
Effect of the SIRT1 gene on regional cortical grey
matter density in the Han Chinese population
Shuquan Rao*†, Na Luo*, Jing Sui, Qi Xu and Fuquan Zhang†

Background
Our previous genome-wide association study (CONVERGE sam-
ple) identified significant association between single nucleotide
polymorphisms (SNPs) near the SIRT1 gene andmajor depressive
disorder (MDD) in Chinese populations.

Aims
To investigate whether SNPs across the SIRT1 gene locus affect
regional grey matter density in the Han Chinese population.

Method
T1-weighted structural magnetic resonance imaging was con-
ducted on 92 healthy participants from Eastern China. Grey
matter was segmented from the image, which consisted of
voxel-wise grey matter density. The effect of SIRT1 SNPs on grey
matter density was determined by a multiple linear regression
framework.

Results
SNP rs4746720 was significantly associated with grey matter
density in two brain cortical regions: the orbital part of the right

inferior frontal gyrus and the orbital part of the left inferior
frontal gyrus (family-wise error-corrected P < 0.05; voxel-wise
P < 0.001). Also, rs4746720 exceeded genome-wide signifi-
cance in association with MDD in our CONVERGE
sample (P = 3.32 × 10−08, odds ratio 1.161).

Conclusions
Our results provided evidence for a potential role of the SIRT1
gene in the brain, implying a possible pathophysiological
mechanism underlying susceptibility to MDD.
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Major depressive disorder (MDD) is a chronic psychiatric illness
and remains one of the most important contributors to morbidity
and mortality.1 The development of novel interventions has been
hampered by a deficient understanding of the underlying neurobiol-
ogy. Despite convincing evidence for a genetic contribution to
disease susceptibility (estimated heritability of 37%), there has
been a dearth of substantive genetic findings of MDD, with the
lack of success attributed to the phenotypic and aetiologic
heterogeneity.2,3 In our previous study, we performed whole-
genome sequencing of 5303 Chinese women with recurrent MDD
selected to reduce phenotypic heterogeneity and 5337 controls
(CONVERGE sample), and revealed the SIRT1 gene, located on
chromosome 10q21.3, as one of the first two genes successfully
linked to MDD.4

SIRT1 is characterised as a class-III histone deacetylase, which
can deacetylate numerous substrates of histones and non-histone
proteins and thereby influence gene expression and cellular physi-
ology.5 Supportive of the genetic observation in the CONVERGE
sample, results from several independent studies have suggested
the involvement of SIRT1 in MDD. First, SIRT1 expression is mark-
edly downregulated in the peripheral of people with MDD when
compared with healthy individuals and those with remitted MDD
cases.6,7 Second, inhibition of hippocampal SIRT1 function by
either pharmacologic or genetic treatment led to an elevation in
depression-like behaviours, whereas SIRT1 activation could block
both the development of depression-related phenotypes and abnor-
mal dendritic structures.8 Similarly, increased expression of SIRT1
in the nucleus accumbens was observed in depressed mice.
Pharmacologic or genetic activation of SIRT1 in the nucleus accum-
bens increased both depression- and anxiety-like behaviours and,

conversely, inhibition of SIRT1 reduced these behaviours.9 Third,
it has been shown that resveratrol-triggered SIRT1 activation
increased neurogenesis in the hippocampus of aged rats and pre-
vented ageing-associated memory loss and mood dysfunction.10

These above lines of evidence partially revealed the mechanisms
of SIRT1 in the pathogenesis of MDD, especially the involved
brain regions. However, direct evidence as to whether genetic
variants across the SIRT1 gene locus can affect brain structure is
lacking. In this study, we performed imaging genetics to assess
whether the SIRT1 variants affect brain structure using high-
resolution magnetic resonance imaging (MRI) data of 92 healthy
individuals from Eastern China.

Method

This study was approved by the Medical Research Ethics
Committee of Wuxi Mental Health Center, China (no.
WXMHCIRB2013LLKY001). Written informed consent was
obtained from each person before participation in this study.

Participants

A total of 92 healthy individuals (41males and 51 females, aged 40.3
± 14.9 years) were enrolled from the Wuxi Mental Health Center,
Nanjing Medical University, China. All controls were assessed
using the Chinese version of the Modified Structured Clinical
Interview for DSM-IV-TR Axis-I Disorders Non-patient Edition
(SCID-I/NP). Individuals with a history of major psychiatric disor-
ders or suicidal behaviour were excluded. Individuals who had a
first-degree relative with a history of severe mental disorder or sui-
cidal behaviour were also excluded. All participants were of Chinese
Han origin, and none of belonged to extended family.
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MRI

T1-weighted structural MRIs (sMRIs) were conducted on a 3.0-T
scanner (Siemens MAGNETOM Trio with Tim, syngo MR B17 soft-
ware, Erlangen, Germany) using a three-dimensional volumetric
sequence (repetition time/echo time/inversion time 2530/3.44/900 ms,
flip angle 7°, field of view 256 mm2, voxel size 1 × 1 × 1 mm3,
pixel bandwidth 190 Hz, total scan time 6.6 min).

