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Discovering Geo-Informative Attributes for Location Recognition
and Exploration
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This article considers the problem of automatically discovering geo-informative attributes for location recog-
nition and exploration. The attributes are expected to be both discriminative and representative, which
correspond to certain distinctive visual patterns and associate with semantic interpretations. For our solu-
tion, we analyze the attribute at the region level. Each segmented region in the training set is assigned a
binary latent variable indicating its discriminative capability. A latent learning framework is proposed for
discriminative region detection and geo-informative attribute discovery. Moreover, we use user-generated
content to obtain the semantic interpretation for the discovered visual attributes. Discriminative and search-
based attribute annotation methods are developed for geo-informative attribute interpretation. The proposed
approach is evaluated on one challenging dataset including GoogleStreetView and Flickr photos. Experimen-
tal results show that (1) geo-informative attributes are discriminative and useful for location recognition;
(2) the discovered semantic interpretation is meaningful and can be exploited for further location exploration.
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1. INTRODUCTION

Considering the photos in Figure 1, what can you say about where these photos were
taken? The first one is easy for people who have been to Barcelona. It is an iconic image
of the La Sagrada Familia in Barcelona. The second is a bit ambiguous to determine
its home city, perhaps a city in Italy, or France, or Spain. Actually, this photo is also
from Barcelona, a typical street scene in old Gothic Quarter. We wonder whether there
exist possible ways to help us automatically recognize the geographical information of
the photo. Fortunately, the emergence of vast amounts of geo-referenced media data
provides the possible solution for location recognition.
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Fig. 1. What can you say about where these photos were taken?

Fig. 2. What are the informative cues that help you to judge?

Extensive research efforts have been made to advance the field of location recog-
nition by exploring the massive geo-tagged image data. Landmark recognition is a
typical research direction of location recognition. Existing work formulating landmark
recognition as a classification task has achieved remarkable performance [Zheng et al.
2009; Chen et al. 2011; Li et al. 2009]. However, it is rather challenging for general lo-
cation recognition: while we can easily describe a class of landmarks, it is very difficult
to exactly define a location due to its high diversity and large intra-class variance. The
methods of existing work on location recognition fall into two categories: data-driven or
instance-based methods [Schindler et al. 2007; Hays and Efros 2008; Friedland et al.
2011; Li et al. 2009], and model-based methods [Chen and Grauman 2011; Kalogerakis
et al. 2009; Crandall et al. 2009; Li et al. 2009]. Data-driven methods retrieve the most
visually similar photos in the geo-tagged database. Although simple and effective,
these methods suffer from huge storage cost and limited scalability, as the available
geo-tagged photos cannot provide a sufficient sampling of the location. Model-based
methods build classifiers (e.g., SVM) or inference models (e.g., HMM) to learn the
intrinsic geographical patterns for recognition. Compared with data-driven methods,
model-based methods show better generalization capability. However, they suffer from
two problems: First, they need a well-built training dataset that contains comprehen-
sive geographical information for each location. Second, we only get access to the final
classification score and cannot recognize the geographical patterns that yield this score
and interpret why these patterns are helpful for distinguishing this location. Therefore,
it is desirable to discover and summarize the geographical patterns inside a location,
which could largely alleviate the limitations of data-driven and model-based methods.

It is well recognized that photos from one location share some distinctive patterns
to contribute to location recognition. Look back at the street-view photo taken at
Barcelona in Figure 2. What are the informative cues that help you to judge? Ac-
cording to a survey recently released by Doersch et al. [2012], people are sensitive to
a few localized, distinctive patterns for this location recognition task. For example, we
can see that the regions about the roofs, eaves, windows, and balcony in the street-view
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Fig. 3. (a) Visual words (clustered using SIFT); (b) geo-informative attributes with semantic interpretation.

Fig. 4. The proposed framework for discovering geo-informative attributes.

photo are all telling of Barcelonan styles. In this work, we aim to discover these dis-
tinctive patterns at a city scale, which we call geo-informative attributes, to serve as
mid-level signatures for location recognition. Moreover, combined with user-generated
annotations, we propose attaching semantic interpretations to the discovered visual
attributes, which could significantly extend the application scope. Therefore, the geo-
informative attributes we desire need to satisfy two properties: (1) discriminative, they
can differentiate this location from others, and (2) representative, they occur frequently
in this location and are semantically interpretable for better understanding.

One possible method of generating geo-informative attributes is to conduct unsuper-
vised learning over visual words to discover repeated elements and then select the ones
which are geographically discriminative [van Gemert et al. 2010]. However, as shown
on the left of Figure 3, the extracted visual words tend to be dominated by low-level
features, for example, small-scale textures like edge and corner, which capture little se-
mantic meaning to satisfy the representative property. Inspired by recent region-based
reconfigurable models utilized in scene and object recognition [Yakhnenko et al. 2011;
Parizi et al. 2012], we consider discovering the discriminative and representative pat-
terns at the region level and define geo-informative attribute as a cluster of discovered
regions. Shown on the right of Figure 3, the discovered region cluster-based attributes
show larger visual structures and capture interpretable semantics.

Specifically, the proposed framework includes two stages: geo-informative attribute
discovery and geo-informative attribute interpretation. The solution framework is illus-
trated in Figure 4. (1) For geo-informative attribute discovery, discriminative analysis
is first conducted at photo level, where nondiscriminative photos are filtered so that
the number of candidate regions can be significantly reduced. After that, we propose a
region-based latent support vector machine model (RLSVM) for detecting the discrim-
inative regions inside the photos. Candidate regions are generated by hierarchically
segmenting the remained photos. Each region is assigned a binary latent variable that
indicates whether the region contributes to recognizing this location. RLSVM scores
photos considering all region latent variables and infers the configuration that best
matches the location label. Regions activated in the derived configuration are consid-
ered discriminative. For each location, the geo-informative attributes are obtained by
clustering the detected discriminative regions. (2) For geo-informative attribute inter-
pretation, we present two methods for learning the relatedness between regions and
textual tags for attribute annotation. The first method is discriminative attribute anno-
tation. The associated user tags in Flickr are utilized to learn a bundle of discriminative
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SVM classifiers to measure the relatedness between tags and photo regions. Then these
classifiers are used to score the attribute set and generate its corresponding interpre-
tation by a compact set of semantic tags. The second interpretation method is based on
searching the most geo-visually similar photos from a large user-tagged geographical
database. For a set of unlabeled geo-informative attributes, we first retrieve the visual
neighbors from the user-tagged image database in the location. We then select the rele-
vant tags from the result images to annotate the attributes. This interpretation method
is suitable for the attributes without tag sources (e.g., GoogleStreetView images) by
resorting to other user-generated photos with textual annotations (e.g., Flickr photos).
Location recognition can be performed directly using the proposed RLSVM model to
simultaneously infer discriminative regions and estimate location label, or using the
discovered attributes to constitute a geographical vocabulary, where any supervised
methods can be combined. Moreover, the associated semantics enable interpretation
of recognized results and provide potentials to high-level location exploration applica-
tions. Therefore, the contributions of this work are summarized as follows.

