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ABSTRACT Many convolutional neural networks have been proposed for image classification in recent
years. Most tend to decrease the plane size of feature maps stage-by-stage, such that the feature maps
generated within each stage show the same plane size. This concept governs the design of most classification
networks. However, it can also lead to semantic deficiency of high-resolution feature maps as they are
always placed in the shallow layers of a network. Here, we propose a novel network architecture, named
ScaleNet, which consists of stacked convolution-deconvolution blocks and a multipath residual structure.
Unlike most current networks, ScaleNet extracts image features by a cascaded deconstruction-reconstruction
process. It can generate scale-variable feature maps within each block and stage, thereby realizing multiscale
feature extraction at any depth of the network. Based on the CIFAR-10, CIFAR-100, and ImageNet
datasets, ScaleNet demonstrated competitive classification performance compared to state-of-the-art ResNet.
In addition, ScaleNet exhibited a powerful ability to capture strong semantic and fine-grained features on its
high-resolution feature maps. The code is available at https://github.com/zhjpqq/scalenet.

INDEX TERMS Image classification, convolutional neural networks, ResNet, deconvolution.

I. INTRODUCTION
With the development of deep convolutional neural net-
works, image classification has achieved considerable
progress in recent years. The early convolutional neural
networks (CNNs) used for classification, such as NiN [1],
VGG [2], Inception [3], [4], DSN [5], and HighwayNet [6],
faced issues of vanishing/exploding gradients [7], [8].
Fortunately, with the development of ResNet [9] and
DenseNet [10], these problems have been largely alleviated.
ResNet [9] solved this problem by adding summation-skip-
connections between different layers in each block, lead-
ing to the extension of many ResNet variants [11]–[24].
DenseNet [10] resolved the issue by constructing concatena-
tion-skip-connections between a layer and all previ-
ous layers in a block, with various models developed
subsequently [25]–[30]. Instead of the manual design method
used in above networks, network architecture search (NAS)
finds the optimal architecture by auto searching sev-
eral key hyper-parameters of a baseline network, as seen
in [23], [31]–[39].
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However, to extract high-level semantic information, most
classification networks tend to decrease feature size (i.e.,
plane size of feature maps, same below) and increase feature
channels stage-by-stage until a 1D feature vector is generated.
Thus, they sacrifice feature size to promote feature channels,
resulting in feature dimension reduction. As a consequence,
high-/low-resolution feature maps always occupy the shal-
low/deep layers of a network, respectively. On the other hand,
the semantic information contained in feature maps usually
increases in strength with network depth [40]. Therefore,
high-resolution feature maps will always have weak seman-
tic representation, whereas low-resolution feature maps will
always have strong semantic representation. In other words,
there exists an intrinsic trade-off between feature size and
feature semantics for these CNNs. As such, the construction
of a network that can eliminate this kind of compromise is
important.

Inspired by the above consideration, we propose a
novel network architecture, named ScaleNet. ScaleNet con-
tains stacked convolution-deconvolution blocks and a mul-
tipath residual structure. Different from ResNet [9] and
DenseNet [10], in which feature size remains unchanged
within each stage, ScaleNet can generate scale-variable
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FIGURE 1. Feature-maps generated by ScaleNet44-D10(2.0M) on CIFAR-10.

feature maps within each stage and block, as shown in Fig.1.
Based on this, ScaleNet can generate high-resolution feature
maps in very deep layers, thus contributing to the ability
to capture fine-grained visual features with strong semantic
information. In addition, compared with the original residual
structure used in ResNet [9], [12], our multipath residual
structure has a stronger ability for both feature forward-
propagation and gradient back-propagation, and can therefore
improve parameter efficiency.

In summary, this paper makes the following contributions:
• Our network can generate scale-variable feature maps
within each block and stage and can therefore realize
multiscale feature extraction at any depth level of the
network.

• Our network can learn fine-grained features with
strong semantic representation for high-resolution fea-
ture maps.

• Our network has a multipath residual structure, which
can further improve feature forward-propagation ability
and gradient back-propagation ability of CNNs.

