrations. Plant growth and
development involve a large number of interconnected processes and
reactions. Among these reactions, photosynthesis and respiration
reactions affect the production of biomass, as well as the exchange of
CO2/O2 concentrations between plants and the atmosphere. The
reaction scheme can be written as one equation in simple form, as in
Eq. (11):

+ ⥫⥬ +CO H O CH O O2 2
light

2 2 (11)

Inspired by the work of Maclean et al. (2010), photosynthesis and
respiration reactions in this paper were selected and a mass balance
model was proposed for CO2/O2 concentrations in a closed system of
plants and humans. From the reaction scheme in Eq. (11), the mass

Table 4
Work and rest regime of the crew member within the 24 h of each day under
different levels of activities (Purser, 2010).

Types Levels of activity Activity Intervala Num. of
hours

1 Low level of
activity

Sleeping (S) 13–15, 22–24,
0–5

9

2 Light activity Normal working
(W)

8–12, 15–22 11

3 Moderate activity Morning exercises
(M)

5–8 3

4 Heavy activity Physical exercises
(P)

12–13 1

a Indicated by hours during a day, from 0 to 24.

k k,f x
Knowledge-driven sub-model

d d,f x

Coupling
Output

x

Input

y
Data-driven sub-model

Fig. 2. Schematic diagram of the knowledge-and-data-driven model (KDDM),
which primarily consists of the ‘knowledge-driven (KD)’ sub-model and ‘data-
driven (DD)’ sub-model (Fan et al., 2015).

Edible biomass

Plant cabinTemperature

Radiation

Crew cabin

O2

CO2

Fig. 3. Material flows of the system [modified from Fig. 2 in Guo et al.
(2014b)].
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balance model can be written as in Eq. (12):

=

= −

− − +

− −
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d
d
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i

44
30 gd m plant CO2

CITP
32
30 gd m plant O2

CITP (12)

where Ci and Oi are the CO2 and O2 concentrations inside the leaves
(g m−3), respectively, which are assumed to be approximately equal to
their concentrations (Ca and Oa) in the cabin atmosphere; VCITP is the
volume of CITP; Splant is the cultivation area of plants; 44/30 and 32/30
are the conversion coefficients from carbohydrates formulated as CH2O
to CO2 and O2, respectively, the numerical values representing the
molecular weights of CO2, CH2O and O2, respectively; λ is the number
of the crew members in the cabin, set to 2; KCO2 and KO2 are the daily
CO2 production and O2 consumption rates per person, respectively.

For simplicity, the proposed KDDM approach can also be rewritten
as in Eq. (13):

=Y F X( ,Θ) (13)

where X and Y are the input and output variables of KDDM, respec-
tively (Table 5); F is the function associated with KDDM; and Θ is a
vector of the model parameters (Table 3). The schematic diagram of the
KDDM input and output is shown in Fig. 4.

2.3. Parameter estimation

The unknown sink and respiratory parameters (Table 3) were esti-
mated via a generalized least squares (GLS) method, as described in
more detail by Zhan et al. (2003) and Guo et al. (2006). The GLS es-
timator is unbiased, consistent and asymptotically normal. Thus, the
model can estimate the model parameters well, even if systematic error
and bias exist. However, the fitting of this method is sensitive to the
initial value of parameters, so a step-by-step process has been proposed
to calibrate the model parameters.

In this paper, a three-step parameter estimation method for KDDM
was proposed. In the first step, the closed system was regarded as an
open system for plants. The main interest is the plants themselves, T, I
and Ca are all regarded as model inputs, and Wo is considered as the
model output. The sink parameters (i.e., pp, pi and Si) were identified by
the GLS method, whereas other parameters (i.e., κCO ,S2 , κCO ,W2 , κCO ,M2 ,
κCO ,P2 , κO ,S2 , κO ,W2 , κO ,M2 , κO ,P2 ) were not considered. The purpose of this

stage was to obtain initial values for the sink parameters. In the second
step, the sink parameters were fixed as the values obtained from the
first stage; then, the remaining respiratory parameters were estimated
through the GLS method based on all of the observed data (T and I as
model inputs, Ca, Oa and Wo as model outputs). Similar to the first
stage, the initial value of respiratory parameters could be obtained. In
the final step, the estimated values from the above two stages were
regarded as the initial values of the sink and respiratory parameters;
next, all of the observed data were used to obtain the optimal parameter
values using the GLS method. For each of the three steps, the weighted
least square error was minimized by searching for the best parameter
values, J (Θ)Ω , given by Eq. (14):