(1) We propose exploiting geo-informative attributes for location recognition. The rep-
resentative property is highlighted to make the discovered attribute interpretable
and semantically meaningful.

(2) We introduce a region-based latent SVM model for discovering geo-informative at-
tributes. For attribute interpretation, we present two annotation methods including
discriminative and search-based attribute annotation.

(3) A real-world dataset from GoogleStreetView1 and Flickr2 is constructed for eval-
uation, where we validate that the discovered attributes are both discriminative
and representative.

This article is mainly based on our conference publication in ACM Multimedia
2013 [Fang et al. 2013a], with extensions of (1) reviewing the existing work related
to geographical location estimation including landmark recognition and general lo-
cation recognition, adding the subsection of geo-location knowledge mining; (2) for-
mulating the geo-informative attribute interpretation problem and proposing a spe-
cially designed attribute interpretation method called search-based attribute annota-
tion for visual attributes without the associated textual tags (e.g., attributes from
GoogleStreetView images); (3) presenting the interpretations for visual attributes
from GoogleStreetView images, quantitatively evaluating the proposed methods for
geo-informative attributes on the dataset, enriching the experimental analysis of geo-
informative attribute-based location recognition by investigating the effectiveness of
our attribute-based location recognition on landmark recognition and general loca-
tion recognition; (4) discussing two potential geo-informative attribute-based appli-
cations including geo-informative attribute-based city exploration and an example of
geo-informative attribute-based urban computing. The rest of the article is structured
as follows. In Section 2, we review the related work. We present our approach of
geo-informative attributes discovery and interpretation in Section 3 and Section 4,
respectively. The experimental results are provided in Section 5. Finally, this work is
concluded in Section 6.

2. RELATED WORK

2.1. Geographical Location Estimation

With the explosive growth of geo-referenced data, geographic referencing of pho-
tographs is an emerging research topic in computer vision [Zheng et al. 2011; Luo et al.

1http://www.google.com/streetview.
2http://www.flickr.com.
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2011]. The emergence of geo-referenced media, for example, geo-tagged photos, has
opened up possibilities to advance the field of geographical location estimation, which
aims to estimate the geographical information from the media content. Geographical
location estimation includes landmark recognition and general location recognition.
Most approaches formulate landmark recognition as a classification task [Zheng et al.
2009; Chen et al. 2011; Li et al. 2009]. Generally, the classification methods consist of
two components: landmark image representation and discriminative classifiers. A re-
liable image representation is crucial to building effective visual models of landmarks.
Bag-of-words feature models are adopted in most landmark recognition systems [Li
et al. 2008, 2009; Zheng et al. 2009]. Compared with global features, the bag of local
features has shown robustness and resilience in photometric and geometric image vari-
ations. To date, landmark recognition has achieved acceptable performance. According
to Zheng et al. [2009], the recognition performance on over 5,000 landmarks obtains
an accuracy of 80.8%, and the time it takes to recognize a landmark in a query image
is only 0.2s in a P4 computer.

For general location recognition, it is challenging to estimate the geographical in-
formation directly from visual content. The visual appearances recoded in a location
show large diversities and variances. Generally, there are two types of methods for
image-based location recognition: data-driven method and model-based method. The
data-driven method determines the geographical location of the input photo by retriev-
ing the nearest neighbors from a pre-built database. This database can be constructed
with tree-based structure [Schindler et al. 2007] or a 3D model [Xiao et al. 2012; Liu
et al. 2012b] to preserve retrieval efficiency. One typical work is the IM2GPS sys-
tem proposed by Hays and Efros [2008], which estimates the geographical location
of a query photo in a purely data-driven scene-matching approach. Kalogerakis et al.
[2009] extended the IMG2GPS system to identify geographic location for sequences of
time-stamped photos. Recent work [Lin et al. 2013] introduced a cross-view feature
translation approach to greatly extend the reach of image geolocalization methods.
Model-based methods attempt to build models to extract the geographical patterns for
location recognition. Friedland et al. [2010] presented the problem of multimodal loca-
tion estimation and proposed a multimedia approach to leverage cues from the visual
and acoustic portions of a video as well as from given metadata for location estimation.
Serdyukov et al. [2009] proposed a language model on Flickr photo tags to predict the
geographic location of photos. Crandall et al. [2009] proposed combining visual, textual,
and temporal features with SVM to estimate the location of a photo. Geographical pat-
terns exploited in previous methods are not explicitly mined and explained. Our work
aims to mine such geographical patterns through model learning. The mined patterns
can be used for location recognition. On the one hand, we propose a region-based latent
SVM model to mine the geographical patterns and estimate the geographical informa-
tion simultaneously. This step is model-based. On the other hand, a geo-informative
attribute vocabulary can be constructed with the mined attributes. The constructed
vocabulary can be further used to obtain the image representation of a test sample.
Combined with simply classifiers, we can estimate geographical location of the test
sample. This step is instance-based. Therefore, the model framework in this article can
be treated as a combination of the data driven method and model-based method.

2.2. Geo-location Knowledge Mining

Huge amounts of online geo-tagged media provide opportunities to mine semantic
and social knowledge of the world. Jaffe et al. [2006] and Kennedy et al. [2007] first
attempted extracting practical knowledge, such as summarizing important locations
and events from large-scale geo-tagged photos. Rattenbury and Naaman [2009] used
scale-structure identification method to extract place tags based on the GPS metadata
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of images in Flickr. Complementing travelogues, geo-referenced photos are utilized
to learn tourism knowledge [Zheng et al. 2012; Hao et al. 2009]. Jing et al. [2006]
proposed an online travel assistant termed VirtualTour based on quality images to help
travelers plan their trip. Hollenstein and Purves [2010] investigated the problem of how
people describe the city cores by exploring geo-tagged images and tagged metadata.
Papadopoulos et al. [2010] developed an online city exploration application named
ClustTour that helps users identify interesting spots in a city by use of photo clusters
corresponding to landmark and events. Recent work [Liu et al. 2012a] exploited geo-
tagged images as well as check-ins to discover areas of interest (AoI) in a city, where
the AoI represents tourist attractions and popular venues amongst the locals. Doersch
et al. [2012] argued that a city should be characterized by frequently occurring and geo-
informative features, such as widows, balconies, street signs. They showed that such
visual elements can be automatically extracted from a repository of geo-tagged imagery.
Fang et al. [2013b] investigated the problem of organizing photos geographically and
semantically to visualize a city at location level and POI level from multiple themes.