II. RELATED WORKS
Based on the significant progress of AlexNet [41], research
on CNNs has shown considerable advancement. However,
early networks [1]–[6] were impeded by vanishing/exploding
gradient [7], [8]. ResNet [9] relieved this problem to a large
extent by adding skip-connections between different layers
in each residual block, with the subsequent emergence of
many ResNet variants. For example, pre-active-ResNet [12]
uses identity mappings and adjusts the order of convolu-
tion, batch normalization, and ReLU to make training easier.
WResNet [17] proposes weighted residuals to create a direct
path. ELU-ResNet [42] and PELU-ResNet [43] propose
the use of Exponential Linear Unit (ELU) and Parametric
Exponential Linear Unit (PELU), respectively. Stochastic-
Depth-ResNet [11] recommends a stochastic depth strategy
for ResNet. ResNet-in-ResNet (RiR) [14] presents a gen-
eralized residual architecture. ResNeXt [15] introduces the
split-transform-merge strategy to ResNet. WideResNet [44]
decreases the depth and increases the width of ResNet.
CRMNet [45] augments ResNet with a long short-termmem-
ory mechanism. ResNet-of-ResNet (RoR) [13] adds level-
wise skip-connections to ResNet to achieve better results.
Attention-ResNet [16] introduces an attention mechanism to
guide feature learning. Res2Net [46] constructs hierarchical
residual-like connections within each single residual block

to generate multiscale feature maps. Scale-Aggregation-
Net [24] proposes a multiscale aggregation strategy for resid-
ual learning to enhance feature representation and reduce
computation complexity. In this paper, we propose a mul-
tipath residual structure to replace the original single-path
residual structure proposed in ResNet [9], which can further
improve network feature forward-propagation and gradient
back-propagation abilities.

Deconvolution has been well discussed in [47]–[49]. It can
expand the plane size of an input tensor, and therefore
often appears in vision tasks that need planar reconstruction.
In these tasks, deconvolution layers are often attached to
a classification backbone to reconstruct their feature maps,
as seen in DeconvNet [50], DSSD [51], RRC [52], and Hour-
glassNet [53]. In HourglassNet [53], each block is also built
by a symmetrical convolution layer and deconvolution layer
and the whole architecture is built by several stacked blocks.
However, different fromHourglassNet, our ScaleNet does not
reduce the plane size of the feature maps in each block to
1 x 1 and therefore can always maintain high resolution of
the feature maps.

III. NETWORK ARCHITECTURE
A. CONV-DECONV COUPLE
Our network architecture is shown in Fig.2. The network
contains three successive processing stages (i.e., stages 1, 2,
and 3), each containing several stacked isomorphic blocks
(surrounded by dotted boxes), with each block being a
conv-deconv couple. There are two kinds of conv-deconv
couples in Fig.2, Conv-DeConv couple and Conv-Conv-
DeConv-DeConv couple, which are named SingleCouple and
DoubleCouple, respectively. SingleCouple is constructed by
two stacked conv-unit and deconv-unit. DoubleCouple is
constructed by two SingleCouple blocks, with one embed-
ded in the other. These two couples can be used indepen-
dently to build a network, and can also be mixed to build
a network, as shown in Fig.2. In addition, the lowercases
(conv or deconv) refer to the convolution and deconvolution
operations in general sense, while the uppercases (Conv or
DeConv) refer to the convolution and deconvolution units
in Fig.2.

1) HYPER-PARAMETERS
All Conv1 and Conv2 units in Fig.2 have the same set-
tings:i.e., kernel size, 3; stride, 2; padding, 1; dilation, 1;
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FIGURE 2. Architecture of ScaleNet. ⊕ is summation sign.

and no bias. All deconv-units in Fig.2, including DeConv2,
DeConv3, and DeConv4, have the same settings:i.e., kernel
size, 3; stride, 2; padding, 1; dilation, 1; output padding, 1;
and no bias. For each conv-unit and deconv-unit, BatchNorm
and ReLU are attached to form BatchNorm-ReLU-Conv or
BatchNorm-ReLU-DeConv, respectively.

2) FEATURE DIMENSIONS
In a conv-deconv block, the input feature maps are first
down-sampled by one or two (one for SingleCouple, two for
DoubleCouple, same below) conv-units, and then up-sampled
by one or two deconv-units. Because conv-units and deconv-
units are always pair-coupled and have the same stride
of 2, the output plane size of a block remains the same
as its input plane size. In addition, if conv-units change
(increase or decrease) the feature channels to some value,
the coupled deconv-units will restore the feature channels
to the original value. Thus, the output feature channels
of a block remain the same as the input feature chan-
nels. Therefore, a conv-deconv block can always ensure
its output dimensions are the same as its input dimen-
sions. Furthermore, a processing stage, constructed by
stacking many isomorphic conv-deconv blocks, can also
ensure the output dimensions are the same as the input
dimensions.

