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Abstract

Person Re-identification (ReID) is an important yet chal-

lenging task in computer vision. Due to the diverse back-

ground clutters, variations on viewpoints and body poses, it

is far from solved. How to extract discriminative and robust

features invariant to background clutters is the core prob-

lem. In this paper, we first introduce the binary segmenta-

tion masks to construct synthetic RGB-Mask pairs as inputs,

then we design a mask-guided contrastive attention model

(MGCAM) to learn features separately from the body and

background regions. Moreover, we propose a novel region-

level triplet loss to restrain the features learnt from differ-

ent regions, i.e., pulling the features from the full image and

body region close, whereas pushing the features from back-

grounds away. We may be the first one to successfully in-

troduce the binary mask into person ReID task and the first

one to propose region-level contrastive learning. We evalu-

ate the proposed method on three public datasets, including

MARS, Market-1501 and CUHK03. Extensive experimen-

tal results show that the proposed method is effective and

achieves the state-of-the-art results. Mask and code will be

released upon request.

1. Introduction

Person Re-identification (ReID) plays an important role

in various surveillance applications, such as pedestrian re-

trieval and public security event detection. In general, for

a given probe person, ReID is to identify the same person

across multiple cameras. It is still a challenging problem

due to various body poses, view of cameras, illumination,

and cluttered backgrounds. In the past years, numerous of

methods [47, 39, 25, 36, 26, 37, 43, 34] have been proposed

to address this problem. Most of previous methods direct-
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Figure 1. Illustration of the binary mask and region-level triplet

loss for contrastive feature learning. (a) Examples of RGB images

and their corresponding masks. The third row shows the body re-

gions extracted directly with the masks. (b) The proposed region-

level triplet loss can restrain the features learnt from different re-

gions, i.e., pulling the features from the full image and body region

close, whereas pushing the features from backgrounds away.

ly learn features from the whole image, which contains not

only the person body, but also the background clutters. Re-

cently, several deep learning based methods are proposed to

learn identity features from the body parts which are gener-
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ated by either part region detection [24], or pose and key-

points estimation [32, 23, 49, 44]. These methods have been

proved effective through extracting features exactly from

the body region rather than the background regions in the

person image. It indicates that removing the background

clutters in person image is helpful for improving the perfor-

mance of person ReID.

Another solution to handle background clutter is to ob-

tain the human body region by segmentation. Fortunately,

with the rapid development of deep learning based image

segmentation methods including FCN [28], Mask R-CNN

[17] and the building of large scale human segmentation

datasets [38, 31], we can obtain much better body mask

now, as shown in Figure 1 (a). The generated binary seg-

mentation masks are pretty good, which can accurately re-

move the backgrounds in person images. The method ap-

plied for generating the masks will be introduced in our re-

lated work.

The binary body mask can contribute to person ReID

in two respects. Firstly, the mask can help removing

the background clutters in pixel-level. This can great-

ly improve the robustness of ReID models under various of

background conditions. Secondly, the mask contains body

shape information which can be regarded as the impor-

tant gait features. It has been proved that the body mask

is robust to illumination, cloth colors, and thus is useful for

identifying a person [35].

The most straightforward way to utilize the binary body

mask is to directly mask the background in the images. With

the binary mask, the masked image only contains the body

region which is expected to perform better than using the

whole image. However, in our experiments, we find the

performance of masked images is even slightly worse com-

pared with the one using the original images (refer to Sec-

tion 4.3 for more details). This result means that directly re-

moving the background with binary mask in a ‘hard’ man-

ner is not a good choice, which may affect the structured

information and smoothness of an image. In addition, the

wrongly segmented masks may contain lots of backgrounds

or lose some important body parts which will greatly impact

the performance. In this case, removing the backgrounds in

the feature-level may be a better solution.