 = − −Y F X Y F XJ (Θ) [ ( ,Θ)] Ω[ ( ,Θ)]Ω
T (14)

where Y is the observed target data for fitting; Ω is a diagonal positive
matrix, which is calculated from the variance of the data. Advantages of
this method include its rapid convergence.

2.4. Model verification

The data from the two-person, 30-day CELSS integrated experiment
were divided into training and testing sets, including the dry weights of
different types of organs from five sampling dates and hourly average
CO2/O2 concentrations. The data from the first 24 days were retained as
the training set, and the remaining data (the last 6 days) were used as the
testing set. This finding is reasonable because the regulation test was
performed on the 24th day (Table 1). Therefore, the model parameters can
be identified on the training data set using the above three-step parameter
estimation method; then, the identified model was verified on the testing
data set, which was not used for identification of the model parameters.
Model computation and model fitting on the experimental data were
conducted using the open-source GreenScilab software (http://
www.greenlab.org.cn/cPlant/software_greenscilab.html).

3. Results

3.1. Experimental results

Hourly average temperatures, atmospheric pressure, CO2 and O2

concentrations during the 30-day experiment (from 09:00 h, November
1st) are shown in Figs. 5 and 6. The ranges in temperature and atmo-
spheric pressure were from 25.13 to 25.65 °C and from 100.45 to
103.28 kPa, respectively, which indicates that temperature and atmo-
spheric pressure exhibited very little variation. Instead, CO2 con-
centrations show high variation, ranging from 261.25 to 1925.5 ppm.
The O2 concentrations varied from 21.054 to 21.386%.

As shown in Fig. 6, the air exchange balance was built soon after the
crew members entered the cabin. During each day, the CO2 and O2

concentrations exhibited a similar pattern: the CO2 concentration rose

Table 5
Description of the input and output variables for the KDDM approach.

Variable Definition Units

T Temperature °C
I Photosynthetically active radiation (PAR) μmolm−2 s−1

Ca CO2 concentration in the cabin atmosphere ppm
Oa O2 concentration in the cabin atmosphere %
Wo Total dry weights of different types of organs g m−2

Parameters

Output YInput X KDDM

op iS 2co ,i 2o ,i

T

I

oW

aO

aC

Fig. 4. Inputs and outputs of the KDDM approach for modeling plant growth
processes and the dynamics of CO2/O2 concentrations in the CELSS (see Tables
3 and 5 for definitions of the symbols).
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during the day when the crew members were doing daily activities,
reaching maximum value at approximately 13:00 h because of the
physical exercise, and dropped in the night when the crew members
was sleeping. The trend in O2 concentration was the opposite, in-
dicating good correspondence with CO2 concentration. Note that there
were approximately 20 abnormal data points for CO2/O2 concentra-
tions between Day 3 and Day 4 that were caused by a sudden power
failure. On the 24th day, the gas balance was broken as the regulation
test started featuring decreasing plant illumination area (Table 1); the
CO2 concentration rose quickly when the illumination area on the
plants was regulated to 24m2 and gradually decreased after the plant
illumination area was regulated to 30m2; finally, it fluctuated within a
small range from an illumination area of 27m2 on the 30th day (Fig. 6).

Furthermore, the dry weights of the three different types of organs from
five different sampling dates are shown in Fig. 7. The blade is the main
compartment in the weight as lettuce is a leafy plant.

