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Abstract—This paper considers the online semi-supervised
learning (OSSL) problem in which the data are a mixture of
both labeled and unlabeled samples and appear in a sequential
(stream) manner. OSSL is very common in real applications
and similar to the human-like learning process. Prototype-
based classifiers, which represent the data of different classes
by some prototypes, are natural in a streaming scenario by
updating the prototypes with online (incremental) learning.
However, most of previous prototype-based models are either
designed for supervised or unsupervised learning separately.
In this paper, we propose a novel model called online adaptive
vector quantization (OAVQ) aiming at improving the classi-
fication performance in case of OSSL. Specially, we use the
learning vector quantization (LVQ) criterion for updating the
prototypes when the data point is labeled, and the frequency
sensitive competitive learning (FSCL) criterion for adjusting
the prototypes when the data point is unlabeled. The labeled
and unlabeled data are coming randomly in a sequential
manner, and these two criteria are used alternatively to learn
the positions of prototypes. In this way, we can make full use of
both supervised and unsupervised information to further boost
the performance. Experiment results on several databases ver-
ify the effectiveness and applicability of the proposed method
in improving the performance for OSSL.

Index Terms—learning vector quantization, frequency sensi-
tive competitive learning, adaptive vector quantization, online
learning, semi-supervised learning

I. Introduction
Pattern recognition methods can usually be partitioned

into supervised and unsupervised models. A more general
case is semi-supervised learning (SSL) which makes use
of both the labeled and unlabeled data to learn the
classifier. Since we can easily collect large amount of
unlabeled data compared with the complicated process of
preparing labeled data, SSL usually achieves much better
performance than supervised and unsupervised learning.
Moreover, in many real world applications, the training
process has to incrementally learn the model on a stream
of patterns, which means the models need to be adjusted
over time when new patterns (either labeled or unlabeled)
appear, and this kind of process is called online semi-
supervised learning (OSSL). In this setting, at each time,
we may have only one or a small number of data points
and the whole training data are usually not stored in
the learning process. Furthermore, in some cases, the

algorithms are restricted to a situation of single-pass
learning where each data point only appear once. OSSL
is similar to the human learning process and becomes
very common in real application. How to efficiently and
effectively make use of labeled and unlabeled information
in an online fashion makes OSSL a challenging problem.

Prototype-based methods represent the training data
with a set of points in feature space (called prototypes),
and have found their utility in wide range of problems.
Generally, there are two kinds of prototype-based learning
paradigms, namely supervised classification models which
learn several prototypes as typical representatives for each
class, and unsupervised clustering models in which a set of
prototypes are treated as an approximate representation
for the whole dataset.

Learning vector quantization (LVQ) [1] as a well known
prototype learning algorithm has been widely developed
in supervised learning. Kohonen et al. proposed a number
of improved versions of LVQ such as LVQ2, LVQ2.1, and
LVQ3 [2]. Crammer et al. [3] showed that LVQ falls in a
family of maximal margin learning algorithms providing
a rigorous upper bound of generalization error. Jin et
al. proposed optimizing the log-likelihood of hypothesis
margin (LOGM) [4] for improving the convergence of
training and generalization performance.

However, most existing LVQ methods are usually
trained in batch mode. In order to cope with online learn-
ing, many algorithms [5]–[7] have been proposed. Online
learning vector quantization (OLVQ) as an important
type of online prototyped learning algorithms has been
researched extensively in [8]–[11]. When a new pattern is
arriving, two nearest prototypes from the positive class
and the rival class are updated, or a new prototype is
added in OLVQ methods. The main difference among
those OLVQ methods is the manner of how to introduce
new prototypes. In [8] and [9], new prototypes are added
according to the increase of some error mechanism. When
the number of new samples which are misclassified reaches
to the predefined error number, a new prototype is added.
In [10] and [11], new prototypes are added by a predefined
threshold. When a new sample is arriving, the distance
between the new sample and the nearest prototype is



Fig. 1. An illustration of online semi-supervised learning (OSSL).
The labeled data (red triangle) and unlabeled data (blue square)
are coming randomly in a sequential manner. The proposed online
adaptive vector quantization (OAVQ) includes two components:
OLVQ and FSCL. When the data point is labeled, online learning
vector quantization (OLVQ) criterion is used to update two proto-
types (the genuine and rival prototypes). When the data point is
unlabeled, the frequency sensitive competitive learning (FSCL) is
used to update only one prototype (the nearest prototype weighted
by the frequency). In OAVQ, these two processes are repeatedly and
adaptively used according to the data labeling type, and in this way,
both the supervised and unsupervised information are combined to
boost the performance of OSSL.