To address this problem, we explore to utilize the bina-

ry mask to reduce the background clutters in the feature-

level. We propose a mask-guided contrastive attention mod-

el (MGCAM) to learn features contrastively from the body

and background regions. As shown in Figure 1 (b), in the

feature space, the features learnt from the body region and

the full image should be similar, whereas the features learnt

from the background and the full image should be differen-

t. To this end, the proposed MGCAM first produces a pair

of contrastive attention maps under the guide of the binary

body mask. The contrastive attention maps are then added

to CNN features to generate body-aware and background-

aware features, respectively. Note that our region-level

triplet loss is applied on region features from the same im-

age rather than other triplet loss [12] on features from dif-

ferent images.

To learn body shape related features from the binary

body mask, we propose to take it as an additional input

accompanied with the original RGB image to construct a

4-channeled image. In this way, the CNN model can learn

the appearance feature from the RGB channels and learn the

body shape feature from the mask channel. So this method

works in a relatively ‘soft’ manner. Even in the worst case,

i.e., the mask is totally wrong, the CNN model still can

learn features from the RGB channels. Our experiments

have proved this method can improve the performance.

The contributions of this paper can be summarized as

follows:

• To reduce the background clutters in person images

with mask, we design a contrastive attention model

which is guided by the binary mask. It can generate

a pair of body-aware and background-aware attention

maps, which can be used to produce features of body

and background.

• We further propose a region-level triplet loss on the

features from full image, body and background. It can

force the model-learnt features to be invariant to back-

ground clutters.

• We explore to take the body mask as an additional in-

put accompanied by the RGB image to enhance the

ReID feature learning. The binary mask has two main

advantages: 1) it can help reduce the background clut-

ters, and 2) it contains identity related features such as

body shape information.

2. Related Work

In this section, we first review some related works in per-

son ReID, especially those deep learning based methods,

then we introduce some segmentation approaches related to

our method, finally we briefly describe some recent visual

attention mechanisms.

Person ReID. Recently, deep learning based person ReI-

D approaches have achieved great success [10, 24, 33, 54,

44] through simultaneously learning the person represen-

tation and similarity within one network. These methods

usually learn the ID-discriminative Embedding (IDE) fea-

ture [48] via training a deep classification network. In addi-

tion, some works try to introduce the pair-wise contrastive

loss [14], triplet ranking loss [54] and quadruplet loss [8]

to further enhance the IDE feature. To combine the clas-

sification and pair-wise loss, Chen et al. attempt to ap-

ply a multi-task model to simultaneously learn classification

and ranking tasks [9]. There are also some works trying to
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Figure 2. Framework of proposed Mask-guided Contrastive Attention Model (MGCAM) for person ReID. It contains four multi-scale

context-aware stages and a fully-connected layer to learn final features. There are three main streams, i.e., the full-stream, the body-stream

and the background-stream. In the middle is the contrastive attention sub-net which can generate a pair of body-aware and background-

aware attention maps under the guide of binary mask. A region-level triplet loss is implemented on the features learnt from three streams.

implement the multi-scale context [24] or multi-resolution

method [29] in person ReID. Note that above methods sim-

ply take the whole image as input which may be greatly

affected by the background clutters and pose variations. To

deeply learn the representations of pedestrian, several body

region or part based methods are proposed. Xiao et al. try to

combine the person detection and identification model [40].

Li et al. propose a two-stream model to jointly learn the

global and part features [24]. Inspired by recent progress

in pose estimation [13, 3], several pose based person ReID

methods are proposed [44, 32, 23, 49]. Those methods have

been proved effective for person ReID, shown that remov-

ing backgrounds is helpful for identifying person.

Segmentation Method. There are few works introduc-

ing segmentations into person ReID, due to the low quality

and computation consuming [36]. With the rapid develop-

ment of deep learning based image segmentation method-

s including the Fully Convolutional Networks (FCN) [28],

CRF based methods proposed in [6], Mask R-CNN [17] and

large scale human segmentation datasets [38, 31], now we

can easily obtain much better body mask.