3.2. Estimated model parameter values

Following the three-step parameter estimation method mentioned
above, the target data from the training data set, including the dry
weights of different types of organs from the first four sampling dates,
the hourly average CO2 and O2 concentrations from the first 24 days,
were fitted simultaneously. Their fitting curves are shown in Figs. 6 and
7. The root mean square error (RMSE) and Pearson correlation coeffi-
cient (R) between the predictions and observations of the dry weights of
different types of organs from five sampling dates, and the hourly
average CO2/O2 concentrations from 30 days, are provided in Table 6.
The optimal parameter values estimated by the proposed method and
their reference values are listed in Table 7. The reference values for an
average, healthy 70 kg adult are provided (Brake and Bates, 1999;
Kannan, 2015). Based on the respiratory parameters, the daily CO2

production and O2 consumption of the crew member was calculated in
Eq. (9) as follows: =K 1167.01CO2 g d−1 person−1 and

=K 859.95O2 g d−1 person−1, respectively, which are close to the re-
ference values (approximately 1000 and 840 g d−1 person−1, respec-
tively) according to previous studies (Taylor, 2015).

3.3. Predicted results of the biomass, CO2 and O2 concentrations

Using the estimated parameter values, the plant biomass, CO2 and
O2 concentrations were computed for the last 6 days, with less plant
illumination area. The CO2 concentration was augmented soon after the
illumination area dropped to 24m2 from Day 24 to 27 because of re-
duced CO2 absorption by the plants and increased plant respiration. The
trend became inverse after Day 27, as the illumination area increased to
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Table 6
RMSE and R between the predictions and observations for the dry weights of
different types of organs from five sampling dates, and the hourly average CO2

and O2 concentration from 30 days.

CO2

concentration
(ppm)

O2 concentration
(%)

Dry weights of different types of
organs (gm−2)

Blades Petioles Stems

RMSEa 122.44 0.03 15.23 2.11 9.92
Rb 0.96 0.94 0.92 0.99 0.97

a RMSE, root mean square error.
b R, Pearson correlation coefficient.

Table 7
Estimated parameter values from the training data set, including the dry
weights of different types of organs from the first four sampling dates, and the
hourly average CO2 and O2 concentrations from the first 24 days.

Parameter Estimated
values

Reference values (Brake and
Bates, 1999; Kannan, 2015)

Units

pp, pi, Si 0.243, 0.310,
0.925

– –

κCO2,S 38.92 <47.45 g h−1 person−1

κCO2,W 47.40 ∼47.45 g h−1 person−1

κCO2,M 71.44 ∼61.68 g h−1 person−1

κCO2,P 81.01 >61.68 g h−1 person−1

κO2,S 19.05 <42.90 g h−1 person−1

κO2,W 41.95 ∼42.90 g h−1 person−1

κO2,M 53.34 ∼55.77 g h−1 person−1

κO2,P 67.06 >55.77 g h−1 person−1

See Table 3 for the definitions of the parameters. Note: pb was set to 1 as a
reference.
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30m2. Beginning on Day 29, the illumination area on the plants
dropped to 27m2. Encouragingly, the model predicted well the above
result for the three stages (Figs. 6 and 7), which indicates that the
model system, once calibrated, is capable of being extended to new
environmental condition.

3.4. Computed CO2 consumption and O2 production by plants

According to the estimated values of sink and respiratory para-
meters, the results of (net) CO2 consumption and O2 production by
plants were inferred by model calculation, rather than by direct mea-
surement. The five most informative curves of hourly computed (net)
CO2 consumption by plants are shown in Fig. 8. The results indicate
that hourly computed (net) CO2 consumption by plants varied with the
CO2 concentration of the system, with planting areas of 36m2 that in-
creased as plants grew and the leaf area increased (curves Day 2 and
Day 20). During the last six days (from Day 24 to 30), the plant (net)
CO2 consumption by unit area remained stable, regardless of high
hourly vibrations of CO2 concentrations. This was because the CO2

concentration of the system became high and the leaf area index (LAI)
reached a high value, exceeding 6, meaning that both the leaf and ca-
nopy photosynthesis were saturated according to Eqs. (2) and (7).
Overall, the hourly computed (net) CO2 consumption of plants in the
curves for 5 days varied between 2.4 and 3.6 g h−1 m−2, and the CO2

absorbing ability of plants was higher during the day than at night,
especially in the first 24 days.

