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ABSTRACT

In recent years, supervised video summarization has achieved
promising progress with various recurrent neural networks
(RNNs) based methods, which treats video summarization
as a sequence-to-sequence learning problem to exploit tem-
poral dependency among video frames across variable ranges.
However, RNN has limitations in modelling the long-term
temporal dependency for summarizing videos with thousands
of frames due to the restricted memory storage unit. There-
fore, in this paper we propose a stacked memory network
called SMN to explicitly model the long dependency among
video frames so that redundancy could be minimized in the
video summaries produced. Our proposed SMN consists of
two key components: Long Short-Term Memory (LSTM)
layer and memory layer, where each LSTM layer is augment-
ed with an external memory layer. In particular, we stack
multiple LSTM layers and memory layers hierarchically to
integrate the learned representation from prior layers. By
combining the hidden states of the LSTM layers and the read
representations of the memory layers, our SMN is able to
derive more accurate video summaries for individual video
frames. Compared with the existing RNN based methods,
our SMN is particularly good at capturing long temporal
dependency among frames with few additional training pa-
rameters. Experimental results on two widely used public
benchmark datasets: SumMe and TVsum, demonstrate that
our proposed model is able to clearly outperform a number
of state-of-the-art ones under various settings.
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1 INTRODUCTION

The amount of video data has increasingly dominated various
internet computing and communication platforms, such as
social media and mobile phones. For example, it has been
reported that almost 5 billion videos are watched on YouTube
every single day [20]. As a result, it has been very demanding
to develop advanced computing techniques such as video
summarization for processing, retrieving, and browsing video
content effectively and efficiently. Video summarization aims
to condense a given video into a short video summary (e.g.,
a collection of key video segments[23], keyframes[3], and key
objects[12]). Due to its importance in a wide range of real
world applications, many keyframe based video summariza-
tion methods have been proposed[1, 7, 15, 19, 30, 42].

While most existing summarization methods are unsuper-
vised and do not require supervision information on keyframes,
as inspired by the advances of deep learning techniques, many
temporal deep learning based methods have been proposed
by treating video summarization as a sequence-to-sequence
learning problem, which translates a video frame sequence
into a series of binary decisions or importance scores for the
video frames. In [38], long short-term memory (LSTM) was
first utilized to model temporal structure among frames for
video summarization. In [40][41], hierarhical LSTM models
were proposed to discover semantic structure within a video
by using two LSTM layers. However, recent studies [21, 31]
show that LSTM is not effective enough in dealing with tem-
poral structures of videos longer than 80 frames (about 3 to
4 seconds). As a result, these recurrent neural network based
methods have limitations to effectively model videos with
several thousands of frames (about several minutes), which
may eventually compromise the quality of the summaries
produced.
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To better model the long term temporal dependency a-
mong video frames, we propose a stacked memory network
(SMN) for video summarization. Our SMN consists of two
basic components: LSTM layer and memory layer, where
each LSTM layer is augmented with an external memory
layer. Within each layer, the LSTM layer interacts with it-
s corresponding memory layer via one read head and one
write head. In addition, we stacks multiple LSTM layers
and memory layers hierarchically to integrate the learned
representation from prior layers. To better fuse the learned
representation from previous layers, we also explore different
types of connections between two memory layers. As a result,
each LSTM layer in our SMN receives the information from
both the previous LSTM layers and memory layers to better
derive long-term temporal context. By combining the hidden
states of the LSTM layers and the read representations of the
memory layers, our SMN is able to produce more accurate im-
portance scores for video frames. Compared with the existing
RNNs based methods, our SMN is also able to capture longer
temporal dependency among frames with fewer additional
training parameters.

To demonstrate the effectiveness of our proposed SMN,
we conducted various experiments on two widely used public
benchmark datasets: SumMe and TVsum. Experimental re-
sults indicate that our proposed method is able to achieve the
best published performance to-date on both datasets under
various settings.

Overall, the key contributions of our work are summarized
as follows:

∙ We propose a novel stacked memory network to model
the temporal dependency among video frames. As a
result, long term temporal structures of videos can
be exploited for producing video summaries with less
redundancy.

∙ We explore different types of connections between two
memory networks to fuse the learned representation
from previous layers, and demonstrate that attention
based fusion is the best for video summarization.

∙ We conduct comprehensive experiments on two wide-
ly used benchmark datasets for evaluating the per-
formance of our proposed method and investigating
its impact on different aspects. Experimental results
demonstrate that our model outperforms the state-
of-the-art methods by a large margin under various
settings.

2 RELATED WORK

In general, there are two categories of video summariza-
tion methods: unsupervised and supervised ones, in terms of
whether supervision information of a summary is utilized for
developing summarization algorithms.