Visual Attention Mechanism. Visual Attention mech-

anism has achieved great success in computer vision field,

such as object detection [5], image segmentation [7] and

pose estimation [13]. It is efficient and effective via imple-

menting a spatial attention map across each location of the

features. Different from them, we introduce a mask-guided

contrastive attention model which can generate a pair of at-

tention maps to attend to the body and background regions

in a person image, respectively. We might be the first one

to introduce the binary mask guided contrastive attention

model for person ReID.

3. Our Proposed Method

We propose the mask-guided contrastive attention mod-

el to learn features invariant to cluttered background and

selectively learn representations within the body region.

The overview of the proposed method is shown in Figure

2. There are two main components, the contrastive atten-

tion sub-net and the region-level triplet loss for contrastive

feature learning. The first part can generate a pair of in-

verse attention masks which are used to the body-aware

and background-aware feature learning. Whereas the sec-

ond part restrains the distances between features from the

full-stream, the body-stream and the background-stream.

3.1. Overall Architecture

There are variety of network structures introduced or

proposed to learn features for person ReID, among which

CaffeNet [22] and ResNet-50 [18] are mostly used two. In

general, these deep networks should be first pre-trained on

Image-net dataset [30] to initialize the large numbers of pa-

rameters. However, our method need to take 4-channeled

inputs, i.e., the RGB-Mask, which is incompatible with

these pre-trained models. Recently, a multi-scale context-

aware network (MSCAN) has been proposed which can be

trained from scratch [24]. MSCAN achieves the state-of-

the-art performance on several person ReID datasets, out-

performing the feautres learnt by pre-trained CaffeNet [22].

Therefore, we adopt the body-version MSCAN as our base

network, details about MSCAN can refer to [24].

As shown in Figure 2, the adopted MSCAN contains four

multi-scale context-aware stages and a fully-connected lay-

er to fuse the learned features. There are three main stream-

s in proposed mask-guided contrastive attention model
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(MGCAM), i.e., the full-stream, the body-stream and the

background-stream. The full stream learns features from

the whole image, which is the same as the body-version

MSCAN [24]. The body stream tends to learn the body

features with a body-aware attention map. In the contrary,

the background steam learns the background features with

a background-aware attention map. Above attention maps

are generated by the contrastive attention sub-net. Though

the features of three streams are learnt from a same image,

they are quite different from each other, especially the one

learnt from backgrounds which contains almost none use-

ful information related to the identity. In retrospect, a main

goal of person ReID is to reduce the background clutters

and concentrate on the body region. To this end, a triplet of

constrains are added to restrain three features, pushing the

background feature far from the whole feature and pulling

the body feature close to the whole feature.

For a given person image and mask pair (RGB-M), the

MGCAM first produces a middle feature map fstage−2 af-

ter the second stage, with a size of 96×40×16. Then the

sub-net produces a pair of contrastive attention maps with

fstage−2 as its source inputs. The contrastive attention maps

are then added to the body-stream and background-stream,

respectively to implement spatial attention. The full-stream

directly takes the original feature map fstage−2 without any

operation. Both of the three streams finally compute a 128-

dimension feature vector, representing the features learn-

t from full image, body, and background, respectively. We

select the features of the full-stream for person ReID. In the

following subsections, we describe the details of the two

main parts of the proposed MGCAM.

3.2. Mask­guided Contrastive Attention Sub­net

In general, spatial attention model is to take the on-going

feature as its input and produce a weighting map to carry

out spatial-wise attention across the feature map. In this

way, the network could attend the exactly spatial regions on

the feature map that contribute most for training the model.