3) TRANSFORM BLOCKS
Transform blocks are placed between every two adjacent
stages to halve the feature size and increase the feature
channels. As shown in Fig.2, there are two transform blocks
between stages 1 and 2 and between stages 2 and 3. They
contain three (or two) independent transform units (Trans 1,
2, and 3) to first process their parallel inputs independently.
The feature maps with the same plane size are then concate-
nated as the final outputs. The yellow arrows represent the
concatenation operations. Each transform unit contains two

conv-units, the first has a kernel size of 3, stride of 1, and
padding of 1, whereas the second has a kernel size of 2, stride
of 2, and padding of 0. BatchNorm and ReLU are attached to
form BatchNorm-ReLU-Conv.

4) NAMING RULES
If a processing stage adopts DoubleCouple blocks, it is
denoted with a postfix ‘−D’; if SingleCouple blocks are
adopted, the stage is denoted with a postfix ‘-S’. For example,
a network with three stages and 40 layers is denoted as
ScaleNet40-D5D3S2, which means that its first stage contains
fiveDoubleCouple blocks (−D5), second stage contains three
DoubleCouple blocks (D3), and the third stage contains two
SingleCouple blocks (S2). A depth of 40 indicates that the
total number of convolution, deconvolution, and linear layers
is 40.

B. MULTIPATH RESIDUAL STRUCTURE
The overall view of our multipath residual structure is
shown in Fig.2 and includes the green skip-connections
within each conv-deconv block and the blue skip-connections
across every two adjacent conv-deconv blocks. We call
this residual structure a multipath residual structure. If we
only retain the outermost green skip-connection within
each block and remove all other skip-connections, it is the
same as pre-active-ResNet [12], i.e., a single-path residual
structure.
We denote the three successive DoubleCouple blocks in

stage.1 (see Fig.2) as Bi−1, Bi, Bi+1. For block Bi, the weights
and outputs of every unit (includingConv1, Conv2, DeConv3,
and DeConv4) can be denoted as (C i

1, C
i
2, D

i
3, D

i
4) and

(x i1, x
i
2, x

i
3, x

i
4), respectively. The output of the last summing

node in this block can be denoted as X i. We can then integrate
BatchNorm and ReLU into the Conv/DeConv unit and obtain
the following expressions to analyze the relationships among
the three blocks.
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According to the data flow in these three blocks (Bi−1, Bi,
Bi+1), we have:

X i = x i4 + X
i−1 (1)

X i+1 = x i+14 + X i (2)

= (A+ D)X i + Bx i3 + Cx
i
2 + X

i

inside, A = Di+14 Di+13 C i+1
2 C i+1

1

B = Di+14 Di+13 C i+1
2

C = Di+14 Di+13

D = Di+14 C i+1
1

Then we can calculate the residual of block Bi+1:

Resi+1single = X i+1 − X i = AX i = AX i−1 + Ax i4 (3)

Resi+1multi = X i+1 − X i

= AX i + (DX i + Bx i3 + Cx
i
2)

= Resi+1single + DX
i−1
+ Dx i4 + Bx

i
3 + Cx

i
2 (4)

where, Resi+1single refers to the residual of a single-path residual
structure and Resi+1multi refers to the residual of a multipath
residual structure. Comparing equations (3) and (4), if we
disable D, B and C by changing the skip-connections from
multipath to single-path, then Resi+1multi will equal Res

i+1
single.

Obviously, this demonstrates that the multipath residual
structure is an extension of the original residual structure and
can thereby spread the residual calculation of a block to more
previous layers.

IV. EXPERIMENTS AND RESULTS
A. DATASETS AND DATA AUGMENTATION
The CIFAR-10 and CIFAR-100 datasets [54] both con-
tain 50k training images and 10k test images with a size of
3×32×32. The CIFAR-10 dataset consists of 10 categories,
whereas the CIFAR-100 dataset consists of 100 categories.
As per [5], [9], [10], [12], the original training set of both
CIFAR-10 and CIFAR-100 are split into 45k for training
and 5k for validation. A standard data augmentation scheme,
as used in [5], [9], [10], [12], is adopted for their training:
i.e., four pixels are padded on each side and a 32 x 32 crop is
randomly sampled from the padded image or its horizontal
flip. Validation is carried out at the end of each training
epoch. Testing is carried out on a single view of the original
32× 32 image, and the final test error rate is reported on the
10k test sets.