2.1 Unsupervised methods

Unsupervised video summarization methods aim to derive an
importance score using heuristic rules for a video frame or
a video segment (e.g., video shot), and choose those having

high importance scores according to a predefined requirement
(e.g., the number of keyframes or the duration of a summary).
For example, clustering techniques have been used to group
similar video frames into visually similar clusters and the clus-
ter centres are chosen as keyframes form a final summary [30].
Recently, advanced representation and learning techniques
are explored for video summarization. In [1, 16, 17, 19, 42], s-
parse representations techniques have been proposed to score
the importance of each frame in terms of sparse represenation
cost.

By following the adversarial nature of generative adversary
network (GAN) [6], a generative adversarial framework [18]
was proposed for video summarization with two components:
summarizer and discriminator. The summarizer is trained to
output frame selection and the discriminator is to differentiate
an original video from the video reconstructed from the
output of the summarizer. In [43], video summarization was
also formulated under the framework of deep reinforcement
learning with diversity and representativeness rewards.

2.2 Supervised methods

Supervised video summarization methods aim to utilize su-
pervision information to train a classification or recognition
model which classifies a given frame (or segment) into one of
the two classes (i.e., keyframe class and non-keyframe class).
For example, in [9], supervision information was utilized to
learn a linear combination of multiple summarization objec-
tives in the process of subset selection. In recent years, deep
learning techniques have been increasingly utilized for video
summarization. Similarly, in [13], a weighted score function
was learned for the four aspects of ranking, importance, rep-
resentativeness, diversity, and storyness. Therefore, in this
section, we focus on reviewing supervised deep learning based
methods which are closely relevant to our proposed method.

When supervision information is available at video or seg-
ment level only, video summarization is formulated as a task
of classifying a video or segment. In [35], a recurrent auto-
encoder model was proposed for video summarization by
extending conventional auto-encoders with LSTM. The re-
current model is trained with highlight videos so that unseen
non-highlight videos will produce large reconstruction error
when going through the recurrent auto-encoder model. In
[36], a deep convolutional neural network was trained with a
pair-wise ranking function so that the trained deep network
is able to produce a highlight probability score for a given
video segment. In [24], video summarization was formulat-
ed as a two-class temporal segmentation problem using a
fully convolutional network [14], which contains a series of
convolution, pooling and deconvolution operations.

When frame level annotation is available for each video,
supervised deep learning methods formulate video summa-
rization as a sequential labelling task using recurrent neural
networks. In [38], LSTM (long short-term memory) models
were developed and trained to predict a label (i.e. keyframe
or non-keyframe) for each video frame of a given video. In
[39], a retrospective encoder was proposed to ensure that



the original video and its summary will be close enough in
the embedded space. In [40], a hierarchical recurrent neural
network was proposed to perform video summarization at
two steps: the first layer RNN encodes a video segment and
the second layer RNN derives the confidence score whether
the video segment is chosen as a key segment. In [41], a
hierarchical model which consists of two LSTM networks for
video summarization, where one LSTM network is respon-
sible for partitioning a video into segments by discovering
video structures and the other LSTM network is responsible
for producing keyframes for each segment.

However, most recurrent neural network based summa-
rization methods have limitations in modeling long-term
temporal structures due to the restricted memory storage
unit. Inspired by the success of existing memory models in
modelling long-term dependency in question answering [34]
and video captioning [32], we propose a novel stacked memory
network called SMN to explicitly model the long dependency
among video frames. Compared the existing RNNs based
methods, our SMN fuses different representations from LST-
M layers and memory layers and can capture longer temporal
dependency among frames with fewer additional training
parameters.

3 OUR PROPOSED METHOD

Since keyframe based video summarization is to produce an
importance score for each frame of a given video, we formulate
it as a sequence-to-sequence learning problem. For a given
video 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑇 }, where 𝑥𝑡 (𝑡 ∈ {1, 2, . . . , 𝑇})
denotes the feature representation of the 𝑡-th frame in the
video, our method is to predict a set of frame level importance
scores or binary labels 𝑌 = {𝑝1, 𝑝2, . . . , 𝑝𝑇 }.

The overall framework of our method is illustrated in Fig-
ure 1. For an input video 𝑋, we first employ a pre-trained
CNN network to extract feature representation for each frame,
and feed the representation into our proposed SMN for pro-
ducing importance scores or binary lables 𝑌 . Our proposed
SMN consists of 𝑚 LSTM layers and 𝑚 Memory layers, where
each LSTM layer is augmented with an external memory lay-
er. Within each layer of our SMN, a LSTM layer interacts
with its corresponding memory layer through one read head
and one write head. At the same time, the hidden states in
each LSTM layer or memory layer are forwarded into next
LSTM layer or memory layer, respectively. After stacking 𝑚
layers, we gather the representations from each LSTM layer
and memory layer into the output layer to predict impor-
tance scores for the frames of the input video. In addition, we
explore different types of connections between two memory
networks to fuse the learned representation from previous
layers.