Given an input sample RGB-M, the feature map after the

second stage of MGCAM can be noted as fstage−2. Tak-

ing fstage−2 as inputs, the contrastive attention sub-net then

produces a body-aware attention map which can be denoted

as

Φ+ = σ(W ∗ fstage−2 + b) (1)

where σ(x) = 1/(1+exp(−x)) is the sigmoid function, W
and b mean the convolutional filter weights and bias. Unlike

the attention model in previous works [7, 5], this attention

model works in a ‘soft’ manner with the sigmoid function

which is similar with [13]. We then generate an inverse at-

tention map Φ− to attend the contrastive feature. To ensure

that Φ+ and Φ− can constitute a contrastive attention pair,

for each location (i, j) in this pair of attention maps should

meet the constraint:

Φ−(i, j) + Φ+(i, j) = 1 (2)

Consequently, we apply this pair of attention maps to the

feature fstage−2 to produce a pair of contrastive features:

f+att = fstage−2 ⊗ Φ+ (3)

f−att = fstage−2 ⊗ Φ− (4)

where ⊗ means the spatial weighting operation. The pos-

itive attention map is expected to have high scores in the

body region whereas the negative one has low scores. How-

ever, as the positive and negative attention maps play equal

roles if without other constrains, it is not guaranteed the

positive one can learn body-aware map. To give a clear hin-

t, we introduce the body mask to guide the attention map

via adding a Mean Squared Error (MSE) loss between the

positive attention map and corresponding body segmenta-

tion mask:

Latt =

I
∑

i=1

J
∑

j=1

∥

∥M(i,j) − Φ(i,j)

∥

∥

2

2
(5)

where M is the body mask which is pre-generated from per-

son image with proper segmentation method (refer to Sec-

tion 4.1 for details) and resized into the same size of the

attention map. Therefore, the mask-guided contrastive at-

tention sub-net can generate contrastive features associating

with the body and background separately.

3.3. Region­Level Triplet Loss for Contrastive Fea­
ture Learning

With the contrastive attention maps described in last sub-

section, we further introduce a region-level triplet loss to

enhance contrastive feature learning. After the attention op-

eration, features from three main streams can be denoted

as ffull, f
+
att and f−att . They are then sent to the following

two MSCAN stages to produce the final 128-dimensional

feature vectors, noted as hfull, hbody , and hbkgd, respec-

tively. With this triplet of features, we take hfull as the

anchor sample, hbody be the positive sample, and hbkgd be

the negative sample. Then the region-level triplet loss can

be defined as

Ltrip = ‖hfull − hbody‖
2
2

+max{(m− ‖hfull − hbkgd‖
2
2), 0}

(6)

where m is a margin parameter which is empirically set to

10 in the experiments. With the minimization of this loss,

in the feature space, features from full-stream and body-

stream will get close to each other whereas the feature from

background will be away. As a result, the feature of the full-

stream will become invariant to background clutters and be

more aware to body regions, which can enhance the perfor-

mance in person ReID task.
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Figure 3. The Siamese network takes a pair of samples as its input-

s. The weights are shared across the two branches. The Siamese

loss and identity loss are jointly implemented on the features learnt

from the probe and gallery.

3.4. Objective Function

We adopt the soft-max regression on the final layers of

three streams to predict the identities of persons. For sim-

plicity, we denote the total cross-entropy identity loss of

three streams as Lid. In addition, we also introduce the

Siamese network to pull the features of same instance close

and separate the features of different persons, as shown in

Figure 3. The two branches of Siamese network can share

weights. It should be mentioned that the Siamese network

learns pair similarity at instance-level, which is quite differ-

ent from the proposed region-level loss. Given a pair RGB-

M of person p and g, their final features of the full-stream

are noted as h(p) and h(g), then the loss of the Siamese

network can be defined as

Lsia =

{

‖h(p)− h(g)‖
2
2 , p = g

max{(m− ‖h(p)− h(g)‖
2
2), 0}, p 6= g

(7)

where m is a margin parameter which is empirically set to

10 in our experiments. Following the previous work in [41],

we also jointly train the network under Siamese loss and i-

dentity loss to further improve the performance of person

ReID. Taking the region-level loss in MGCAM into con-

sideration, the total loss of a pair of samples (p, g) can be

denoted as

Lall = Lid(p,g)+λ ·Lsia+α ·Ltrip(p,g)+β ·Latt(p,g) (8)

where λ, α and β are the hypermeters, which are respective-

ly set to 0.01, 0.01 and 0.1 in our experiments. As MGCAM

can also be trained without Siamese network, we evaluate

both versions of them in our experiments.