Our work is much inspired by Doersch et al. [2012] in that we are both devoted to ex-
ploring the discriminative visual attributes inside a city. However, we have significant
differences. (1) Motivation: we aim to discover the geographically informative visual
elements directly towards location recognition, that is, from geographical location esti-
mation perspective, while Doersch et al. [2012] attempt to find a stylistic set of visual
elements to characterize a city, such as windows, street signs, etc. (2) Methodology:
Doersch et al. [2012] independently mine the visual elements starting with a number
of seeds. The whole process is at patch-level, and the relations between patches inside
a photo are ignored. We take into consideration the relations among the regions at
the photo-level. To this end, we develop a region-based latent SVM (RLSVM) model,
where the geo-informative properties of regions are viewed as latent variables and
the co-exist relations among patches inside a photo are considered. We examine the
performance of the derived visual elements in Doersch et al. [2012] on location recog-
nition and performance comparison in the experiments, where our proposed approach
significantly outperforms the results in Doersch et al. [2012]. (3) Definition: we define
the geo-informative attributes to be discriminative and representative. In addition to
the mined geo-informative patches, we exploit the available associated text metadata
to make the geo-informative attribute semantically meaningful, which satisfies the
definition of attribute.

Our work also relates to the study of visual attributes and semantic understanding.
Visual attributes for classification and recognition have attracted extensive research
interests recently. Attribute-based representation for objects and scenes [Farhadi et al.
2009; Parikh and Grauman 2011; Patterson and Hays 2012] can significantly enhance
descriptive power and thus boost task-dependent performance such as object recogni-
tion [Duan et al. 2012]. Extensive efforts have been focusing on semantic understand-
ing with visual content [Zha et al. 2009, 2010, 2012, 2013; Sang et al. 2012]. Zha et al.
[2009, 2010] proposed a novel query suggestion scheme termed Visual Query Sugges-
tion (VQS) by jointly providing text and image suggestions, which can precisely capture
user intent in internet image search. Sang et al. [2012] exploited the underlying struc-
ture of social tagging to jointly model ternary semantic relations among user, image,
and tag for tag refinement. In our work, we focus on the geographical informative
attributes, which are both machine-detectable and semantically interpretable.

3. GEO-INFORMATIVE ATTRIBUTE DISCOVERY

Our task is to discover discriminative and representative attributes that are charac-
teristic of a location. Specifically, we aim to find region clusters that occur much more
frequently within a given location than others. To this end, we divide the solution
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Fig. 5. Region generation by hierarchically segmentation.

into three steps: (1) Non-discriminative photo filtering—we filter out the photos that
frequently exist in all locations and reduce the candidate region number. (2) Discrimi-
native region selection—this is the key step in the proposed framework. Each region is
assigned a binary latent variable to indicate its discriminative capability, which is in-
ferred by a specially designed latent model. (3) Geo-informative attribute generation—
for each location, geo-informative attributes are obtained by visually clustering the
detected discriminative regions. Location recognition can be easily performed by train-
ing a multiclass classifier over the attribute-constructed vocabulary.

3.1. Non-discriminative Photo Filtering

Since we are interested in location recognition, the photos that occur in both the positive
and negative sets, for example, photos of trees, sky, cars, contain rare discriminative
regions and can be removed before region-level analysis. Actually in later region se-
lection step, one single photo can generate a considerable number of regions via grid
segmentation at multiple scales, and the candidate region number is extremely large.

We take a simple yet effective method to filter the non-discriminative photos. For
each location, its corresponding photos are treated as a positive set, and the photos
from other locations form the negative set. Each image is extracted and represented
as an 809-dimensional feature vector including an 81-dimensional color moment, 37-
dimensional edge histogram, 120-dimensional wavelet texture feature, 59-dimensional
LBP feature, and 512-dimensional GIST feature. We compute the 50 nearest neighbors
of each photo in a location and reject samples with less than 15 neighbors in the positive
set. By non-discriminative photo filtering, we succeed in reducing the candidate region
set by 70.6% without sacrificing the recognition performance.

3.2. Discriminative Region Selection

After removing non-discriminative photos, the candidate regions are generated by
segmenting the preserved photos using rectangular grids with 3-level spatial pyramids3

(shown in Figure 5). As mentioned in the introduction, region-level patches can show
larger visual structure and capture interpretable semantics. Assuming that each photo
in the training set has been weakly labeled by its location, we encode training photo
regions’ discriminative capability as binary latent variables which are incorporated
into the proposed RLSVM model for inference.

3.2.1. Region-Based Latent SVM. Latent SVM [Felzenszwalb et al. 2008] provides a
framework where we can treat the desired state values as latent variables and con-
sider different correlations into potential functions in a discriminative manner. In our
work, the desired state is the discriminative capability of each region. Three types of

3The reason we use this simple segmentation strategy is to reduce computational complexity for region
selection. Validated from experimental evaluation, this strategy is both efficient and effective. Sophisticated
segmentation algorithms can be considered to obtain better semantically-meaningful regions.
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Fig. 6. Illustration of the proposed model. Each circle corresponds to a variable, and each square represents
a factor in the model.

potential functions are specially designed to encode the region-level latent variables
into a unified learning framework. We propose an RLSVM model for searching the
best configurations of latent variables for regions, which are then used for attribute
generation.

Formally, each training photo I is denoted as a tuple (x, l). Here, l ∈ K � {1, 2, . . . , K}
is the location label. We focus on city-scale location recognition in this article. l refers
to a city. Each photo consists of a set of overlapping multiscale regions, which are
denoted as {Ri}N

i=1. We use x = {x1, . . . , xN} to indicate their corresponding visual
feature vectors. For each region, the discriminative capability is encoded in a latent
variable zi ∈ Z � {0, 1}. Therefore, z = {z1, . . . , zN} specify the discriminative regions
within each training photo. In the following, we will introduce how to incorporate z into
the proposed RLSVM model and how to infer it along with model parameter learning.