In this section, we first describe the four major components
of our proposed SMN method: CNN-based deep feature ex-
traction (Section 3.1), LSTM-based temporal model (Section
3.2), memory model (Section 3.3) and stacked memory net-
work (Section 3.4). Finally, we present the details of model
training (Section 3.5).

3.1 CNN-based Deep Feature Extraction

Since CNN has achieved great success in image and video
understanding tasks [4, 11], the high level activations are
usually employed as representations of image and video data.
Moreover, it has been reported that deep features are able to
achieve better performance than shallow features (e.g, color
histograms, GIST, HOG, dense SIFT) for video summariza-
tion [38]. In order to obtain effective visual representation for
each frame in a video, we follow [38] to employ the activations
from the penultimate layer of a deep CNN network as frame
features. Given an input video 𝑋, we use GoogleNet [28]
pre-trained on ImageNet [11] to encode the video into a set
of feature vectors, denoted by 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑡, . . . , 𝑥𝑇 }.

Note that we can also use deeper networks (e.g., ResNet
[10] and C3D [29]) to obtain better representations of video
frames. We use GoogleNet [28] for feature extraction in order
to perform a fair comparison with previous works.

3.2 LSTM-based Temporal Model

The standard LSTM unit mainly contains an internal memo-
ry cell, an input gate, a forget gate and a output gate. The
memory cell recurrently updates its hidden state by fusing
the previous cell state and the current input with these gates.
During each timestep 𝑡, we feed the input frame representa-
tion (or the hidden states in the previous layer), the previous
hidden state at timestep 𝑡− 1 and the read information 𝑟𝑡−1

from the corresponding memory layer into the LSTM layer.
The read information 𝑟𝑡−1 will be described in next section.
The transition formulas for a LSTM layer’s forward pass are
given below:

𝑖𝑡 = 𝜎 (𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 +𝑅𝑖𝑟𝑡−1) , (1)

𝑓𝑡 = 𝜎 (𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 +𝑅𝑓𝑟𝑡−1) , (2)

𝑜𝑡 = 𝜎 (𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 +𝑅𝑜𝑟𝑡−1) (3)̃︀𝑐𝑡 = 𝜑 (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 +𝑅𝑐𝑟𝑡−1) , (4)

𝑐𝑡 = 𝑖𝑡 ⊙ ̃︀𝑐𝑡 + 𝑓𝑡 ⊙ 𝑐𝑡−1, (5)

ℎ𝑡 = 𝑜𝑡 ⊙ 𝜑 (𝑐𝑡) , (6)

where ⊙ denotes an element-wise multiplication, 𝑊 , 𝑈 , and
𝑅 denote the weight parameters to be learned, and all the
bias terms are omitted. 𝜎 denotes the element-wise logistic
sigmoid function, and 𝜑 denotes hyperbolic tangent function
tanh.

For the simplicity of illustration, the update procedure
of the above-mentioned LSTM layer can be abbreviated as
follows:

ℎ𝑡 = 𝑓𝑙𝑠𝑡𝑚 (ℎ𝑡−1, 𝑐𝑡−1, 𝑥𝑡, 𝑟𝑡−1) (7)

3.3 Memory Model

The memory layer augmenting the 𝑗-th LSTM layer can be
defined as a 𝑁 × 𝐹 matrix 𝑀 𝑗

𝑡 at time 𝑡, where 𝑁 denotes
the number of memory locations and 𝐹 denotes the vector
length of each location. The memory layer interacts with its
corresponding LSTM layer through one read head and one
write head. The read and write heads perform selective read
and write operations through an addressing mechanism. We
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Figure 1: The overall framework of our proposed Stacked Memory Network (SMN) based video summarization
method (to be best viewed in color). Given a video, we first employ the pretrained CNN network to extract
video frame features. Then, we forward these features into our stacked memory networks to update the states
of LSTM layers and memory layers. After combining the states from these LSTM layers and memory layers,
we employ a fully-connected layer to predict each frame an importance score. In addition, We also explore
different types of connections between two memory networks to fuse the learned representation from previous
layers.

will describe the three basic operations of the memory model
and different types of connections between two memory layers
in detail below.