Table 1. The details of three datasets used in experiments.
Datasets MARS[48] Market-1501[50] CUHK03[25]

# identities 1,261 1,501 1,467

# boxes 1,191,003 32,668 14,096

# cameras 6 6 2

# resolution 128×256 64×128 vary

3.5. Feature Extraction

As introduced in above subsections, the features of

the full-stream are learnt with both the restrains from the

region-level triplet loss and the instance-level siamese loss,

whereas the features from the other two streams are only

used to guide the feature learning of the full stream. There-

fore, we take the 128-dimensional feature vector generated

from the full-stream as the representation for each sample.

This feature is effective for person ReID in three folds: 1)

It is invariant to background clutters due to the help of pro-

posed MGCAM. 2) It may contain the body shape features

learnt from the mask. 3) It is more discriminative via joint

learning with the siamese loss and identity loss.

4. Experiments

In this section, we describe the experimental details and

testify the effectiveness of proposed MGCAM on three

widely used ReID databases.

4.1. Datasets

We evaluate the proposed method on three large-

scale public person ReID datasets, including MARS [48],

Market-1501 [50] and CUHK03 [25], details of them are

shown in Table 1. Both of the three datasets contain more

than one thousand identities and large numbers of images

which are close to the practical application.

MARS[48] is the current largest sequence-based person

ReID dataset, containing 1,261 identities with each identity

captured by six cameras. There are 20,478 video sequences

and 1,191,003 bounding boxes which are generated by a

DPM detector [16] and a GMMCP tracker [15]. All im-

ages are with a resolution of 128×256. Following [48], we

use 625 identities for training and the rest 631 identities for

testing.

Market-1501[50] contains 1,501 identities which are

captured by cameras from 6 different viewpoints. There are

32,668 pedestrian images which are labeled by bounding

boxes with a DPM detector [16]. Each person has 3.6 im-

ages on average at each viewpoint. The dataset is spilt into

two parts: 751 identities are used for training and the rest

750 identities are used for testing. In the testing phase, fol-

lowing the same setting of [46], 3,368 hand-drawn person

images are selected as probe set to query the correct identi-

ties across the testing set.

CUHK03[25] contains 1,467 identities which are cap-

tured by several surveillance cameras. Each identity is cap-
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Figure 4. Different inputs for person ReID. With the binary mask,

we can generate a synthetic RGB+Mask pair (RGB-M in short),

including three RGB channels and one mask channel.

tured from two disjoint cameras. There are 14,096 person

images in total and each identity has roughly 4.8 images in

each viewpoint. This dataset provides two types of bound-

ing boxes annotations, including the manually annotated

bounding boxes, and DPM-detected bounding boxes. We

evaluate the proposed method on both types of them. Fol-

lowing [52], we adopt the new training/testing protocol to

split the dataset into two balanced parts: 767 identities are

in the training set and the rest 700 identities are in the test-

ing set.

4.2. Implementation Details

Base Model Selection. As described in Section 3, there

are variety of network structures introduced or proposed

to learn features for person ReID, among which CaffeNet

[22] and ResNet-50 [18] are the mostly used two. In gen-

eral, these deep networks should be pre-trained on Image-

net [30] due to their large numbers of parameters. How-

ever, our methods need to take a 4-channel RGB-M inputs

(shown in Figure 4) which is incompatible with these pre-

trained models. Recently, a multi-scale context-aware net-

work (MSCAN) has been proposed which can be trained

from scratch [24]. It achieves state-of-the-art performance

on several person ReID datasets. Therefore, we adopt the

simplest version MSCAN-body as our base network. More

details of MSCAN can refer to [24].