We are interested in learning a discriminative function fw : X ×L → R over a photo
x and its location label l, where w are the model parameters. We use fw(x, l) to measure
the compatibility among the visual feature x, the location label l, and the configurations
of latent variables z. fw(x, l) takes the form of fw(x, l) = maxa wT���(x, z, l) to score the
confidence of photo x labeled as location l with the latent variable configuration z,
which is defined by combining different potential functions:

wT���(x, z, l) =
N∑

i=1

αT φ(xi, zi) +
N∑

i=1

βT ϕ(zi, l) +
∑

(i, j)∈E
γ T ψ(zi, zj, xi, xj). (1)

Figure 6 is an illustration of our model. In this model, parameter vector w is sim-
ply the concatenation of the parameters in all the factors. E is the edge set con-
structed between overlapping regions within each photo. The model presented in the
Equation (1) simultaneously considers the following relationships: the first term pre-
dicts the latent variable value from visual feature vector, that is, how likely the region
is discriminative; the second term models the compatibility between location label and
latent variables; the third term describes the dependencies between latent variables
of overlapping regions. Therefore, instead of predicting the location label from visual
features directly, we encode discriminative region selection and mine the compatible
relationships. The details of the three potential functions are described in the following.

Feature vs. Latent Variable Potential αT φ(xi, zi). This potential predicts region dis-
criminative capability and contributes to the final confidence score by aggregating the
discriminative ones. Here φ(xi, zi) represents a certain mapping of the visual feature xi,
and the mapping result depends on the latent variable zi. Model parameter α encodes
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the weight for different latent variable values. Specifically, it is parameterized as

αT φ(xi, zi) =
∑
b∈Z

αT
b · 1(zi = b) · xi, (2)

where 1() is the indicator function.

Latent Variable vs. Location Label Potential βT ϕ(zi, l). This potential function models
the compatibility of location label l and the latent variable zi. It is defined as

βT ϕ(zi, l) =
∑
b∈K

∑
c∈Z

βb,c · 1(l = b) · 1(zi = c). (3)

The parameter βb,c measures the compatibility between l = b and zi = c. In other
words, how likely the latent variable zi = c relates to the location label l = b. After
model learning, we select the latent variable z∗

l for location l as the latent discriminative
label according to βb,c, that is, z∗

l = arg maxc∈Z βc ·1(zi = c). Regions labeled with latent
variable z∗

l are remained as discriminative regions.

Latent Variable vs. Latent Variable Potential γ T ψ(zi, zj, xi, xj). Since the regions
sharing common spatial areas within the same photo should have similar discrimi-
native capability, the latent variables for these regions are dependent. We construct a
undirected graph G = (V, E) for each photo, where vertex vi ∈ V corresponds to a region
xi ∈ x, and edge (vi, v j) ∈ E exists if region xi and xj overlap to each other or region
xi and xj are neighborhoods. The pairwise similarity between overlapping regions is
encoded in p(xi, xj) = e−‖xi−xj‖, where ‖·‖ is the 	2-norm.

This potential function models this pairwise dependence and penalizes similar latent
variable values when the regions are dissimilar. Therefore, we define this potential as

γ T ψ(zi, zj, xi, xj) =
∑
b∈Z

∑
c∈Z

γb,c · p(xi, xj) · 1(zi = b) · 1(zj = c), (4)

where model parameter γb,c captures the compatibility between latent variable config-
uration zi = b and zj = c.

3.2.2. Model Learning and Inference. Given a set of M training photos 〈x(i), l(i)〉(i =
1, 2, . . . , M), we aim to learn the model parameter w that produces the correct lo-
cation label l. Note that the discriminative latent variables are unobserved and will be
automatically inferred along with model learning.

We adopt the latent SVM formulation [Felzenszwalb et al. 2008; Yu and Joachims
2009] to learn the model as follows:

min
w,ξ≥0

1
2

‖w‖2 + C1

M∑
i=1

ξi

s.t. max
z

wT���(x(i), z, l(i)) − max
z

wT���(x(i), z, l) ≥ �(l, l(i)) − ξi,∀i,∀l ∈ L,

(5)

where C1 is the trade-off parameter similar to that in SVMs, ξi is the slack variable
for the ith training example to handle soft-margin. Such an objective function requires
that the score for ground-truth location label l(i) is much higher than that for other
labels. The difference is recorded in a 0-1 loss function �(l, l(i)):

�0/1(l, l(i)) =
{

1, if l 
= l(i),

0, otherwise.
(6)
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The constrained optimization problem in Eq. (5) can be equivalently written as an
unconstrained problem:

min
w

L(w) = 1
2

‖w‖2 + C1

M∑
i=1

Ri(w),

where Ri(w) = max
l

(
�0/1(l, l(i)) + max

z
wT���(x(i), z, l)

)
− max

z
wT���(x(i), z, l(i)).

(7)

We use the non-convex bundle optimization in Do and Artières [2009] to solve Eq. (7).
In a nutshell, the algorithm iteratively builds an increasingly-accurate piecewise
quadratic approximation of L(w) based on its subgradient ∂wL(w). The key issue is
to compute the subgradients ∂wL(w). We define

z(i)∗ = arg max
z

wT���(x(i), z, l),∀i,∀l ∈ L,

z(i) = arg max
z

wT���(x(i), z, l(i)),∀i,

l(i)∗ = arg max
l

(
�0/1(l, l(i)) + max

z
wT���(x(i), z, l)

)
,

(8)

where ∂wL(w) can be further computed as

∂wL(w) = w + C1

M∑
i=1

���(x(i), z(i)∗ , l(i)∗ ) − C1

M∑
i=1

���(x(i), z(i), l(i)). (9)

Using the subgradients ∂wL(w), we can optimize Eq. (5) using the algorithm in Do and
Artières [2009] and output the optimal model parameter w.

At each optimization iteration, we also need to infer the latent attribute variables z.

z∗ = arg max
z

wT���(x(i), z, l(i)). (10)

This is a standard max-inference problem, and we use loopy belief propagation [Murphy
et al. 1999] to approximately solve it.