3.3.1 Reading.
Given the weighting vector 𝑤𝑗

𝑡 emitted by the 𝑗-th read
head over the 𝑁 locations at time 𝑡, which needs to be
constrained as follows:

𝑁∑︁
𝑖=1

𝑤𝑗
𝑡 (𝑖) = 1, 0 ≤ 𝑤𝑗

𝑡 (𝑖) ≤ 1, ∀i ∈ [1, 𝑁 ] . (8)

Then the read vector 𝑟𝑗𝑡 returned by the 𝑗-th read head is
calculated as a linear weighting of the row-vectors 𝑀𝑡 (𝑖):

𝑟𝑗𝑡 =
∑︁𝑁

𝑖=1
𝑤𝑗

𝑡 (𝑖)𝑀
𝑗
𝑡 (𝑖) . (9)

3.3.2 Writing.
The writing operation is divided into two parts: erase and

add. Here we define the weighting vector, the erase vector
and the add vector as 𝑤𝑗

𝑡 , 𝑒
𝑗
𝑡 and 𝑎𝑗

𝑡 , respectively, all of which
are emitted by the 𝑗-th write head. The elements of erase
vector 𝑒𝑗𝑡 lie in the range of (0,1). The length of both the

erase vector 𝑒𝑗𝑡 and the add vector 𝑎𝑗
𝑡 is 𝑀 . Since both the

erase vector and add vector have 𝑀 independent elements,
the elements in each memory location can be erased or added
in a fine-grained way. Then the memory state can be updated
as follows:

𝑀 𝑗
𝑡 (𝑖) = 𝑀 𝑗

𝑡−1 (𝑖)
[︁
1− 𝑤𝑗

𝑡 (𝑖) 𝑒
𝑗
𝑡

]︁
+ 𝑤𝑗

𝑡 (𝑖) 𝑎
𝑗
𝑡 , (10)

where i ∈ [1, 𝑁 ] denotes the 𝑖-th memory location.

3.3.3 Memory Addressing.



We use a combination of content-based addressing and
location-based addressing to update the above read/write
weighting vector. During content-based addressing, each
read/write head first produces a key vector 𝑘𝑡 and a sharpen-
ing factor 𝛽𝑡. The key vector 𝑘𝑡 is mainly used for comparing
with each memory vector 𝑀𝑡 (𝑖) using a similarity measure
function 𝐾, and the sharpening factor 𝛽𝑡 is employed for
regulating the precision of the focus. Then they all can be
computed as follows:

𝐾 (𝑥, 𝑦) =
𝑥 · 𝑦

‖𝑥‖ · ‖𝑦‖+ 𝜀
, (11)

𝑑𝑡 (𝑖) = 𝛽𝑡𝐾 (𝑘𝑡,𝑀𝑡 (𝑖)) , (12)

𝑤𝑡 (𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑑𝑡 (𝑖)) . (13)

The location-based addressing mainly focuses on simple
iterations among the locations of the memory and random-
access jumps, which extends the content-based addressing
with a scalar interpolation gate. Before calculating the read/write
weighting vector, the read/write head first produces a scalar
interpolation gate 𝑔𝑡, a shift weighting vector 𝑠𝑡 and a sharp-
en weighting scalar 𝛾𝑡. The scalar interpolation gate 𝑔𝑡 is
used for blending previously generated weighting vector 𝑤𝑡−1

and the weighting vector 𝑤𝑐
𝑡 produced by the content-based

addressing. The shift weighting vector 𝑠𝑡 is defined as a
normalised distribution across the fixed integer range. The
sharpen weighting scalar 𝛾𝑡 is employed to sharpen the final
weighting vector. The final weighting vector can be formulat-
ed as follows:

𝑤𝑙
𝑡 = 𝑔𝑡𝑤

𝑐
𝑡 + (1− 𝑔𝑡)𝑤𝑡−1, (14)

̃︀𝑤𝑡 (𝑖) =

𝑁−1∑︁
𝑗=0

𝑤𝑙
𝑡 (𝑗) 𝑠𝑡 (𝑖− 𝑗), (15)

𝑤𝑡 (𝑖) =
̃︀𝑤𝑡(𝑖)

𝛾𝑡∑︀𝑁−1
𝑗=0 ̃︀𝑤𝑡(𝑗)

𝛾𝑡
. (16)

3.3.4 Connections between Memory Layers.
To figure out what is the best way of connecting two

memory layers, we propose five different types of connection
in our SMN. The five different connections are described as
follows:
1) Scalar based Addition (SA):

𝑀 𝑗
𝑡 = 𝑎𝑀 𝑗

𝑡 + 𝑏𝑀 𝑗−1
𝑡 , (17)

where 𝑎 and 𝑏 are scalar mixture weights, and the default op-
eration between two memory layers is element-wise addition.
2) Global Gated Addition (GGA):