computed. If the distance is bigger than the predefined
threshold, then a new prototype is added. In all those
methods, the final classification performance depends on
the choose of the prototypes. Obviously, it is more benefit
to the procedure of classification if more prototypes are
saved. If all the new samples are saved, then the model
is reduced to the traditional nearest neighbour classifier.
However, due to the constraint on storage space, we
assume that the number of prototypes is bounded by
some pre-given quantity. In this situation, the choice of
prototypes largely depends on the model parameter (i.e.,
the predefined error number or the predefined threshold)
and sequence order of the data. It is also natural that each
sample is implicitly assigned to the nearest representative
prototype, thereby defining a partition of the whole feature
space.

Unsupervised prototype-based learning is a form of
unsupervised learning algorithms inspired by biological
neural systems. Prominent models are the competitive
learning (CL) [12], the frequency sensitive competitive
learning (FSCL) [13], the self-organizing map (SOM)
[14], and the growing neural gas network (GNG) [15]. In
these approaches, only the best-matching prototype or its
topological neighbors are updated. Specifically, CL adjusts
the best-matching prototype which provides the highest
similarity to the given input pattern whereas the rest of
the neurons are left unchanged. FSCL is a conscience type
competitive learning approach in which the competitive
computing units are penalized in proportion to the fre-
quency of their winning. The self-organizing map effec-

tively creates spatially organized internal representations
(i.e., prototypes) of various features for input signals. GNG
successively learns the important topological relations in a
given set of input vectors by means of a simple Hebb-like
learning rule.

In this paper, to deal with the challenging OSSL prob-
lem, we propose a new model called online adaptive vector
quantization (OAVQ) which combines the supervised and
unsupervised prototype based learning methods in an
unified framework. Specifically, the model is initialized
using several initial labeled training samples, then the
incremental mixed labeled and unlabeled samples are con-
tinually used for updating the prototypes. The prototypes
are updated and shared for both supervised and unsu-
pervised processes, and therefore, the class information
of labeled data can be transferred to unlabeled data,
while the clustering information from unlabeled data can
be used to improve the classification performance. If the
coming sample is labeled, then prototypes are updated by
the mode of online learning vector quantization (OLVQ);
otherwise analogy to the self-training, the nearest proto-
type from the unlabeled sample is being updated based
on a modified objective function. Inspired by [13] which
verifies the effectiveness of considering the update time of
each prototype in unsupervised learning, the frequency-
sensitive strategy is exploited in our paper. In this case,
update time (frequency) is maintained for each prototype,
the distance between sample and prototypes in unsuper-
vised learning is redefined by the original distance between
sample and the prototype and the frequency. When the
prototype is computed as the nearest prototype, then the
frequency of this prototype is increased by one. The less
one prototype is updated in unlabeled situation, the easier
it is chosen as the winner prototype for unlabeled sample.
The flow diagram of our method is illustrated in Fig. 1.

The rest of the paper is organized as follows. Section II
describes the proposed OAVQ model, section III reports
the experimental results, and the last section concludes
this paper.

II. Online adaptive vector quantization (OAVQ)

In this section, firstly we introduce our proposed online
adaptive vector quantization (OAVQ) model, then we give
detailed discussions on how to learn from labeled and
unlabeled samples respectively.

A. OAVQ Framework
Suppose that we observe a sequence of feature vectors

x1, x2, ..., xn where xt ∈ Rd is a pre-defined feature
representation. The xt can be either labeled or unlabeled,
if it is labeled, a class label yt is also given. Till time
T , here we use N1 to represent the total number of
labeled samples we have seen, and we also use N2 to
represent the total number of unlabeled samples. The
model parameters need to be optimized are denoted by



m. Then, the objective function for online semi-supervised
learning (OSSL) through time T can be summarized as:

F = min

N1∑
i=1

S(xi, yi,m) + λ

N2∑
j=1

U(xj ,m), (1)

where the hyperparameter λ controls the trade-off between
supervised learning and unsupervised learning, and S(.)
and U(.) are the loss functions for labeled samples and
unlabeled samples respectively.

Specifically, in our proposed online adaptive vector
quantization (OAVQ) model, two prototype-based criteria
(i.e., OLVQ criterion for supervised learning and FSCL
criterion for unsupervised learning) are combined to solve
the OSSL problem. Here the model parameters refer to the
prototypes which are shared in supervised and unsuper-
vised learning. Detailed learning procedures are described
in section II.B and section II.C, and we summarize the
OAVQ process in Algorithm 1.