The ImageNet2012 [55] dataset consists of 1.2 mil-
lion training images and 50k validation images, containing
1000 categories and variable sizes. The test error rate is
reported on its 50k validation images (denoted as ImageNet-
1k val). For training on ImageNet, a standard data augmen-
tation scheme provided by PyTorch is adopted, in which a
random-sized crop (0.08 ∼ 1.0 of original size) and random
aspect ratio (3/4 ∼ 4/3 of original aspect ratio) is first made
on an image or its horizontal flip, after which the crop is
resized to 224×224. The color augmentation and normaliza-
tion used in other studies [9], [10], [12], [56] are also adopted.

For testing on ImageNet, we adopt 1-crop testing and 10-crop
testing, in which the crop size is 224 × 224 on a 256 × 256
image and 320 × 320 on a 350 × 350 image. In both testing
situations, the crops are normalized by the mean and variance
of ImageNet.

B. LEARNING SCHEDULE
Both CIFA-10 and CIFA-100 are trained on 2× NVIDIA
TitanX GPUs with a batch size of 128. The optimizer is a
stochastic gradient descent (SGD) with a learning rate start-
ing from 0.1 and divided by 10 at the 240th and 270th epochs,
respectively, with 300 training epochs in total. The weight
decay and momentum are 0.0001 and 0.9, respectively. Ima-
geNet is trained on 4× NVIDIA 1080Ti GPUs with a batch
size of 256, and the learning schedule is the same as that
in [9], [10], [12], [56]. The optimizer is SGD with a learning
rate starting from 0.1 and divided by 10 at every 30 epochs,
with a total of 100 training epochs. The weight decay and
momentum are 0.0001 and 0.9, respectively. The weights are
initialized as in [57] and BatchNorm as in [58]. For all our
networks, the loss functions are cross entropy loss and no
dropout is adopted.

C. RESULTS ON CIFAR-10 AND CIFAR-100
Several ScaleNets with different parameter scales are
designed for CIFAR-10 and CIFAR-100. The experimental
results are shown in Table.1, together with current results
from several other papers, especially ResNets and its variants.
Our best results are marked in bold and the best overall results
are marked in blue.

1) ACCURACY
For the CIFAR-10 dataset, our deep ScaleNet with a dis-
tinct parameter reduction of 30% (1.2M parameters and
222 layers) achieves better performance (5.39%) than that
of ResNet (6.41%, 1.7M), SD-ResNet (5.43%, 1.7M), pre-
ResNet (5.46%, 1.7M), ELU-ResNet (5.62%, 1.7M), and
PELU-ResNet (5.37%, 1.7M). Our deep ScaleNet with 1.7M
parameters and 444 layers achieves a far better error rate
(4.96%) than that of ResNet (6.41%, 1.7M), SD-ResNet
(5.43%, 1.7M), pre-ResNet (5.46%, 1.7M), RiR (5.01%,
10.3M), ELU-ResNet (5.62%, 1.7M), PELU-ResNet (5.37%,
1.7M), FitResNet (5.39%, 2.5M), and Attention-ResNet
(4.99%, 1.9M). Meanwhile, our wide ScaleNet with 1.7M
parameters and 98 layers also shows an approximate error
rate of 5.06%. Furthermore, the deep ScaleNet with 10M
parameters achieves better performance (4.46%, 1432L) than
that of SD-ResNet(4.91%, 1202L, 10M), Pre-ResNet (4.62%,
1001L, 10M),Wide ResNet (4.81%, 16L, 11M), RiR (5.01%,
18L), and CRMN (4.65%, 40M+).

For the CIFAR-100 dataset, our deep ScaleNet with a
substantial parameter reduction of 30% (1.2M parameters)
performs better (24.13%) than ResNet (27.22%, 1.7M),
SD-ResNet (24.58%, 1.7M), pre-ResNet (24.33%,1.7M),
ELU-ResNet (26.55%, 1.7M), PELU-ResNet (25.04%,
1.7M), and FitResNet (27.66%, 2.5M). In addition, the wide
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TABLE 1. Classification performance of ScaleNets on CIFAR-10 and
CIFAR-100. Params refers to the parameter scales of networks, with
a unit of M (1M means 10e6).

ScaleNet with 1.7M parameters achieves a much lower
error rate (23.24%) than the above models. Our wide
ScaleNet with 10M parameters also attains a lower error
rate (21.97%) than that of Wide ResNet (22.07%, 11M) and
RiR (22.90%, 10M). Thus, our results from CIFAR-10 and
CIFAR-100 confirm the marked advantage of ScaleNet
over ResNet [9], SD-ResNet [11], Wide-ResNet [44], pre-
ResNet [12], ELU-ResNet [42], PELU-ResNet [43], FitRes-
Net [60], and RiR [14].