Given the learned parameters w, we can directly apply the RLSVM model to loca-
tion recognition for a new photo xt. The location obtaining the highest score is the
recognition result

l∗ = arg max
l

{
max

z
wT���(xt, z, l)

}
. (11)

3.3. Geo-informative Attribute Generation

Through the RLSVM model learning, we can obtain the geo-discriminative regions
for a location. For generating the geo-informative attribute, we apply the meanshift
clustering algorithm on the detected regions. The clusters with large size are retained
to construct the geo-informative attribute set.

3.4. Geo-informative Attributes for Location Recognition

We now describe our approach of Geo-Informative Attribute for locatioN recogniTion
(GIANT). Denote the discovered geo-informative sets as A = {al}K

l=1, al = {xi}Nl
i=1, where

xi is the feature vector extracted from region i. We construct a geo-informative attribute
dictionary D = {dm}M

m=1 by sampling feature vectors xi from each attribute set al in A.
The size of sampled attributes of each set is proportional to the size of the set. For a
new photo y, it is hierarchically segmented with multiple regions Y = {yn}N

n=1. We use

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 1s, Article 19, Publication date: September 2014.



Discovering Geo-Informative Attributes for Location Recognition and Exploration 19:11

ALGORITHM 1: Geo-informative Attribute Interpretation

Input: Image regions X , tag vocabulary Vl = {tj}T
j=1, attribute set a = {xu}U

u=1 in a location.
Output: Attribute set a with semantic tags RT .

Tag-region Relatedness Learning
1: for each tag tj do
2: X ⇐ region select (X )
3: repeat
4: {Xc}C

c=1 ⇐ cluster (X), {Nc}C
c=1 ⇐ rand sample {X − X}

5: 
c⇐svm train (Xc, Nc), Xnew⇐ f ilter (
c, X), X⇐ Xnew
6: until achieve convergence or maximum iteration
7: end for

Attribute Interpretation
8: score each xu with all classifiers 

9: compute tag scores by aggregating region responses
10: sort the tags according to scores in descending order
11: select the top n tags as RT
12: return RT

a locality-constrained coding method [Wang et al. 2010] to encode the feature yn over
the dictionary D. It is computed as

min
S

N∑
n=1

‖yn − Dnsn‖2
,

s.t. 1T sn = 1,

(12)

where Dn is local bases formed by simply selecting the K nearest neighbors of yn from
D. S = (s1, . . . , sn) is the set of codes for Y . The final photo representation for y is
obtained by performing the max pooling on the codes S. Then discriminative classifiers
can be used to conduct the location recognition task.

4. GEO-INFORMATIVE ATTRIBUTE INTERPRETATION

After obtaining the geo-informative attributes in a location, we aim to describe these
attributes with semantic text for better human understanding. The aim of geo-
informative attribute interpretation is to find a group of keywords v∗ most relevant
with respect to a geo-informative attribute set a = {xu}U

u=1, that is,

v∗ = arg max
v∈V

rel(v|a), (13)

where rel(v|a) is a measurement of tag relevance and v is a keyword in a predefined vo-
cabulary V. How to define and estimate rel(v|a) is important for attribute annotation.
We present two approaches for computing rel(v|a). The first is to learn discrimina-
tive models to measure the relevance between textual tags and visual attributes. A
set of geo-informative attributes is annotated by aggregating the estimations from
the discriminative models. The second is search-based attribute annotation, which
is that we can use textual tags collected from geo-visually similar Flickr photos to
approximately annotate the geo-informative attribute set. This method is extremely
suitable for attributes generated from the data collections without textual tags (e.g.,
GoogleStreetView images). We show the details of the two approaches next.
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4.1. Discriminative Attribute Annotation

We develop a novel algorithm by exploiting the co-occurrence relationships between
photos and the associated tags. We first learn a bundle of discriminative SVM classifiers
for each tag to measure the relatedness between the tag and photo regions. These SVM
classifiers are then used to score the geo-informative attribute set and obtain the
semantic tags RT . The full approach is summarized in Algorithm 1.

Tag-Region Relatedness Learning. Let Vl = {tj}T
j=1 be the tag vocabulary constructed

from the associated tags with photos in location l. For each tag tj , we first find the photo
regions X = {xi}N

i=1 which associate with tag tj . Note that the photo regions inherit the
text metadata of the source photo. Since the annotated photos reflect different aspects
of tag tj , there may exist significant visual variations. To address this, we perform
meanshift on X to divide into several clusters {Xc}C

c=1. A binary linear SVM classifier is
then trained for each cluster Xc, using regions within the cluster as positive samples
and the regions randomly sampled from the rest as negative samples. The trained
discriminative classifiers are used to prune out the noise samples and outliers in X.
The confidence scores indicate the relatedness between the tag tj and a region xi.
Regions with low confidence scores are filtered out. The filtered set now becomes the
new training set and the procedure is repeated until convergence. Finally, we can obtain
a bundle of binary SVM classifiers for each tag.

Attribute Interpretation. Now we use the trained SVM classifiers to interpret the geo-
informative attributes. For each region xu in a geo-informative attribute set a = {xu}U

u=1,
we use all the classifiers to score xu. Since a tag tj has multiple classifiers, the region xu
may have multiple response scores. We select the maximum score as the relatedness
score between xu and tj . We then aggregate all the response scores between tags and
regions in a. For each tag tj , the sum of all the corresponding response scores on each
region xu is calculated. We sort the tags and select the top n tags as the semantic
interpretation set RT for a.

4.2. Search-Based Attribute Annotation

In this section, we provide an alternative interpretation approach for geo-informative
attributes by searching over user-contributed photo sites (e.g., Flickr), which have ac-
cumulated rich human knowledge and billions of photos, especially geo-tagged photos.
The intuition is to leverage surrounding tags from those visually-similar Flickr photos
in a location for visual attribute set. Let d be a visual distance function between two
photo regions. For a photo region xu, we denote its k nearest neighbors found in a photo
database with textual annotations in terms of d as NNd(xu, k). In the search-based
approach,

v∗ = arg max
v∈V

rel(v|a) = arg max
v∈V

∑
u=1

rel(v|xu)

= arg max
v∈V

∑
u=1

∑
J∈NNd(xu,k)

rel(v|J) · sim(J, xu), (14)

where sim(J, xu) is a measurement of semantic similarity between J and xu. Specifically,
we can annotate the attribute set a by a three-step procedure.

—Search by visual content. The photos in a location are hierarchically segmented with
three-level spatial pyramids (shown in Figure 5). We use each photo region xu in the
attribute set a to retrieve the k nearest neighbor regions.