Furthermore, GreenLab+ not only computes the (net) CO2 con-
sumption and O2 production by plants but also their corresponding
components: CO2 consumption and O2 production through photo-
synthesis (i.e., Pgd, Eq. (S1) in the Supplementary Material), and CO2

production and O2 consumption through respiration (i.e., Rm, Eq. (S11)
in the Supplementary Material). The curve of daily computed (net) CO2

consumption by plants, which consisted of CO2 consumption through
photosynthesis and CO2 production through respiration, are shown in
Fig. 9. It is clear that the CO2 production by plants through respiration
is very low compared to the CO2 consumption.

In this work, we assumed that O2 is released in a one-to-one molar
ratio with the absorption of CO2. That is, for each kg of CO2 absorbed,
32/44 kg of O2 is produced, and the numerical values representing the
molecular weights of O2 and CO2, respectively. Therefore, the com-
puted (net) O2 production by plants and their components (i.e., O2

production through photosynthesis and O2 consumption through re-
spiration) are not listed here.

3.5. Computed CO2 production and O2 consumption by the crew member

The CO2 production and O2 consumption by the crew member per
day are expressed by their corresponding respiratory parameters (Eq.
(9)), but once the parameters of GreenLab+ were obtained, the daily
data could be derived reversely from the observed CO2 and O2 data
according to Eq. (12), as shown in Fig. 10 (curves for 5 days are given).
Overall, the CO2 production and O2 consumption by the crew member
per day changed based on the work and rest regime within 24 h for
different levels of activities, and the ranges of their values are given in
Table 8.

Moreover, CO2 production and O2 consumption by the crew
member (i.e., KCO2 and KO2) per day can be calculated by summing the
computed CO2 production and O2 consumption of the crew member
within 24 h, as shown in Fig. 11. The average values of KCO2 and KO2
over 30 days are as follows: 1178.53 g d−1 person−1 (Std. = 62.60,
CV=5.31%) and 867.54 g d−1 person−1 (Std. = 47.26, CV=5.45%),
respectively.

3.6. Gas balance and limit state in the CITP

The amount of CO2 change per day in the CITP was derived directly
from the observed CO2/O2 concentrations, whereas the daily amounts
of CO2 production by the two crew members and (net) CO2 consump-
tion by all plants were inferred from the model calculation (Fig. 12).
The results indicate that their daily amounts remain relatively stable
during quite a long period (Day 5–23), which means that a balance of
gas exchange between plants and humans was established. Specifically,
when the power in the CITP was temporarily disrupted (between Day 3
and Day 4) or the new illumination policy on the plants was performed
(since Day 24), the balance was severely disturbed; however, once
power was restored or the illumination area on the plants was regulated
to 27m2, the new balance was rebuilt again due to photosynthesis.

In a steady-state, i.e., =C td /d 0i , according to Eq. (12), the CO2

concentration (Ca) in the cabin can be computed according to the
planting area (Splant) and the number of the crew members (λ), i.e.,
Pnet= λ KCO2/Splant = 2×1167.01/36=64.83 g CO2 d−1 m−2. This
computation provides a steady-state CO2 concentration; that is,
Ca= h−1(Pnet)= 572.5 ppm, where h−1 is an inverse function of f, and
f is a function of net photosynthesis (Pnet) versus the leaf internal CO2

concentration (Ci), expressed by the photosynthesis-driven model
TomSim (see Section 2.2.1). On the other hand, if the question of in-
terest is 'how much planting area is needed to maintain a balance?' the
limited planting area is computable and thus can be used for providing
guidance for experimental design. According to the maximum photo-
synthetic rate, i.e., Pnet= 44/30 (Pgd− Rm)=86.64 g CO2 d−1 m−2,
the minimal planting area to maintain the CO2 balance is 26.91m2

(Splant = λ KCO2/Pnet= 2×1167.01/86.64= 26.94m2, Eq. (12)) for
the two crew members.