2) OVERFITTING
The training and validation curves of a very deep ScaleNet
with 2000 layers are shown in Fig.3. It contains 272 Dou-
bleCouple blocks in the first stage, indicating that the fea-
ture maps in this stage will continuously vary 272 times in
[32× 32, 16× 16, 8× 8, 16× 16, 32× 32]. Its second stage
contains 200DoubleCouple blocks, indicating that the feature
maps in this stage will vary 200 times in [16×16, 8×8, 4×4,
8 × 8, 16 × 16]. The third stage contains 50 SingleCouple
blocks and the feature maps in this stage will vary 50 times
in [8 × 8, 4 × 4, 8 × 8]. From the train-loss and val-loss
curves in Fig.3, we can clearly see slight over-fitting in the
training stage at the iteration of 64k. However, the val-prec
curve still maintains a slow rise and does not worsen with
the rise of val-loss, suggesting that over-fitting is within an
acceptable range. Though it is an extremely deep network,

FIGURE 3. ScaleNet2000-D272D200S50 (15M, 95.47%) on CIFAR-10:
training loss curve (train-loss), validation loss curve (val-loss), training
precision curve (train-prec), and validation precision curve (val-prec).

even deeper than ResNet (1202L, 10.2M, 7.93%, in Table.1)
by 1.6×, serious over-fitting does not exist, and it achieves a
much lower error rate of 4.53%.

D. RESULTS ON IMAGENET
We compared ScaleNet with ResNet [9] and DenseNet [10]
on ImageNet [55] classification tasks. The ResNets
and DenseNets are the pre-trained models provided by
PyTorch. Table.2 shows the evaluation results of the
ScaleNets on ImageNet-1k val based on 320 × 320 crops
from 350 × 350 images. Fig.4 shows the top-1 validation
error rates on ImageNet-1k val as a function of learned
parameters and floating-point operations (FLOPs), as well
as their inference time and inference memory on a single
TitanX GPU. Evaluation is carried out on 224 × 224 crops
from 256× 256 images.
As seen in Fig.4 (a, b), our ScaleNets significantly out-

perform the ResNets under relatively small parameter scales;
however, the DenseNets perform better than the ResNets
and ScaleNets in regard to parameter efficiency and FLOPs.
For any classification network, inference time and memory
are two irreplaceable aspects reflecting computation costs.
Both parameter scales and FLOPs are reflected on these two
variables. Thus, we conducted an experiment to comprehen-
sively compare the inference time and memory of differ-
ent networks, with results shown in Fig.4 (c). As seen in
this figure, the ScaleNets perform similarly to ResNets, but
outperform DenseNets in regard to both inference time and
memory. Even the largest ScaleNet-58(30M) is better than
the smallest DenseNet-121(8M) for both inference time and
memory. Thus, under the trade-off of efficiency and accuracy,
ScaleNet performance is competitive against these state-of-
the-art networks.

The experimental method of Fig.4(c). We evaluat networks
with a fake input image (random tensor with a shape of 1×3×
224×224) on a single NVIDIA TitanX GPU for 5000 cycles
and count the running time and GPUmemory usage. Because
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TABLE 2. 1-crop and 10-crop validation on ImageNet-1k val.

FIGURE 4. Top-1 validation error rate as a function of learned parameters (a) and FLOPs (b). Comparison of inference memory and inference time (c).

the input is a very small tensor and can be initialized in GPU
memory, there is no time or memory cost for data loading
and preprocessing. Therefore, the running time and GPU
memory used are only related to the network inference pro-
cessing. The running time is counted from the start to the end
of 5000 cycles. The GPU memory is read from the NVIDIA-
SMI board, which can be opened by a command line
‘watch -n 1 nvidia-smi’ on Linux OS. After a very short start-
up stage (< 8s), theMemory-Usage and GPU-Util shown on
the NVIDIA-SMI board reach their respective stable values,
and thereafter remain unchanged to the end of 5000 cycles.
Thus, theGPU-Util values are always between 96%–98% for
all networks compared, which proves that the GPU always
runs at full speed. Under this state, we record the Memory-
Usage value shown on NVIDIA-SMI board as the inference
memory of a network. In addition, we record the average
running time of 5000 cycles as the inference time of a net-
work. Lastly, to eliminate device impact, inference time is
normalized to (0, 1] by dividing the inference time of each
network by the maximum inference time of all networks.
Inference memory and precision are similarly normalized to
(0, 1]. The final results in Fig.4 (c) are relative values of infer-
ence time, memory, and precision based on all networks, thus
providing more reasonable comparison between efficiency
and accuracy.