—Tag relevance estimation. Given the tags of the neighbor regions, we select the most
relevant tags to annotate xu. To calculate rel(v|J) in Eq. (14), we can adopt the
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Fig. 7. Example photos in the collected dataset from GoogleStreetView (http://www.google.com/
streetview) and Flickr (http://www.flickr.com).

well-known tf-idf weight scheme, which is calculated as rel(v|J) = t f (v, J) · idf (v),
where t f (v, J) is the occurrence frequency of v in tags of J. The function idf (v) is
calculated as log N

nv
. We approximate sim(J, xu) by using visual dissimilarity, that is,

sim(J, xu) = e
−d(xu,J)2

2 .
—Attribute tags aggregation. After obtaining the tags for each region xu, we aggregate

the tag relevance scores and extract the high-scored semantic tags as the attribute
interpretation.

5. EXPERIMENT

5.1. The Dataset

To evaluate the performance of geo-informative attribute discovery and interpretation,
we construct a location recognition dataset crawled from GoogleStreetView and Flickr.

GoogleStreetView. Given a geographical location on the map, we collect a dense sam-
pling of panoramas by using the Google Map API [Gronat et al. 2011]. In this work,
we select 12 well-known cities: Barcelona, London, Paris, Chicago, Hong Kong, NYC,
San Fransisco, Sao Paulo, Singapore, Sydney, Taipei, and Tokyo. For each panorama,
we extract two perspective photos with one on each side of the capturing vehicle. This
results in approximately 10,000 photos per city. Shown on the top of Figure 7, the
photos mostly relate to building facades and street scenes.

Flickr. We use Flickr API to retrieve photos taken in a city according to the geo-tag
information. Textual metadata, for example, the title, description, and tags, associ-
ated with the photos are also crawled for attribute interpretation. We downloaded
data for seven cities: Barcelona, London, Paris, Beijing, Berlin, Cairo, and Istanbul.
The initially-collected datatset is manually filtered to preserve only outdoor photos of
buildings, street, etc. The number of photos in the final dataset for each city ranges
from 2,000 to 3,000. Example photos from Flickr are shown at the bottom of Figure 7,
which focus more on landmarks and show larger variance than the GoogleStreetView
dataset.

Statistics of the collected dataset are summarized in Table I. Since GoogleStreetView
and Flickr have different coverage and focus, experiments conducted on both datasets
will comprehensively evaluate the scope as well as performance of compared methods.

5.2. Geo-informative Attribute Discovery

Implementation Issue. As shown in Figure 5, each photo is hierarchically segmented
into 21 regions with different scales. We choose to represent each region by extracting
an 809-dimensional feature vector [Zhu et al. 2008], including an 81-dimensional color
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Table I. Statistic of the Collected Dataset

Dataset # City # Photo per city # Total photos

GoogleStreetView 12 nearly 10,000 139,840
Flickr 7 2,000 ∼ 3,000 13,503

Fig. 8. Discriminative region selection results.

moment, 37-dimensional edge histogram, 120-dimensional wavelet texture feature,
59-dimensional LBP feature, and 512-dimensional GIST feature.

Since we conduct geo-informative attribute discovery with the proposed RLSVM-
model-based framework on the whole GoogleStreetView and Flickr city dataset, the
computation complexity is a big issue. The computational cost of RLSVM depends on
the number of regions, region features, and the iterations of learning and inference. Al-
though non-discriminative photos are prefiltered and we employ a simple segmentation
strategy to reduce the candidate region number, computation complexity is still very
high. Moreover, high intra-class variance makes the model difficult to converge. In our
implementation for attribute discovery, a divide and conquer strategy is used to deal
with these issues. Specifically, we cluster the photos of each location into several sub-
sets, where less intra variance is guaranteed within each subset. The number of clusters
in each city dataset depends on the size of corresponding photo data. Each of the derived
subsets contains nearly 1,000 photos. During model learning, each subset is treated as
a positive set, and a negative set is constructed by randomly sampling from photos in
other locations. The detected discriminative regions in all subsets constitute the final
discriminative region set and generate the geo-informative attributes for a location.

Experimental Results. The key step of attribute discovery is discriminative region
selection. Each region is assigned a binary latent variable and contributes to attribute
generation if its latent variable is inferred as positive. We show examples of discrimi-
native regions in Figure 8. The non-greyed-out regions are geo-discriminative regions.
We can see that the regions dominated by sky, road, and trees are detected as non-
discriminative (shown as white masked), leaving the featured regions to construct
geo-informative attributes.

In Figure 9, we visualize some of the discovered visual attributes for different cities
(each row corresponds to one cluster, i.e., attribute). It is shown that the discovered
attributes are geo-informative: (1) discriminative, they well distinguish the city from
others, for example, the Mediterranean coastview and Gaudi’s modern building of
Barcelona make it very different from the inland and classical counterparts of London;
(2) representative, they describe featured aspects of the city. We can see that the discov-
ered attributes provide a more intuitive description for the city from GoogleStreetView
dataset. Stylistic things such as windows, building facades, and street signs are very
indicative of the cities, for example, Singapore with its busy harbor, renowned business
district, and mixed East-West architectural style. In the Flickr dataset, the detected
visual attributes focus on the distinctive features of the city buildings and famous land-
marks. For the same city between the two datasets, we can also find some differences
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Fig. 9. The discovered geo-informative attribute on GoogleStreetView and Flickr dataset.

among the discovered attributes. For example, the mined attributes for London in
GoogleStreetView exhibit streetview styles such as windows and roofs, while in Flickr
more visual elements of scenic spots are shown. Similar results can be found with
Barcelona and Paris. Different image contents of the datasets contributes to this phe-
nomenon. The GoogleStreetView dataset contains more streetview scenes while Flickr
dataset focuses on scenic spots.

5.3. Geo-informative Attribute for Location Recognition

In this section, we quantitatively evaluate the effectiveness of the proposed approach
in task of location recognition. Two settings are considered: (1) RLSVM, directly using
the proposed latent SVM model for location estimation (Eq. (11)); (2) GIANT, using the
reconstruction coefficients over the discovered geo-informative attribute vocabulary
as the feature representation, combining with SVM classifier for training and testing
(Eq. (12)). In addition, four other approaches are implemented for comparison.