4. Discussion

4.1. Benefits of the KDDM approach

Generally, predicting mass fluxes in a human-plant system require
the following: (1) plant photosynthesis, biomass allocation, leaf area
and respiration must be properly simulated; (2) a module describing
CO2 emissions and O2 absorption by humans is necessary; and (3) a
mass-balance model of the interested variable and the model must be
identifiable. The aim of this study was to develop a KDDM approach for
simulating plant growth and the dynamic of CO2/O2 concentrations in a
CELSS of plants and humans by integrating mechanistic and empirical
models. Although previous studies (Hezard et al., 2012; Maclean et al.,
2010) have proposed a simple mass balance model for predicting total
biomass and CO2/O2 concentrations, the developmental stage of plants
was absent, and no humans were involved in a closed system. In our
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study, multiple variables (the dry weight of different types of organs,
and hourly CO2/O2 concentrations) of the closed human-plant system
have been fitted well simultaneously, as explained and predicted by the

proposed KDDM approach. Moreover, the model explains well the in-
teraction among the crew members, plants and environment and pro-
vides deeper understanding of the behaviors of the closed system.
Furthermore, the model unveiled several underlying state variables in
the CITP that are difficult to measure, including the hourly and daily
CO2 production and O2 consumption by the crew member, the hourly
and daily CO2 consumption (photosynthesis) and production (respira-
tion) by plants.

The advantage of the KD sub-model (GreenLab+) is that it carefully
takes into account knowledge regarding plant development and growth
such that the plant respiration and biomass growth are simultaneously
simulated as two sub-processes of the same object. Moreover, GreenLab
+ combines the advantages of two plant models: the organ-level bio-
mass partitioning and the inverse estimation of sink parameters of the
GreenLab model, and the biomass production of the TomSim model. As
a result, once calibrated, the model not only computed the CO2 level in
the cabin but also gave the underlying story of CO2 absorption and
emissions by plants (Fig. 8). The contribution of plants to the closed
system was then clearly quantified without using sophisticated instru-
ments (Fig. 12).

The DD sub-model (PLM) for simulating hourly human CO2 pro-
duction overwhelmed the difficulty of the modeling of the complex
human metabolic process by regarding it as a black box. Once cali-
brated, the KDDM provided an estimation of human respiration data
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Table 8
Ranges of CO2 production and O2 consumption by the crew member under
different levels of activity, which were inversely derived from the observed CO2

and O2 concentrations based on the KDDM approach.

Levels of
activity

Activity CO2 production O2 consumption
κ iCO2,

a(g h−1 person−1) κ iO2,
a(g h−1 person−1)

Low level of
activity

Sleeping (S) 27.88–48.14 10.44–50.97

Light activity Normal
working (W)

37.48–63.40 11.44–67.44

Moderate
activity

Morning
exercises (M)

46.54–71.46 42.28–78.62

Heavy
activity

Physical
exercises (P)

67.42–89.89 60.96–90.47

a κ iCO2, and κ iO2, are the hourly CO2 production and O2 consumption rates of

the label i per person, respectively.
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(Fig. 10). The estimated values of the respiratory parameters of the
crew member were basically in accordance with the above reference
values (Table 7). The daily CO2 production and O2 consumption per
person (1167.01 g and 859.95 g were nearly the same as the average
results (1178.53 g and 867.54 g) that were inversely derived from ob-
servations with the KDDM approach (Fig. 11). However, our results
( =K 1167.01CO2 g d−1 person−1 and =K 859.95O2 g d−1 person−1) were
higher compared with the two-person, 3-day crew member metabolism
test results (843.0 g d−1 person−1 and 755.0 g d−1 person−1) in Guo
et al. (2014b), which could be due to the effects of measuring plant
growth in the plant cabin.

4.2. Plasticity and contribution of plants in the closed system

Over the long term, plants are expected to provide oxygen, food and
water for the crew members in a closed system. As a biological com-
ponent of the system, plants play the role of an automatic regulator of
CO2 concentrations in the cabin. The gas phase in the cabin is carefully
modulated by the plants. Specifically, when the power in the CITP was
temporarily disrupted, the CO2 increased significantly, but once the
power was restored, the CO2 concentration dropped due to

photosynthesis, thus emphasizing the importance of plants in regulating
gas composition. Moreover, plants adapt to the environment as needed.
Even during one day, the plants change their photosynthetic rate ac-
cording to whether the crew members are sleeping or doing exercise
(Fig. 8).