𝛼𝑗
𝑡 = 𝜎

(︁
𝑧T tanh

(︁
𝑊𝑗𝑀

𝑗
𝑡 + 𝑈𝑗𝑀

𝑗−1
𝑡

)︁)︁
, (18)

𝑀 𝑗
𝑡 = 𝑀 𝑗

𝑡 + 𝛼𝑗
𝑡𝑀

𝑗−1
𝑡 , (19)

where 𝑊𝑗 , 𝑈𝑗 and 𝑧 are the weight parameters to be learned,

𝜎 denotes the element-wise logistic sigmoid function and 𝛼𝑗
𝑡

is a scalar gate.
3) Location-wise Gated Addition (LGA):

𝛼𝑗
𝑡 = 𝜎

(︁
𝑊𝑗𝑀

𝑗
𝑡 + 𝑈𝑗𝑀

𝑗−1
𝑡

)︁
, (20)

𝑀 𝑗
𝑡 = 𝑀 𝑗

𝑡 + 𝛼𝑗
𝑡 ⊙𝑀 𝑗−1

𝑡 , (21)

where 𝑊𝑗 and 𝑈𝑗 are the weight parameters to be learned,
⊙ denotes an element-wise multiplication, 𝜎 denotes the
element-wise logistic sigmoid function and 𝛼𝑗

𝑡 is a vector gate
over 𝑁 locations.
4) Recurrent Learning based Addition (RLA):

𝑀 𝑗
𝑡 = 𝜑

(︁
𝑊𝑗𝑀

𝑗
𝑡 + 𝑈𝑗𝑀

𝑗−1
𝑡

)︁
, (22)

where 𝑊𝑗 and 𝑈𝑗 are the weight parameters to be learned,
and 𝜑 denotes hyperbolic tangent function tanh.
5) Attention based Addition (AA):

𝛼𝑗
𝑡 = softmax

(︃
𝑀 𝑗

𝑡 ·𝑀 𝑗−1
𝑡

𝑇

√
𝐹

)︃
, (23)

𝑀 𝑗
𝑡 = 𝑀 𝑗

𝑡 + 𝛼𝑗
𝑡𝑀

𝑗−1
𝑡 , (24)

where 𝛼𝑗
𝑡 is calculated by a scaled dot-product attention

model and it is a 𝑁 ×𝑁 matrix.

3.4 Stacked Memory Network

Given an input video frame sequence 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑇 }
and the number 𝑚 of stacked LSTM layers, our SMN pre-
dicts the importance scores via stacked memory networks.
In particular, we first feed the input frame sequence or the
hidden state at previous layer into the next LSTM layer to
update the hidden states for each LSTM layer. The hidden
state for the 𝑗-th LSTM layer can be calculated as follows:

ℎ𝑗
𝑡 = 𝑓𝑙𝑠𝑡𝑚

(︁
ℎ𝑗
𝑡−1, 𝑐

𝑗
𝑡−1, ℎ

𝑗−1
𝑡 , 𝑟𝑗𝑡−1

)︁
, (25)

where the read vector 𝑟𝑗0 is initialized with random float

number to be learned, ℎ𝑗
0 and 𝑐𝑗0 are initialized with zeros.

Next, the 𝑗-th LSTM layer performs selective read and
write operations on the corresponding memory layer accord-
ing to previous introduction as follows:

𝑟𝑗𝑡 = 𝑓𝑟𝑒𝑎𝑑
(︁
𝑤𝑟𝑗𝑡−1,𝑀

𝑗
𝑡−1, ℎ

𝑗
𝑡

)︁
, (26)

𝑀 𝑗
𝑡 = 𝑓𝑤𝑟𝑖𝑡𝑒

(︁
𝑤𝑤𝑗

𝑡−1,𝑀
𝑗
𝑡−1, ℎ

𝑗
𝑡

)︁
, (27)

where 𝑓𝑟𝑒𝑎𝑑 denotes the read operation and 𝑓𝑤𝑟𝑖𝑡𝑒 denotes
the write operation.

Next, we transform the states from the low-layer memory
into the high-layer memory as follows:

𝑀 𝑗
𝑡 = 𝑓𝑐𝑜𝑛𝑛𝑒𝑐𝑡

(︁
𝑀 𝑗

𝑡 ,𝑀
𝑗
𝑡−1

)︁
, (28)

where 𝑓𝑐𝑜𝑛𝑛𝑒𝑐𝑡 denotes one of the five connection functions.
Based on the hidden states of all the LSTM layers and the
read information from all the memory layers, we fuse them
to predict the corresponding importance score for each video
frame as follows:

𝑝𝑡 =
[︀
ℎ1
𝑡 , · · · , ℎ𝑚

𝑡 , 𝑟1𝑡 , · · · , 𝑟𝑚𝑡
]︀
𝑊 𝑜, (29)

where [] denotes the concatenation operation and 𝑊 𝑜 denotes
the weights to be learned.