—kNN [Hays and Efros 2008]. A pure data-driven photo matching method.
—LF+SVM. Low-level features [Zhu et al. 2008] combined with SVM.
—BoVW+SVM. Bag-of-visual word (SIFT and LLC [Wang et al. 2010] are used) com-

bined with SVM.
—DRLR [Doersch et al. 2012]. Discriminative region based location recognition, de-

tecting discriminative regions at patch-level using a bottom-up iterative learning
algorithm.
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Fig. 10. mAP under different sizes of geo-informative vocabulary on GoogleStreetView and Flickr dataset.

Table II. Location Recognition mAP Results for the Examined Approaches
on GoogleStreetView Dataset

kNN LF+SVM BoVW+SVM DRLR RLSVM GIANT

Barcelona 23.83 10.05 55.31 49.30 53.97 55.37
Chicago 44.04 48.33 52.20 42.38 31.43 45.24

HongKong 73.05 73.54 39.72 72.57 57.04 76.94
London 61.82 50.0 36.19 64.29 78.33 73.15

NYC 23.54 34.47 58.87 38.11 26.94 44.41
Paris 31.77 61.08 33.98 57.88 59.11 62.81

Sanfransisco 34.39 14.99 52.22 42.26 73.71 51.1
SaoPaulo 65.61 60.98 47.17 66.10 77.07 70.0
Singapore 29.80 29.06 36.70 39.41 67.49 59.36

Sydney 50.99 30.45 30.94 56.93 56.88 50.74
Taipei 59.5 71.25 42.75 48.50 55.0 57.50
Tokyo 17.00 39.75 39.25 43.25 46.0 49.5

mean AP 42.95 43.66 43.86 51.75 56.89 58.01

To evaluate the performance, we build the evaluation dataset by randomly sampling
about 500 random photos for each city in GoogleStreetView and Flickr, respectively.
This results in 6,111 photos for GoogleStreetView and 3,501 photos for Flickr. In the
evaluation, we randomly sample 100 photos per city for training and the rest for testing
both GoogleStreetView and Flickr.

We tune the parameters of each method to achieve the best performance: k for kNN
is set to 20, the dictionary size for BoVW is set to 4,096, and C1 in Eq. (5) is set
to 100. For the choice of geo-informative attribute dictionary size, Figure 10 shows
performance under different sizes of vocabulary on the GoogleStreetView and Flickr
datasets, respectively. We can see that performance achieves the best on both datasets
when the size is 4,096. Therefore, we set the number of discovered geo-informative
attributes to 4,096. mAP (mean Average Precision) is ultilized as the evaluation metric,
which is averaged over all test cities.

The compared location recognition results are shown in Tables II and III. Several
observations can be made: (1) due to the limited sampled data of a location, the perfor-
mance of data-driven instance-based kNN method is inferior and unstable. There exist
large variances between different cities, and the performance is quite sensitive to the
dataset. For example, on the Flickr dataset, kNN outperforms all other methods for
Berlin and Istanbul, while performing poorly for Barcelona, Beijing, and Paris. (2) Large
intra-class variance limits the performance of low-level feature-based LV+SVM and
BoVW+SVM, especially in the GoogleStreetView dataset. (3) DRLR uses a similar idea
of discovering discriminative region clusters and shows comparable recognition results.
The superior performance of DRLR, RLSVM, and GIANT validates the advantage of
location recognition based on region-level attributes. However, DRLR detects discrim-
inative regions independently and ignores relations between regions within the same
photo. By explicitly considering pairwise region relations, our proposed RLSVM and
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Table III. Location Recognition mAP Results for the Examined Approaches on Flickr Dataset

Method Barcelona Beijing Berlin Cairo Istanbul London Paris mean AP

kNN 35.5 54.1 38.5 44.0 77.25 46.75 31.5 46.8
LF+SVM 46.2 61.3 36.0 34.25 62.75 41.5 53.25 47.9

BoVW+SVM 42.25 83.04 23.5 32.25 71.5 55.5 36.75 49.26
DPLR 51.75 62.34 31.5 43.75 57.00 54.50 35.50 48.05

RBLSVM 42.0 64.59 36.75 43.5 68.75 52.5 37.5 49.37
GIANT 57.5 60.6 36.25 48.25 58.25 55.75 43.0 51.37

Fig. 11. The discovered attributes with corresponding text interpretations on the Flickr dataset.

GIANT achieve better results. (4) GIANT achieves the best performance among all the
examined approaches. This demonstrates that the discovered attributes served as mid-
level features are useful for location recognition and thus geo-informative. (5) We also
observe that our location recognition method achieves more significant performance
improvement on the GoogleStreetView set than that on the Flickr set compared with
the baseline methods. As mentioned in Section 5.1, GoogleStreetView images relate
to generic locations and Flickr photos more relate to landmarks. This indicates that
our methods are more effective and suitable in handling the general location recogni-
tion problem. The reason being that our proposed RLSVM model, searching the best
configuration of geo-informative regions, can largely handle the visual variances in a
geographical locale. The discovered geo-informative attributes can be treated as mid-
level representations to effectively represent the test samples. These results clearly
validate the effectiveness of our proposed RLSVM model in discovering geo-informative
attributes and location recognition.

5.4. Geo-informative Attribute Interpretation

5.4.1. Qualitative Evaluation. In Figure 11, we visualize tag-based interpretation for the
discovered attributes in the Flickr dataset by discriminative attribute annotation.
Figure 11 illustrates one of the discovered geo-informative attributes with correspond-
ing salient tags for each city. The font size of the tag is proportional to the tag impor-
tance. Figure 12 shows the detailed three-attribute interpretation results in Barcelona,
Paris, and London from the GoogleStreetView dataset by search-based attribute anno-
tation. Tags are sorted by their importance scores. We can observe that the discovered
attributes succeed in describing the visual attributes as well as capturing meaningful
semantics. It provides a way for people to better understand the discovered attributes
and conduct city exploration. For example, the extracted tags for Cairo describe the city
from several aspects: “mosque, mohammed, religion, muslim” illustrate the social and
cultural feature of the attribute, and “architecture, citadelislam” describes its phys-
ical architecture property. The derived tags within each attribute interpretation are
consistent with each other and well indicate the semantics of corresponding visual con-
tent. Moreover, combined with the interpretation, the discovered attributes describe
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Fig. 12. The discovered attributes with semantic interpretation in Barcelona, Paris, and London from the
GoogleStreetView dataset.

distinctive aspects and jointly serve as the semantic as well as visual summary of
the location. By further investigating the results, we can see that due to the inevitable
noise in the user-generated tags, some tag descriptions are not very representative. For
example, the tags for Beijing provide a rough description and do not precisely match
the visual attributes.