A steady CO2 level can be maintained over a long period (from Day
5 to 23, Fig. 6) when there are no external factors. A balance of CO2

supply and demand was maintained (Fig. 12) because of the existence
of plants. Since all of the CO2 consumption is from plants, as long as the
other environmental factors are not limiting, the steady-state CO2

concentration could be computed (572.5 ppm). These results coincide
with observed data, as shown in Fig. 6a. Such results are helpful in the
design of the CELSS or experimental setup. However, there is a limit to
the moderate ability of plants to reach a balance. On Day 24, when the
illumination area on the plants dropped to 24m2, which is below the
limiting area of 26.91m2, the CO2 level increased rapidly as the plants
were not sufficient to absorb more CO2, even if the plants increased
their photosynthetic ability (Fig. 8). When the illumination area on the
plants increased to 30m2 on Day 27, a new balance began to be
achieved (Figs. 6 and 9). Next, when the illumination area on the plants
was set to 27m2 on Day 29, the gas balance could still be maintained.
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Furthermore, the computational results suggest that at least 13.47m2 of
plants could supply O2 for one human, which is consistent with pre-
vious findings (20–25m2) (Guo et al., 2014b; Wheeler, 2015; Wheeler
and Sager, 2006). Using the computational approach, the suitable
planting area could be computed, which is useful for arranging the
plant schedule in the CELSS.

Compared to plants grown in an open or half-open system, such as a
glasshouse, the behaviors of plants in the closed system are completely
different. The total CO2 absorption by the plants is stable, whereas the
total plant biomass (Fig. 7) and the leaf area index (data not shown)
increased. This is because the limiting factor is CO2 availability, which
is dependent on the crew members. Nevertheless, this model helps to
provide a better understanding of how to increase crop production in a
glasshouse by regulating multiple environmental factors simulta-
neously, including the CO2 level, light intensity, and humidity.

4.3. CO2 production and O2 consumption by the crew member

Generally, CO2 production and O2 consumption by the crew member
vary from one person to another, depending on the body composition,
age and gender. Modeling CO2 production and O2 consumption by the
crew member on a daily basis is one of the important challenges. In this
work, a simplified assumption was made that the crew members strictly
follow the same work and rest regime within a 24-h day, that consists of
four different levels of activities (Table 4). This was reasonable as there
was a strict schedule and set training. That is, the changing laws of CO2

production and O2 consumption by the crew member each day was as-
sumed to be identical (Eqs. (9), (12)). Based on this assumption, the
KDDM approach described the data fairly well (Figs. 6 and 7), which
indicates that this simplifying assumption is valid and useful. The results
derived from the KDDM approach (Table 7 and Fig. 10) further confirm
the validity and usefulness of the assumption.

5. Conclusions

This paper presents a knowledge-and-data-driven modeling (KDDM)
approach for simulating plant growth and the dynamics of CO2/O2

concentrations in a closed ecological life support system of plants and
humans by integrating mechanistic and empirical models. The results of
the application of the KDDM approach to a two-person, 30-day in-
tegrated CELSS test reveal that the proposed KDDM approach not only
provides accurate computation of both the dry weights of different
plant compartments and CO2/O2 concentrations but also quantifies the
underlying material flows among the crew members, plants and en-
vironment. Furthermore, the present study provides a promising ad-
vance regarding plant growth modeling using GreenLab+. A new
version, which can be called KDDM_GreenLab+, is able to take ad-
vantage of the data-driven model while maintaining the physically
based model as the core component.

Although the simulation results are promising, there are still several
limitations to our approach that need to be studied in future work. First,
the KDDM approach should be evaluated in another separate data set
with different people/plants and experiments. Second, a more detailed
approach will be needed in which the model is expanded to include
other key processes of plant growth, such as leaf transpiration and root
water uptake, especially if one considers edible food and drinkable
water from plants. Since the system is highly electricity-costly, a next
step is to study how to adjust the illumination policy while maintaining
sufficient O2 levels for humans. Furthermore, the system behavior is
influenced by the crop type; thus, it is worth studying how other (fruity)
plants behave in such a system, as leafy plants are not sufficient to
provide a full diet for humans. Finally, the current work can be a
starting point for further optimization of cabin design and experimental
setup of CELSS (e.g., environmental control, planting schedule). This
method can even be further extended and developed as a generic tool
for the use in a half-closed system, such as a glasshouse.
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