E. ABLATION STUDIES
1) CONV-DECONV BLOCK
We use DoubleCouple blocks to build two one-stage
ScaleNets for CIFAR-10, i.e., ScaleNet32-D7(1.0M) and

TABLE 3. Classification performance of two one-stage ScaleNets on
CIFAR-10.

ScaleNet44-D10(2.0M). The feature maps generated by
ScaleNet44-D10 are shown in Fig.1. This figure demonstrates
that ScaleNet can completely remove the constraints between
feature size and feature semantics. The high-resolution fea-
ture maps can be found at any depth level of this network.
Table.3 shows the classification results, which demonstrate
that ScaleNet performs much better than ResNet and pre-
active-ResNet. In particular, the numbers of DeConv-units
and Conv-units are almost equal in the ScaleNets, thus
demonstrating the effectiveness of feature extraction based
on a strong deconstruction-reconstruction process.

2) COMPARISON WITH POOLING AND INTERPOLATION
In addition to the convolution layers of stride 2 (denoted
as A) and deconvolution layers of stride 2 (denoted as B)
used in Fig.2, other methods can be used to resize feature
maps. For example, a convolution layer of stride 1 followed
by a pooling layer of stride 2 (denoted as C) can halve the
plane size of feature maps; whereas a interpolation layer of
scale 2 followed by a convolution layer of stride 1 (denoted
as D) can double the plane size of feature maps. In C and
D, the pooling and interpolation layers are used to adjust the
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TABLE 4. Comparison of different up-/down-sampling methods on Error rates(%), FLOPs(G) and inference Time(s).

FIGURE 5. Val-precision curves of ScaleNet-D30 on CIFAR-10. Here, A+B,
A+D and C+D refer to the three up-/down-sampling methods.

plane size of feature maps, whereas the convolution layers of
stride 1 are used to adjust the channels of feature maps. Based
on the design of C and D, ScaleNet can also ensure that both
input and output display the same resolutions and channels
within a block.

We compare these different up-/down-sampling methods
(A, B, C, D) below. We use several standard ScaleNets
with the design of A+B (denoted as ScaleNet(A+B)) as
baseline networks, then first replace B with D to form
ScaleNet(A+D), and then replace A with C to form
ScaleNet(C+D). Table.4 shows the experimental results on
CIFAR-10 and CIFAR-100, in which Time refers to the aver-
age inference time calculated on a single TitanX GPU with
a total of 100 cycles. Fig.5 shows the validation curves of
ScaleNet-D30 with different up-/down-sampling methods on
CIFAR-10.

Comparing the two columns A+B and A+D in Table.4,
we find that the two up-sampling methods (B and D) have
the same parameters and FLOPs. The two ScaleNets on
CIFAR-10 (ScaleNet-D30, ScaleNet-D5D8S10) show almost
equal error rates (5.5% vs 5.7%; 5.9% vs 5.8%). Furthermore,
from the two ScaleNets on CIFAR-100 (ScaleNet-D13D8,
ScaleNet-D5D10S12),A+B and A+D also exhibit similar per-
formances (22.2% vs 23.1%; 24.8% vs 24.3%). This suggests
that up-sampling method B is almost equal to D. Comparing
the columns A+B and C+D, as well as A+D and C+D
in Table.4, the models under C+D show lower error rates

TABLE 5. Comparison of different residual structures for ScaleNets on
CIFAR-10 and CIFAR-100.

but higher FLOPs and inference time than the models under
A+D for both CIFAR-10 and CIFAR-100. Of note, compared
with the slight decrease in error rates, computation complex-
ity (FLOPs) and inference time increase by more than 50%
and 40% respectively, thus suggesting that down-sampling
method C is better than A, but exhibits a serious side-effect of
fast-increasing FLOPs and inference time. In summary, this
comparative experiment reveals that the conv-deconv blocks
used in our ScaleNet demonstrate a better trade-off between
accuracy and efficiency.