Algorithm 1 OAVQ
Require: labeled sample (x, y) or unlabeled sample x

prototypes m
1: while receive new pattern x do
2: if x is labeled then
3: update prototypes based on OLVQ criterion
4: else
5: update prototypes based on FSCL criterion
6: end if
7: end while

B. Supervised Model Learning: OLVQ
In this sub-section, we describe the learning criterion

of OLVQ for labeled samples. For a M -class classification
problem, prototype learning is to learn a set of prototype
vectors mij (i = 1, 2, ...,M, j = 1, ..., ni) for each class.
Here ni is the number of prototypes in class i. The
learning process is usually implemented by minimizing the
empirical loss on a training set. An input pattern x ∈ Rd

is classified to the class of the nearest prototype:

k = arg
M
min
i=1

ni

min
j=1
∥x−mij∥22 = G(x,m). (2)

There are many variations of LVQ algorithm [1], [2], [4].
In this paper, we use the minimum classification error
(MCE) [4], [16] criterion due to its good performance.

Specifically, given that m1 and m2 are two nearest
prototypes to pattern x from the positive class and
the rival class respectively, the posterior probability of
x belonging to genuine class y (i.e., the probability of
correct classification) can be approximated by the sigmoid
function σ:

P (c|x;m) = σ(ξ1d(x)), (3)

where ξ1 (ξ1 > 0) is a constant for tuning the smoothness
of sigmoid function and d(x) is computed as d(x) = ∥x−

m2∥2−∥x−m1∥2. Then the conditional log-likelihood loss
of pattern x is S(x, y,m) = 1− P (c|x;m).

As new pattern x is arriving, OLVQ updates the two
prototypes m1 and m2 by gradient-based methods [17],
[18]:

m1 = m1 − η
∂S(x, y,m)

∂m1
,

m2 = m2 − η
∂S(x, y,m)

∂m2
,

(4)

where η is the learning rate.

C. Unsupervised Model Learning: FSCL
In this sub-section, we focus on the problem of how to

update the prototypes for unlabeled samples. Based on the
FSCL criterion, the prototype that provides the highest
similarity to the given input pattern is declared as the
winner node and is moved closer to the input pattern,
whereas the rest of the prototypes are left unchanged.

Specifically, given that x is the arriving unlabeled
sample at current time, then the probability of x belonging
to prototype m can be approximated by the sigmoid
function σ (similar to OLVQ):

P (x ∈ m) = σ(ξ2d(x)), (5)

where ξ2 (ξ2 > 0) is a constant for tuning the smoothness
of sigmoid function and d(x) is computed as d(x) =
∥x − mh∗∥2 (mh∗ is the winner prototype where h∗ =
argminh ∥x−mh∥2). Based on the winner-take-all strat-
egy, only the nearest prototype is considered in the
definition of affiliation function.

When frequency is introduced, suppose that mh∗ is the
winner prototype, then h∗ is computed as:

h∗ = argmin
h

nh∥x−mh∥2, (6)

where nh is the frequency of the prototype. Once a
prototype is updated by the unlabeled sample, then the
relative frequency of this prototype nh is increased by
one. Obviously, this strategy can make a balance in all
the prototypes for unsupervised learning. If a prototype is
updated for only a few times, then it is easier to be chosen
as the winner prototype. In this way, all prototypes can
be well activated in the learning process.

Similarly, the loss function for unlabeled sample x can
be defined as:

U(x,m) = −f ∗ (1− P (x ∈ mh∗)), (7)

where f is the degree of confidence. f is calculated as:

f = σ(ξ2(∥x−m2∥2 − ∥x−m1∥2)), (8)

here m1 and m2 are top two nearest prototypes with
the sample x from two different classes. Estimating the
uncertainty from two best predicted classes [19] has been
proved to be very useful in active learning. If the margin
for the distance is larger, the confidence should be larger
for this sample.



As unlabeled new pattern x is arriving, the nearest pro-
totypes m is also updated by gradient-based methods [17],
[18]:

mh∗ = mh∗ − η
∂U(x,m)

∂mh∗
, (9)

and here η is the learning rate.