3.5 Model Training

Our SMN model is trained in terms of two loss functions:
prediction loss and diversity loss. Since the importance scores
of the input video’s frames are of continuous values, we
employ mean-square loss in our experiments as prediction
loss:

𝐿𝑠𝑢𝑚 =
1

𝑇

𝑇∑︁
𝑡=1

‖𝑦𝑡 − 𝑝𝑡‖22, (30)

where 𝑝𝑡 is the predicted importance score and 𝑦𝑡 is the
ground-truth importance score.

Assuming that the set 𝑌 is the selected frames in the sum-
mary, we define the mean of the pairwise similarity between
these selected frames as follows:

𝐿𝑑𝑖𝑣 =
1

|𝑌 | (|𝑌 | − 1)

∑︁
𝑡∈𝑌

∑︁
𝑡′∈𝑌,𝑡′ ̸=𝑡

𝑑 (𝑥𝑡, 𝑥𝑡′), (31)

𝑑 (𝑥𝑡, 𝑥𝑡′) =
𝑥𝑡

𝑇𝑥𝑡′

‖𝑥𝑡‖ ‖𝑥𝑡′‖
. (32)

Finally, we train our model by balancing the two loss
functions as follows:

𝐿 = 𝐿𝑠𝑢𝑚 + 𝜆𝐿𝑑𝑖𝑣, (33)

where 𝜆 denotes tradeoff hyperparameter.

4 EXPERIMENTAL RESULTS

4.1 Datasets

We evaluate and compare our proposed method with other
state-of-the-art methods on two public benchmark datasets:
SumMe [8] and TVSum [27].

SumMe Dataset contains 25 user videos covering a vari-
ety of events (e.g., cooking and sports). Each video in this
dataset varies from 1.5 to 6.5 minutes in length and was an-
notated with a sequence of frame-level importance scores by
15 to 18 persons. In this dataset, there are many first-person
videos and third-person videos.

TVSum Dataset consists of 50 videos collected from
YouTube. All videos in this dataset were selected from 10
different categories (e.g. animal grooming, making sandwich,
changing vehicle tire, etc.) from the TRECVid Multimedia
Event Detection (MED) task [26]. Each video varies from
1 to 5 minutes in length and was annotated by 20 users.
Similar to SumMe, these videos are provided with frame-
level importance scores and include first-person camera and
third-person camera.

To increase the amount of annotated data, we follow [38]
to use other two datasets as auxiliary datasets. In particular,
we took 39 videos from the YouTube dataset [2] and 50
videos from the Open Video Project (OVP) dataset [2, 22]
for augmented setting and transfer setting [38]. The videos
in YouTube dataset cover a variety of events including news,
sports and cartoon, and the videos in OVP dataset cover
different types of content, such as documentary. Since each
video in the two datasets was annotated with multiple sets
of keyframes, we follow [5] to create a single ground-truth
set of keyframes for each video. To make a full comparison
with the state-of-the-art methods, we follow [38] to train and

test our models on three different dataset settings: canonical
setting, augmented setting and transfer setting.

4.2 Experimental Settings

Similar to [38], we downsample each video in all the datasets
to 2 fps, and extract the output of the penultimate layer
(pool5) of GoogleNet [28] pretrained on ImageNet [25] as the
frame representation. For the LSTM layers in our SMN, we
set the input size and hidden size of first LSTM layer to 1024
and 256 respectively, the input size and hidden size of other
LSTM layers to 256, 256 respectively, and the number of the
stacked LSTM layers 𝑚 to 5. For the memory layers in our
SMN, we set the number of memory locations 𝑁 and the
vector length of each location 𝐹 to 256 and 32 respectively.
For the scalar based addition between two memory layers, we
set scalar weight 𝑎 and scalar weight 𝑏 to 1 and 1 respectively.
In our experiments, we employ sigmoid activation function
to predict the final importance score for each video frame.
Since the ground-truth scores in some datasets are greater
than 1, we normalize all the scores to between 0 and 1 before
training. In addition, we set the batch size, learning rate,
number of training epochs, balance factor 𝜆 to 1, 0.001,
200, 0.01, respectively. To prevent overfitting, we also add a
dropout with rate 0.15 to the final output layer. We train
our model with the Adam optimizer and decay the learning
rate by 0.5 every 30 epoches. To make a fair comparison with
existing approaches, we follow [38] to run each testing fold
for 5 times and report the average result for these datasets.