5.4.2. Quantitative Evaluation. Now we show quantitative evaluation of geo-informative
attribute interpretation performed by our proposed methods. Discriminative attribute
annotation (DAA) and search-based attribute annotation (SBAA) are both conducted
on the GoogleStreetView and Flickr datasets by exploiting user-generated tags from
Flickr. Since there are three common cities (Barcelona, Paris, London) on the two
datasets, we conduct the evaluation on the geo-informative attribute interpretation
generated from Barcelona, Paris, London on the GoogleStreetView set. For the Flickr
dataset, we conduct the evaluation on the attributes from all cities. We select 5∼10 at-
tribute sets from each city for interpretation and evaluation. We compare our proposed
methods with two baselines. For discriminative attribute annotation, we train one SVM
classifier for each tag instead of training a bundle of SVM classifiers (denoted as DAA-
Baseline). For search-based attribute annotation, we simply compute the tag frequency
for annotation by aggregating the neighbor photos (denoted as SBAA-Baseline). Due
to no available ground truth for geo-informative attribute interpretation, we present
the interpretation results to the human reviewers and obtain the judged results. The
ten top annotated tags for each attribute set are used for judgement. Reviewers are
asked to mark them as relevant or irrelevant. We compute the AP@10 to measure the
performance. AP is the average ratio of the number of correct tags to the number of
suggested tags.

The results in P@10 are shown in Figure 13. It is shown that our proposed DAA
and SBAA outperform the baseline methods on two datasets. This indicates that the
visual and semantic consistency between visual patches and tags is important for
attribute interpretation. Search-based methods achieve better performance on the
GoogleStreetView dataset while discriminative annotation methods perform better
on the Flickr set. The GoogleStreetView set has no available user-generated tags.
Search-based methods leverage the weakly-labeled Flickr images for GoogleStreetView
attribute interpretation to bypass the semantic gap. Discriminative attribute annota-
tion exploring multiple visual aspects of tags can largely eliminate the tag noise and
better model the visual and semantic consistency. We also observe that the perfor-
mance on Flickr is better than that on the GoogleStreetView set. This is due to the
differences of visual characteristics on the two datasets. These results clearly demon-
strate the effectiveness of our proposed annotation methods for geo-informative at-
tribute interpretation. The results also suggest that more accurate semantic and visual
consistency modeling contributes to better geo-informative attribute interpretation
results.
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Fig. 13. The performance comparison of geo-informative attribute interpretation for different methods in
P@10 on the GoogleStreetView and Flickr datasets.

Fig. 14. Geo-informative attribute-based city exploration illustrated on Google Maps (http://maps.
googl.com/) [Google Maps 2014].

5.5. Discussions

Potential Applications. Since in our work we focus on city-level geo-informative anal-
ysis, the derived interpretation will enable several attribute-based city culture or
tourism exploration applications. For example, organizing and classifying cities by
their semantic attributes could facilitate city introduction and tourism recommen-
dation. Here we envision two applications based on geo-informative attributes of a
geographical locale (e.g., the city of Barcelona). Figure 14 shows an example of geo-
informative attribute-based city exploration. Imagine a user captures a photo of La
Sagrada Familia at point A. The geo-informative attributes can help a user identify
the discriminative regions in the photo, retrieve the relevant images, and return the
location label (e.g, Barcelona). Furthermore, with the attribute interpretation, the user
can obtain more semantic information behind the query photo, which will reveal some
background knowledge to help the user better understand and explore this place. We
also show an example of geo-informative attribute-based urban computing in Figure 15.
By placing the geo-informative attributes on the map and geo-visually clustering the
attributes, we can obtain different clustered areas. In each clustered area, the corre-
sponding geo-informative attributes provide the visual and semantic area description.
With such semantic descriptions, we can infer the function of different areas, such as
historic interest areas, residential areas, and education areas. Such functional area dis-
covery could provide people with a quick understanding of a complex city and tourism
planning.
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Fig. 15. An example of geo-informative attribute-based urban computing illustrated on Google Maps
(http://maps.google.com/) [Google Maps 2014].

Fig. 16. Example of failure photos.

Focus and Limit. To analyze the limit of our proposed approach, we investigate the
failed cases, which are shown in Figure 16. Can you tell the places of these photos? It is
not an easy task to recognize the city of the captured photos even for people who have
been there. For the photos dominated by ubiguitons trees, water, roads, and sky, rare
discriminative regions exist, which cannot be handled by our approach. Actually, in real
applications, not all photos are expected to be located, for example, indoor, fractional,
and non-feature ones. However, discussion about which kind of photo is geographically
recognizable and whether it is valuable to estimate geographical information of such
photos is beyond the scope of this article.

Potential Extensions. In this work, we develop an RLSVM-based model framework
for geo-informative attributes discovery and location recognition. The RLSVM can be
enhanced by incorporating advanced region relations within or between photos and
designing complex segmentation schemes and new potential functions. In the attribute
interpretation, we use the user-contributed tags to interpret the discovered visual
elements for better human understanding. Actually such sematic tags also contain
geographical information and can be exploited for location recognition. For example,
the presence of a location name associated with a photo is a good indicator of the location
for the test photo. One interesting extension is to combine geo-informative attribute
discovery and attribute interpretation in a unified principled model. In addition, we
currently use tag cloud to present the geo-informative attribute interpretation. To
better benefit end-user applications for human consumption, we could exploit a pre-
built taxonomy tree consisting of location semantic entities to obtain a compact and
concise representation of geo-informative attribute interpretation.

6. CONCLUSION

In this article, we study a novel problem of discovering geo-informative attributes for
location recognition and exploration. We propose an RLSVM model for discrimina-
tive attribute detection and two methods including discriminative and search-based
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attribute annotation for attribute interpretation. Extensive experiments conducted on
the collected GoogleStreetView and Flickr datasets demonstrate that the discovered
geo-informative attributes are both discriminative and representative, which validates
the effectiveness of our proposed approach. In the future, we are interested in investi-
gating the following two directions: (1) exploiting the mined geo-informative attributes
for more location-based applications, such as geographical search, visual summariza-
tion of a city, and travel recommendation; (2) developing a nonlinear RLSVM model
such as kernel RLSVM for integrating multimodal information towards more effective
geo-informative attributes mining for location exploration.
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