Algorithm 2 Modified FSCL
1: for next data point x do
2: Assign x to the prototype m

(t)
h∗ where h∗ =

argminh n
(t)
h ∥x−m

(t)
h ∥2

3: if h == h∗ then
4: Set n

(t+1)
h∗ ← (1− 1/L)n

(t)
h∗ + 1

5: Update m
(t+1)
h∗ using Equation (9)

6: else
7: n

(t+1)
h∗ ← n

(t)
h

8: Set m
(t+1)
h = m

(t)
h

9: end if
10: end for

Since we have made some modifications to the tra-
ditional FSCL, we summarize the learning process in
Algorithm 2. Note that instead of increasing by one for
frequency in each update, a decreasing sequence param-
eterized by L is used here to improve the performance.
One explanation for this setting is that as the algorithm
tends to be stable over time, the effect from the frequency
should be decreased.

III. EXPERIMENTS
In this section, we conduct experiments on both artificial

dataset and real-world datasets to evaluate the model. An
artificially generated dataset is used firstly to illustrate
the effectiveness of incorporating unlabeled data into
the learning process. The proposed algorithm is then
applied to some real-world datasets to further verify its
performance.

A. Artificial dataset
The artificial dataset consists of three Gaussian distri-

butions, each representing a class. The dataset consists
of 300 points in total with 100 points for each class. The
distributions are centred at [0, 5], [-1.5, 1] and [2, -1.5]
respectively, with the covariance matrix [1 0; 0 2], [1 0; 0 2]
and [1 0; 0 2]. The dataset and the learned prototypes for
different methods are figured in Fig. 2. Solid bold circles
represent the learned prototypes in Fig. 2b to Fig. 2d.

In order to illustrate the benefits of unsupervised learn-
ing, we omit the supervised process in this experiment.
In the above four figures, Fig. 2a shows scatter plots of
all training data. Then we randomly choose two initial
prototypes for each class in Fig. 2b. By continuing to
learn models from unlabeled samples in the manner of CL
and FSCL respectively, Fig. 2c and Fig. 2d are produced.
Here we take the learning process of the two prototypes
from the class which are painted black as an example.
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(a) Entire training dataset
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(b) Initial prototypes
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(c) Learn with CL
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(d) Learn with FSCL

Fig. 2. (a) Scatter plots of all training data. (b) Scatter plots of
random initial prototypes. (c) Scatter plots of learning with online
competitive learning strategy. (d) Scatter plots of learning with
online frequency sensitive competitive learning strategy.

TABLE I
Real-world datasets

Dataset Size Dim Class
DNA 2,000/1,186 180 3
Pendigits 7,494/3,498 16 10
USPS 7,291/ 2,007 256 10
MNIST 60,000/ 10,000 784 10

From Fig. 2b we observe that the initial two prototypes
are too close to the right and are not benefit to the
process of the classification. By learning the distribution
information from unlabeled samples with CL criterion, in
Fig. 2c we can see that the left one of the two prototypes
are shift to the left. Thus the two prototypes become a
better representation of the class which are painted black.
Furthermore, online learning vector quantization (OLVQ)
is sensitive to the initial prototypes. A typical case in our
data is the right prototype of the labeled black. In Fig.
2c, it rarely can be updated or wrongly updated by the
pattern from the class which are painted blue. In Fig.
2d FSCL strategy is considered and we can obtain more
reasonable prototypes by using this approach.

B. Real-world data set
To test our proposed method on realistic data, we

conduct experiments with the UCI datasets including: (a)
dna, (b) pendigits, (c) usps, (d) mnist. The statistics of
the above datasets are listed in Table I. As discussed
in previous sections, the results of online learning are
usually influenced by the order of the samples. In order
to yield stable results, the experiment for each dataset is
implemented for 20 times, and for each time the appearing
of the samples are arranged randomly. In our experiments,



TABLE II
Parameter setting in our experiment.

Dataset Number of Prototypes Initial Learning Rate
DNA 3 0.1
Pendigits 10 0.01
USPS 10 0.2
MNIST 8 0.1

the first 20 patterns from each class are used to train the
initial prototypes. Specifically, we predefine the number of
the prototypes as P . The first 20 patterns from each class
are clustered into P clusters and the cluster centers are
viewed as the initial prototypes. For the same dataset, the
number of prototypes for different methods is identical.
For all the remaining data, we randomly choose a certain
percentage of samples as labeled data. Then the mixed
data with labeled and unlabeled samples are arriving one-
by-one randomly. Adagrad algorithm [18] is exploited for
updating model in our method.