4.3 Evaluation Metrics

To make a fair comparison with existing approaches, we
follow [38] to use F-score as the evaluation metric to measure
similarity between a generated summary and a ground truth
summary. Given the predicted summary 𝐴 and the ground
truth summary 𝐵, we use the temporal overlap between the
two sets to define the following metrics:

𝑃 =
overlap between A and B

duration of A
(34)

𝑅 =
overlap between A and B

duration of B
(35)

𝐹 =
2𝑃 ×𝑅

𝑃 +𝑅
× 100% (36)

Since a video usually has multiple human-annotated sum-
maries, we follow [9, 27, 38] to compute the average or maxi-
mum values of the metric across multiple summaries.

4.4 Quantitative Analysis

Table 1 shows the performance comparison between our mod-
els and other 13 state-of-the-art methods on the SumMe
dataset. From these results, we can observe that our mod-
el outperforms other thirteen state-of-the-art methods by
a large margin under all the three different settings. For
example, our Stack-LSTM which employs stacked LSTM lay-
ers without memory layers also achieves better performance
than other state-of-the-art methods such as the closest com-
petitor SUM-FCN [24], which proves the effectiveness of



Method Canonical Augmented Transfer

CSUV [8] 39.4 - -
LSMO [9] 39.7 - -
SMTF [37] 40.9 41.3 38.5
vsLSTM [38] 37.6 41.6 40.7
dppLSTM [38] 38.6 42.9 41.8
US-LSTM [18] 41.7 43.6 -
HRNN [40] - 43.6 -
AFER [13] 43.1 - -
HSA-RNN [41] - 44.1 -
DR-DSN [43] 42.1 43.9 42.6
SASUM [33] - 45.3 -
SUM-FCN [24] 47.5 51.1 44.1
Seq2seq [39] - 44.9 -

Stack-LSTM 49.2 52.3 45.7
Our-SMN 58.3 60.1 50.2

Table 1: Performance comparison with thirteen
state-of-the-art methods on the SumMe dataset. The
results of the baseline model (Stack-LSTM) and our
full model (Our-SMN) are shown at the bottom of
the table. Stack-LSTM employs five stacked LST-
M layers without memory layers and Our-SMN em-
ploys five stacked LSTM layers and memory layers.

our stacked structure. By incorporating the stacked mem-
ory layers, Our-SMN achieves F-scores 58.3, 60.1 and 50.2
under three different settings respectively, making the abso-
lute improvement over the baseline by 9.1%, 7.8% and 4.5%
respectively, which indicates that Our-SMN is very good at
modelling long-term temporal dependency for video summa-
rization. Although these methods (vsLSTM [38], HRNN [40]
and HSA-RNN [41]) also attempt to model long-term tem-
poral dependency among video frames, our model can make
a large improvement over them in terms of three different
settings, which further demonstrates modelling long-term
temporal dependency across video frames is helpful for video
summarization. When augmenting training data (augmented
setting) during training, we notice that our proposed model
SMN can achieve even better performance, which indicates
that adding more data is very necessary for training a better
model.

Table 2 shows the results of our models against other ten
state-of-the-art methods in terms of three different settings
on the TVSum dataset. Similarly, it can be seen that Our-
SMN outperforms other state-of-the-art methods in terms of
three settings by large margins. In the canonical setting and
transfer setting, Our-SMN substantially outperforms the clos-
est competitor DR-DSN [43] by 6.4% and 6.3% respectively.
In the augmented setting, Our-SMN also outperforms the
closest competitor Seq2seq [39] by 4.5%. Similar to the obser-
vations on the SumMe dataset, Our-SMN also outperforms
Stack-LSTM by a large margin, especially in the augment-
ed setting by modelling the long-term temporal dependency

Method Canonical Augmented Transfer

vsLSTM [38] 54.2 57.9 56.9
dppLSTM [38] 54.7 59.6 58.7
US-LSTM [18] 56.3 61.2 -
HRNN [40] - 61.5 -
AFER [13] 52.7 - -
HSA-RNN [41] - 59.8 -
DR-DSN [43] 58.1 59.8 58.9
SASUM [33] - 58.2 -
SUM-FCN [24] 56.8 59.2 58.2
Seq2seq [39] - 63.9 -

Stack-LSTM 60.8 63.6 62.1
Our-SMN 64.5 68.4 65.2

Table 2: Performance comparison with ten state-of-
the-art methods on the TVSum dataset. Similarly,
the results of the baseline model (Stack-LSTM) and
our full model (Our-SMN) are shown at the bottom
of the table.

video_24video_6

Groundtruth

Our-SMN

Stack-LSTM

F-score: 86.4%F-score: 85.0%

F-score: 35.4% F-score: 29.8%

Figure 2: Illustration of ground truth and impor-
tance scores predicted by Our-SMN and Stack-
LSTM on two test videos (video 6 and video 24).
The first row, the second row and the last row
denote the importance score curve generated by
groundtruth, Stack-LSTM and Our-SMN, respec-
tively. Our-SMN can capture the most importan-
t part (peak regions) in the video compared with
Stack-LSTM.

with stacked memory layers. These results strongly prove the
effectiveness of our method.