Data Pre-processing. For each image, we first gener-

ate a binary segmentation mask corresponding to the body

and background region with a FCN [28] based segmenta-

tion model which is trained on labeled human segmentation

datasets such as [38, 31]. Most masks are satisfying even

for the images with complex backgrounds. There are also

some failures caused by the wrongly detected images. Be-

sides the RGB images and masks, we generate two kinds

of inputs as shown in Figure 4. The first one is to directly

mask the original RGB images to remove the background

regions, noted as Masked-RGB. The second one is to keep

both the RGB and the mask channels to compose a synthetic

RGB+Mask pair, noted as RGB-M. Therefore, we get four

kinds of image-like inputs. We first resize each inputs in-

to 160×64, then normalize them via subtracting the mean

Table 2. Evaluate the inputs on the MARS dataset. All the results

are measured with the XQDA distance metric.
Methods Inputs Rank-1 mAP

MSCAN-body[24]

RGB 69.70 52.41

Mask 29.34 12.83

Masked RGB 68.13 51.49

RGB-M 71.26 55.44

Ours(hard) RGB-M 70.40 54.27

Ours
RGB 72.83 57.39

RGB-M 74.19 59.13

values and scale them with a factor of 1/256. We also im-

plement randomly mirror as basic data augmentation in the

training phase.

Optimization. All the models are trained on Caffe

framework [19]. We first train our model without Siamese

network for roughly 7.5×104 iterations using an initial

learning rate of 0.01, and decrease it after each 1.5×104

iterations. For each iteration, we randomly select 128 sam-

ples across the whole dataset for training. This well-trained

model is noted as MGCAM. Then we add the Siamese net-

work as shown in Figure 3 and fine-tune the whole model

with an initial learning rate of 0.001. We gradually decrease

the learning rate until the loss stop dropping. We note this

well-trained model as MGCAM-Siamese. Finally, we eval-

uate both of the models and compare with previous state-

of-the-art methods.

Evaluation Metrics. We use the 128-dim feature vector

generated from the full-image stream as the representation

for each person inputs. Then we compute the distance be-

tween probe and gallery samples with several classic met-

rics, including conventional Eulidean distance, XQDA [26],

KISSME [21] and the recently proposed Re-ranking meth-

ods [52]. As Re-ranking method has several variations in

[52], we take the XQDA+Re-ranking version as default in

this paper. Finally, we use the Cumulative Matching Char-

acteristic (CMC) [2] curve and Mean Average Precision

(mAP) [25] to evaluate the performance of proposed meth-

ods on three datasets. Considering that ReID is a rank-

ing problem, we report the single-query rank-1 cumulated

matching accuracy following [52].

4.3. Effectiveness of Proposed Method

On the MARS dataset, we evaluate the effectiveness of

the proposed method comprehensively. We first explore the

influence with different inputs, then compare the proposed

methods with the baseline model.

4.3.1 Evaluate the Effect of Mask

With the generated segmentation masks, we can train CNN

models with them in different manners. As shown in Figure

4, there are four kinds of inputs: original RGB image, bina-

ry mask, masked RGB image and the synthetic RGB+Mask
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Table 3. Evaluate the effectiveness of MGCAM on the MARS

dataset. All methods take the RGB-M as their inputs.
Methods Distance Metric Rank-1 mAP

MSCAN-body [24]