For all datasets, the balance parameter λ is set as
0.01. The hyperparameters ξ1 and ξ2 are initialized from
the training samples. Suppose that the number of the
initial training samples is K, then ξ1 is estimated as

2
1
K

∑K
i=1|(∥xi−m2∥2−∥xi−m1∥2)| (m1 and m2 are two near-

est prototypes to pattern xi from the positive class
and the rival class respectively) and ξ2 is estimated as

2
1
K

∑K
i=1(∥xi−m1∥2)

.
The number P of prototypes is chosen from 3 to 10 and

the initial learning rate of gradient descent is chosen from
{0.01, 0.1, 0.2}. The number of prototypes and the initial
learning rate are set as Table II.

Table III shows the results of OLVQ, OLVQ+CL and
OAVQ respectively. OLVQ is a purely online supervised
classifier, while OLVQ+CL and OAVQ are the online
semi-supervised learning models. Learning from unlabeled
samples is based on CL strategy and FSCL strategy in
OLVQ+CL and OAVQ respectively. Different percentages
(from 1% to 100%) of samples are labeled to evaluate the
effectiveness of the proposed method. Best performance
of the compared methods are given in bold. From Table
III, we can observe that when the percentage of labeled
samples is less than 10%, OLVQ+CL and OAVQ have a
clear advantage over OLVQ. Usually the unlabeled data we
use is sampled from the same distribution with the labeled
data, then the data distribution information contained
in unlabeled data is also helpful to the classification.
OLVQ+CL/OAVQ introduces the learning of unlabeled
samples in OLVQ and the better classification performance
is obtained than OLVQ. This is useful in the situation that
the training set is the combination of a small portion of
labeled samples and a large portion of unlabeled samples.
However, as the labeled data being increased continually,
the performance promotion of classification is less or even
the classification performance is degraded slightly. This
is caused mainly by the accumulative error of learning

TABLE III
Error rates on four UCI dataset.

Dataset Labeled percentage OLVQ OLVQ+CL OAVQ

DNA

1% 25.41 24.88 24.25
2% 24.00 23.46 22.73
4% 21.13 20.93 20.65
8% 17.62 17.28 17.27

16% 15.37 14.74 14.98
32% 11.51 11.64 11.68
64% 9.24 9.23 9.22

100% 8.04 8.04 8.04

PENDIGITS

1% 10.17 9.8 9.71
2% 9.80 9.43 9.42
4% 9.68 9.47 9.40
8% 9.51 9.39 9.37

16% 9.15 9.06 9.04
32% 8.19 8.20 8.20
64% 7.82 7.84 7.81

100% 7.16 7.16 7.16

USPS

1% 14.22 12.81 12.99
2% 13.49 12.59 12.51
4% 12.39 11.35 11.40
8% 11.06 10.54 10.53

16% 9.47 9.48 9.36
32% 8.35 8.33 8.15
64% 7.20 7.36 7.36

100% 6.63 6.63 6.63

MNIST

1% 12.77 11.31 11.19
2% 10.56 10.02 9.52
4% 9.11 8.86 8.41
8% 7.47 7.45 7.26

16% 6.41 6.51 6.35
32% 5.59 5.71 5.58
64% 4.99 4.97 4.98

100% 4.58 4.58 4.58

unsupervised samples. For unlabeled data, the winner
prototype is possible to come from the different class with
the arriving sample (i.e., the prototype should be updated
is not been adjusted, and meanwhile the prototype should
not be updated is adjusted). Semi-supervised models
balance the advantage of distribution information and the
disadvantage of the wrongly updating. When the labeled
samples are in the majority, the distribution information
contained in the labeled samples is enough. Then the
advantage of distribution information is weakened and the
accumulative error from unlabeled samples become the
main factor. Finally, considering the updating frequency
of each prototype from unlabeled samples, OAVQ tends
to choose prototypes which has the lower frequency in
unsupervised model learning and always has better or
comparable performance than OLVQ+CL.

IV. Conclusion

In this paper, we consider an important problem of
online semi-supervised learning (OSSL). OSSL is very
common in real applications, where potentially unlimited
data arrive sequentially, which cannot be entirely stored
and only a small fraction of them are labeled. We propose
a new model called online adaptive vector quantization
(OAVQ) to solve this problem which includes two basic
components: the OLVQ criterion for dealing with labeled
samples and the FSCL criterion for handing unlabeled
samples. Experimental results show the effectiveness of
OAVQ on both artificial and real datasets. Our future



work will consider extending OAVQ to other challenging
problems such as class-incremental learning.
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