4.5 Qualitative Analysis

To learn more about our model, as shown in Figure 2, we
visualize the ground truth and importance scores predicted by
Our-SMN and Stack-LSTM on two test videos, respectively.
It can be see that Our-SMN captures the most important
part in the video (peak regions) since it can model the long-
term temporal dependency across video frames. For Stack-
LSTM, it completely misses selecting the most important part
for the test video video 24 due to lacking stacked memory



layers. More importantly, these regions conform to human
understanding on which regions are important. This strongly
demonstrates that modelling long-term temporal dependency
can well imitate the human-decision process and effectively
train our model to select important frames from a long video.

5 MODEL ANALYSIS

Computational Complexity To demonstrate that Our-
SMN only introduces few additional parameters compared
with Stack-LSTM, we report the number of model parameters
and the corresponding performance in Table 3. It can be
seen that Our-SMN outperforms Stack-LSTM which employs
the same stacked LSTM layers by large margins (58.3 and
49.2) while using the similar parameter number (3.76M and
3.42M). The comparison between them further demonstrates
the advantage of modelling long-term temporal dependency
of our model.

Method F-score Parameter Size

Stack-LSTM 49.2 3.42M
Our-SMN 58.3 3.76M

Table 3: Comparison of computational complexity
between Stack-LSTM and Our-SMN on the SumMe
dataset in the canonical setting. Here the F-score
corresponds to the model performance. With the
similar parameter size, Our-SMN clearly outper-
forms Stack-LSTM.

Number of Stacked Layers To investigate the impact
of the number of stacked layers in our SMN on model per-
formance, we perform extensive experiments on the SumMe
dataset by varying the number of stacked layers and fixing
the others. Table 4 shows the experimental results of our
SMN with different number of stacked layers. It can be seen
that the model performance will clearly increase when adding
more layers. However, the model performance comes to de-
crease when the number of stacked layers is larger than 5.
When increasing the number of stacked layers, the model is
prone to overfitting due to the increase of model parameters.

Connection Types To investigate the impact of different
connection types on model performance, we perform exten-
sive experiments on the SumMe dataset under the same
parameter setting (the number of stacked layers is 3). Table
5 shows the results of our SMN with different connection
ways. When two memories are not connected, we can see
that the model SMN-no performs the worst among these
models, which demonstrates that the connection between
two memories is helpful for modelling long-term temporal de-
pendency. Moreover, when using attention-based connection
way, our SMN-AA can achieve clear improvements over other
models (SMN-GGA, SMN-LGA and SMN-RLA). It is worth
noting that both SMN-SA and SMN-AA without training
parameters achieves better results than other models, which
demonstrates that parameter learning between two memories
may be not very necessary for video summarization.

Number of Stacked Layers F-score

m-1 49.1
m-2 51.5
m-3 54.5
m-4 56.2
m-5 58.3
m-6 57.9

Table 4: Performance comparison of our model with
different number of stacked layers on the SumMe
dataset in the canonical setting. Here the number
“m” denotes the number of stacked layers in Our-
SMN. The second column shows the experimental
results of the number “m” with different values.

Connection Type F-score

SMN-no 50.3
SMN-SA 53.8
SMN-GGA 51.6
SMN-LGA 51.7
SMN-RLA 51.1
SMN-AA 54.5

Table 5: Performance comparison of our SMN under
different connection types between two memory lay-
ers on the SumMe dataset in the canonical setting.
Here the connection “SMN-no” denotes our stacked
memory networks without any connection between
two memory layers. The other five connection types
are presented in the previous section.

6 CONCLUSIONS

In this paper, we present a novel model called stacked mem-
ory network (SMN) for video summarization by capturing
long term temporal dependency among video frames with
multiple LSTM layers and memory layers. In our proposed
SMN, multiple LSTM layers and memory layers are stacked
hierarchically and different connection types can be employed
for connecting two adjacent memory layers. The experimental
results on the two public datasets indicate that our proposed
SMN can clearly boost summarization performance under
various settings and outperform more than 10 state-of-the-art
methods by a large margin.
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