Eulidean 71.21 54.92

KISSME 67.22 47.47

XQDA 71.26 55.44

Re-ranking 72.32 66.01

Ours

Eulidean 74.29 59.59

KISSME 70.96 51.26

XQDA 74.19 59.13

Re-ranking 76.01 70.13

Ours-Siamese

Eulidean 75.66 61.29

KISSME 72.42 53.13

XQDA 75.35 60.34

Re-ranking 77.17 71.17

Table 4. Results on the MARS dataset.
Methods Ref Rank1 mAP

CNN+XQDA[48] ECCV2016 65.3 47.6

MSCAN-body [24] CVPR2017 68.23 51.82

SFT[54] CVPR2017 70.6 50.7

IDE+XQDA [52] CVPR2017 70.51 55.12

MSCAN-Fusion[24] CVPR2017 71.77 56.05

IDE+XQDA+Rerank [52] CVPR2017 73.94 68.45

Ours 76.01 70.13

Ours-Siamese 77.17 71.17

pairs (RGB-M). We train the baseline model MSCAN-body

[24] with four kinds of inputs respectively and report the

results in Table 2. We also compare the RGB images and

RGB-M on proposed MGCAM. It is obvious that the RGB-

M performs better than RGB in both models. Therefore,

in the following evaluation and experiments, we take the

RGB-M as default inputs for proposed methods. We can

draw three conclusions from the results:

• Mask is useful. Only taking mask as inputs can achieve

29.34% rank-1 accuracy showing that the mask con-

tains useful information associated with the identity,

such as the body shape, the ratio between head and

shoulders.

• The masked RGB images perform a little bad show-

ing that removing the background in a hard manner is

not a good choice. This may affect the structured in-

formation and smoothness of an image. It also results

in completely failure in case of the mask is wrongly

generated.

• The RGB-M performs the best indicating that it can

keep both the appearance feature from RGB and body

shape feature from mask. Taking the masks as addi-

tional inputs can enhance the CNN in two aspects: 1)

Mask contains human shape feature and is robust to il-

lumination and clothing colors. 2) Mask can provide

apparent hints for CNN to distinguish human body and

background regions in original RGB image.

Table 5. Results on the Market-1501 dataset.
Methods Ref Rank1 mAP

BOW[50] ICCV 2015 34.4 14.09

PersonNet [37] arXiv 2016 37.21 18.57

WARCA [20] ECCV 2016 45.16 -

SCSP [4] CVPR 2016 51.9 26.35

DNS [43] CVPR 2016 61.02 35.68

Gated [34] ECCV 2016 65.88 39.55

Point-to-Set[53] CVPR 2017 70.72 44.27

CCAFA [11] TPAMI 2017 71.8 45.5

Consistent-Aware [27] CVPR 2017 73.84 47.11

Spindle [44] CVPR 2017 76.9 –

Re-ranking [52] CVPR 2017 77.11 63.63

GAN [51] ICCV 2017 78.06 56.23

MSCAN [24] CVPR 2017 80.31 57.53

DLPAR [45] ICCV 2017 81.0 63.4

Scalable [1] CVPR 2017 82.21 68.8

DaF [42] BMVC 2017 82.3 72.42

SVDNet [33] ICCV 2017 82.3 62.1

Ours 83.55 74.25

Ours-Siamese 83.79 74.33

Table 6. Results on the CUHK03 dataset.

Methods Ref
Labeled Detected

Rank1 mAP Rank1 mAP

BOW[50] ICCV2015 7.93 9.29 6.36 6.39

LOMO[26] CVPR2015 14.8 13.6 12.8 11.5

DaF [42] BMVC2017 27.5 31.5 26.4 30.0

Re-rank [52] CVPR2017 38.1 40.3 34.7 37.4

SVDNet [33] ICCV2017 40.93 37.83 41.5 37.26

DPFL [10] ICCV2017 43.0 40.5 40.7 37.0

Ours 49.29 49.89 46.29 46.74

Ours-Siamese 50.14 50.21 46.71 46.87

4.3.2 Evaluate the Effect of MGCAM

We further compare two versions of the proposed method

with the baseline method [24] to evaluate their improve-

ments. Experiments are conducted with four classic dis-

tance metrics, including Euclidean distance, XQDA [26],

KISSME [21] and the recently proposed Re-ranking meth-

ods [52]. The comparison results are shown in Table 3. We

report the results of proposed MGCAM with and without

the Siamese loss, to testify the effectiveness of each com-

ponent in contrastive attention model. For qualitative eval-

uation, we also visualize the learnt attention maps in Fig-

ure 5. Different from the binary mask which has a con-

stant weight value for each spatial location, the soft atten-

tion map has large weights at the more important parts such

as the head and colorful cloth, whereas has small weights

for the less important parts such as legs and arms without

clothes, which are less informative to identify a person. We

can draw the following conclusions from the experimental

results from Table 2 and Table 3.