3) MULTI-PATH RESIDUAL STRUCTURE
Here, we use ScaleNet32-D7 and ScaleNet98-D20S5, with-
out any skip-connections, as two backbones, and then add
two kinds of skip-connections to them, i.e., ‘SinglePath’
and ‘MultiPath’. SinglePath method means only one inner
skip-connection is built within each block. It is typically
used in ResNet and pre-ResNet and is shown as the out-
ermost green line within each block in Fig.2. Our Multi-
Path method includes all skip-connections shown in Fig.2.
As skip-connections do not add new parameters to a back-
bone, the resulting networks retain the same parameter scales.
As shown in Table.5, MultiPath method is far superior to the
SinglePath method. This is in accordance with the theoretical
proof in Section III-B, which convincingly suggests that a
multipath residual structure can further strengthen feature
forward propagation and gradient back-propagation and can
therefore significantly promote the parameter efficiency of
networks.

F. FEATURE SEMANTICS ANALYSIS
Here, we use three pre-trained one-stage ScaleNets (as
in Fig.1) on CIFAR-10, CIFAR-100, and ImageNet as back-
bones, and then attach auxiliary classifiers to the smallest fea-
ture maps generated by each of their DoubleCouple blocks.
All these feature maps possess the same dimensions, and
thus the attached auxiliary classifiers have the same structure.
We then train the auxiliary classifiers under the same init-
state and training schedule. Obviously, because the feature
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FIGURE 6. Classification results of all auxiliary classifiers and final main
classifier.

maps are frozen, the training of the auxiliary classifiers is
independent of each other. As seen in Fig.6, classification pre-
cision gradually increases with network depth. The auxiliary
classifiers have the same potential learning ability but per-
form very differently according to the feature maps to which
they are attached. Obviously, this reveals that the semantic
information contained in the feature maps gradually increases
with network depth. This further demonstrates the effective-
ness of feature extraction based on a cascaded deconstruction-
reconstruction process.

G. FEATURE-MAPS ANALYSIS
Here, to analyze the multiscale ability of ScaleNet, we visu-
alize class activation maps (CAMs) using Grad-CAM [61],
which is commonly applied to localize the discriminative
regions for image classification. We compare the CAMs
calculated on the last feature maps of ScaleNet103(5.08M,
5.26G, 30.46%), ResNet101(44.54M, 7.83G, 24.10%), and
DenseNet161(28.68M, 7.79G, 23.97%), whereM andG refer
to parameter scales and FLOPs, respectively. The last fea-
ture maps are just ahead of the final linear classifier, which
can be regarded as the final output of a CNN-based feature
extractor. ResNet101 and DenseNet161 are the pre-trained
models provided by PyTorch. The images used all come from
ImageNet [55].

1) LEARNING FINE-GRAINED FEATURES
Fig.7 shows the CAMs of the three networks on five different
images with the same input size of 3 × 320 × 320. Clearly,
the ScaleNet CAMs are very different from those of ResNet
and DenseNet. ScaleNet tends to focus on the fine-grained
details of an object, whereas ResNet and DenseNet always
focus on a larger patch of an object. Under an input size of
3 × 320 × 320, the plane size of the final feature maps is
10×10 for ResNet and DenseNet but is 40×40 for ScaleNet.
Therefore, the final feature maps of ScaleNet exhibit much
higher resolution than those of ResNet and DenseNet,
thus contributing to the capture of fine-grained visual
features.

FIGURE 7. CAMs calculated on the last feature-maps of ScaleNet103
(top), ResNet101 (middle), and DenseNet161 (bottom).

2) MULTI-SCALE INPUT ANALYSIS
Here, to conduct stronger comparative experiments, we input
images with a very large size range (e.g., 32 × 32, 64 × 64,
128 × 128, 224 × 224, 256 × 256, 320 × 320, and 512 ×
512) to the networks to compare their CAMs. Four different
images are first stitched into a single image as the network
input. The stitched image and related experimental results are
shown in Fig.8, where goldfinches and fish are arranged on
the diagonal.

Based on comparison of the ScaleNet CAMs on birds and
fish, the activated regions of the birds and fish do not interfere
with each other and are semantically independent. This sug-
gests that the representation is not a physical representation
based on image textures, but a semantic representation based
on object categories. For the ScaleNet CAMs, when the input
size decreases from 512×512 to 32×32, the activated regions
of the large bird (top-left corner of each image) vary from
small details to relatively large patches, and finally to some
very large patches that cover the whole bird. This reveals
the continuous changing process of semantic representation
from fine granularity to coarse granularity. In other words,
under a very large scale range from 512 × 512 to 32 × 32,
ScaleNet always finds an appropriate semantic granularity to
represent the object. Compared with ScaleNet, the DenseNet
CAMs in Fig.8 (a, top) and Fig.8 (c) fail to reflect such a
process.