• By comparing our MGCAM and the baseline model

with two kinds of inputs in Table 2 and four kinds of

distance metrics in Table 3, we can find that the pro-

posed MGCAM is more effective. The results in Table
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Figure 5. Visualization of the masks and learnt attention maps.

2 also shows that the hard mode which directly using

the binary mask as the hard attention map performs

worse than the soft mode.

• Siamese loss can further enhance the performance of

MGCAM, showing the region-level triplet loss is com-

patible with the instance-level Siamese loss.

• The results shown in Table 3 also show that, even with

the same feature, the results will vary when different

distance metrics are adopted. Among which the re-

cently proposed re-ranking method [52] performs the

best. Thus we take this metric as default to compare

with the state-of-the-art methods in the following sub-

section.

4.4. Comparison with the State­of­the­art Methods

Above experiments have shown proposed MGCAM tak-

ing the RGB-M as inputs can achieve satisfying perfor-

mance. To verify the generalization of our method, we com-

pare with the state-of-the-art methods on three popular ReI-

D datasets in the following parts.

MARS: On this dataset, we compare with several recen-

t proposed state-of-the-art methods, including the pioneer

method CNN+XQDA [48], the baseline method MSCAN

[24], the SFT [54] method which jointly learn both the spa-

tial and temporal representations in one framework, and the

Re-ranking methods presented in [52]. Only single query

is evaluated and compared on MARS. The overall experi-

mental results are shown in Table 4. Our MGCAM-Siamese

achieves 77.17% rank-1 accuracy and 71.17% mAP, outper-

forming the compared state-of-the-art methods. Note that

our model is trained from scratch without any pre-training,

showing our method is robust and effective.

Market-1501: As this datasets is one of the most used

large scale ReID dataset, we compare our approach with a

series of state-of-the-art methods, and list the results in Ta-

ble 5. The compared methods include the body part-based

and pose-based methods, such as Spindle-Net [44], Deeply-

Learned Part-Aligned Representations (DLPAR) [45], as

well as the fusion version of MSCAN [24]. These methods

tend to remove the background clutters and fusion the fea-

tures of the body regions. Experimental results show that

our method achieves satisfying results through simultane-

ously using RGB-M as inputs and the mask-guided con-

trastive attention mechanism.

CUHK03: For the CUHK03 dataset, we evaluate our

methods on both the detected and labeled parts. Follow-

ing the protocols in [52], we compare with the most recen-

t state-of-the-art methods in terms of both rank-1 accura-

cy and mAP under single query. The compared methods

include the Deep Pyramid Feature Learning (DPFL) [10],

SVDNet [33], and two re-ranking methods: DaF [42] and

Re-ranking [52]. As shown in Table 6, our method out-

performs the compared methods with an obvious margin,

showing the advantages of proposed method. Note that our

method is using the same distance metric with Re-ranking

[52]. Compared with the features learnt on ResNet-50 [18]

model by Re-ranking [52], the features learnt on our meth-

ods improve both the rank-1 accuracy and mAP by at least

10 percent. It further shows the effectiveness of our method.

5. Conclusion

In this paper, we propose a novel method to extrac-

t discriminative and robust features invariant to background

clutters. To address this problem, we first introduce the bi-

nary segmentation masks to construct synthetic RGB-Mask

pairs as inputs, then we design a mask-guided contrastive at-

tention model (MGCAM) to learn features separately from

the body and background regions. Moreover, we propose a

novel region-level triplet loss to restrain the features learned

from different regions, i.e., pulling the features from the full

image and body region close, whereas pushing the features

from backgrounds away. Extensive experimental results

show that the proposed method is effective and achieves the

state-of-the-art results.
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