Of note, the activated regions of the small birds (bottom-
right of each image, shown in Fig.8 (a)) with ScaleNet exhibit
much clearer activation morphology, with each small bird
activated independently. However, the activated regions of
these small birds (shown in Fig.8 (a, top) with DenseNet are
blurry and quickly disappear as input size decreases. Com-
paring Fig.8 (b) with Fig.8 (c), when the input size is very
small, the activated regions of the large bird and large fish
with DenseNet begin to diffuse in the image plane, whereas
the activated regions with ScaleNet always converge on the
objects. This strongly indicates that ScaleNet possesses better
cross-scale representation ability.

V. DISCUSS
A. RELATIONSHIP WITH BIOLOGICAL VISION
In biological vision, not only is there a feature forward-
propagation (FFP) mechanism, but also a feature
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FIGURE 8. Comparison of CAMs between ScaleNet103 and DenseNet161. All images in (a) have been resized to 300 × 300 for display, with
original sizes marked.

FIGURE 9. Expanding temporal information flow in visual cortices (a) to spatial domain of DoubleCouple blocks (b).

FIGURE 10. Comparison of CAMs between ScaleNet103 (top) and DenseNet161 (bottom) on traffic lights. (a): all images have been
resized to 300 × 300 for display. (b): the original image has been resized to several different sizes with its h/w ratio unchanged.
In both figures, real sizes are marked at the top/bottom in white (for ScaleNet) and cyan (for DenseNet).

back-propagation (FBP) mechanism [62], [63]. Fig.9 (a)
shows a simple overview of the information flow amongV1,
V2 and V4 cortices. Here, FBP refers to backward information
flow from the advanced visual cortex to primary visual cortex,
e.g., from V4 to V2. It is completely unlike the forward
information flow from the primary visual cortex to advanced
visual cortex, e.g., from V1 to V2. If we unfold the temporal
information flow among visual cortices, then V1 ⇀ V2 ⇀

V4 ⇁ V2 ⇁ V1 ⇀ V2 ⇀ V4 · · · . Thus, to mimic
this function, we can unfold the temporal information flow
among visual cortices as a spatial flow among conv-deconv
blocks, i.e., Cov1 ⇀ Conv2 ⇀ DeConv1 ⇁ DeConv2 ⇁

Cov1 · · · , as shown in Fig.9 (b). This concept is another
motivation for this paper, where we introduce some biological
visual mechanisms to improve CNN architecture. However,
it should be pointed out that as understanding of the visual
cortices is incomplete, our method can be seen as a simplified
functional imitation of visual cortices.

B. UNSUPERVISED OBJECT DETECTION
Fig.10 shows the ScaleNet103 and DenseNet161 CAMs on
images of traffic lights. Fig.10 (a) uses an image stitched
together by 12 images, which all contain traffic lights with
different scales, shapes, and illuminations. Fig.10 (b) uses
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an image selected from Fig.10 (a). As shown in the figures,
without the standard pipeline of mainstream detection algo-
rithms (such as anchors sampling, bounding-boxes regres-
sion, and supervised training by ground-truth boxes), our
ScaleNet exactly locates the traffic lights in an image under a
very large scale range of 500 to 100. Obviously, the location
ability of ScaleNet benefits from its fine-grained features
and high-resolution feature maps, because under coarse-
grained features and low-resolution feature maps (e.g., 7× 7
in DenseNet), the CAMs fail to exhibit this ability. Thus,
CAMs driven by fine-grained features can accurately reflect
an object’s position on an image.

Based on Fig.10, CAMs are a promising method for
achieving unsupervised object detection. It is conceivable that
CAMworkflow and high-resolution feature maps with strong
semantic information can be combined to perform traversal
checks and screenings on objects in an image. Because CAMs
work by class labels instead of ground-truth boxes, the final
detection algorithms may be able to work without ground-
truth boxes. Although the results in Fig.10 show their poten-
tial, more implementation details need to be researched.

VI. CONCLUSION
In this paper, we realize image feature extraction based on
an end-to-end and cascaded deconstruction-reconstruction
process. A multipath residual structure is also proposed to
improve the parameter efficiency of networks. Compared to
the state-of-the-art networks, our ScaleNet achieves compet-
itive performance under a trade-off between accuracy and
efficiency. Furthermore, ScaleNet can remove the constraints
between feature size and feature semantics, thereby realizing
multiscale feature extraction at any network depth. ScaleNet
combines high-resolution feature maps, fine-grained fea-
tures, and strong semantic representation, thus hinting at
a promising way in which to achieve unsupervised object
detection.
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