Voxel-wise morphometric MRI data processing

The T1-weighted sMRI data were preprocessed with the Statistical
Parametric Mapping 12 (SPM12, www.fil.ion.ucl.ac.uk/spm/soft-
ware) by using unified segmentation in which image registration,
bias correction and tissue classification are performed using a
single integrated algorithm.11 In this way, brains were segmented
into grey matter, white matter and cerebrospinal fluid and non-
linearly transformed into the standard Montreal Neurological
Institute space.12 Unmodulated normalised parameters were used
to segment the brain into probabilistic maps of grey matter, white
matter and cerebrospinal fluid. The resulting grey matter images
consisting of voxel-wise grey matter density were resliced to 3 ×
3 × 3 mm3, resulting in 53 × 63 × 46 voxels, which was then
smoothed with an 8-mm full width at half-maximum Gaussian
kernel. A mask was then generated to include only the segmented
grey matter voxels inside the brain, as described in our previous
study.13 Finally, voxels in the grey matter maps of each participant
were collapsed into a one-dimensional vector and stacked, forming
a population matrix (number of participants [Nparticipant] × number
of voxels [Nvoxel]).

Genotyping

Genomic DNA was extracted from peripheral blood cells according
to the standard phenol–chloroform method. Genotyping of the
SIRT1 gene locus was performed on the human Illumina
PsychArray-24 (Illumina, USA), strictly according to the manufac-
turer’s instructions. The single nucleotide polymorphism (SNP)
data were subjected to a series of standard quality control proce-
dures by using PLINK (Massachusetts General Hospital, Boston,
USA; http://pngu.mgh.harvard.edu/puurcell/plink), which included
checking for missing data, gender mismatch relatedness, Hard–
Weinberg equilibrium and minor allele frequency as described
elsewhere.14,15

Statistical analysis

For each SNP, we divided the participants into three categories: AA
(assigned as ‘0’), Aa (assigned as ‘1’) and aa (assigned as ‘2’). ‘A’ and
‘a’ indicated the major and minor allele, respectively. The additive
dosage value was regressed against the voxel-wise grey matter
density by using a multiple linear regression framework controlling
for age, gender and diagnosis (when applicable). To correct for

multiple comparisons, a Monte Carlo cluster simulation was per-
formed to identify any cluster that shows significant correlation
between SNPs and grey matter density.16 The algorithm of
cluster-wise correction for multiple comparisons by a Monte
Carlo cluster simulation was implemented in the framework of
AFNI software,17 and 1000 iterations were performed in the simula-
tion procedure. Significance was thresholded at the uncorrected
voxel-wise P-value of 0.001, followed by the family-wise error-cor-
rected cluster-wise P-value of 0.05. To compare the grey matter
density between any two groups, a post hoc test was performed by
using the two-tailed t-test, with a statistical significance level set at
P < 0.05.

Results

After genotyping and quality control, three SNPs – rs4746720,
rs10823112 and rs3758391 – across the SIRT1 locus were finally
analysed (Table 1). As shown in Fig. 1a, significant association
between rs4746720 and grey matter density was observed in two
brain regions: the orbital part of the right inferior frontal gyrus
(cluster size 76 voxels) and the orbital part of the left inferior
frontal gyrus (cluster size 104 voxels) (family-wise, error-corrected
P < 0.05; voxel-wise P < 0.001). The sMRI images for all the slices
can be found in the Supplementary materials available at https://
doi.org/10.1192/bjp.2018.270. Post hoc comparisons between differ-
ent genotypes of rs4746720 revealed that the carriers of the risk
allele (G) predicted higher mean grey matter density than the
carriers of the non-risk allele (Fig. 1b). No significant sMRI–SNP
association was observed for either rs10823112 or rs3758391
after correcting for multiple comparisons (both family-wise,
error-corrected P > 0.05).

We next investigated whether these SNPs are associated with
MDD in the CONVERGE sample. Supporting the imaging genetic
results, genome-wide significant association with MDD was only
observed for rs4746720 (P = 3.32 × 10−08, odds ratio 1.161), but
not for either rs10823112 (P = 0.042) or rs3758391 (P = 0.001)
(Table 1). Given that rs12415800, the top-risk SNP close to the
SIRT1 locus from the CONVERGE sample, was not successfully gen-
otyped in the current study,4 we next investigated whether rs4746720
was in linkage disequilibrium with rs12415800. Interestingly, strong
linkage disequilibrium between rs4746720 and rs12415800 was
observed in East Asian populations from the 1000 Genomes
Project pilot study (r2 = 0.839; Fig. 2), strongly suggesting that the
sMRI–SNP association might not be generated by chance.

Discussion

Neuroimaging has been widely applied to identify the key brain
regions implicated in the pathophysiology of MDD, and imaging

Table 1 The SIRT1 single nucleotide polymorphisms from this study and their association with major depressive disorder from the CONVERGE samples

SNP Frequency The CONVERGE sample Linkage
disequilibrium (r2)Chromosome Position RSID Location Ref. Alt. EAS EUR AFR Odds ratio s.e. P-value

10 69676830 rs4746720 30 near gene A G 0.400 0.008 N/A 1.161 0.028 3.32 × 10−08 0.839
10 69670816 rs10823112 Intron A G 0.312 0.076 0.020 0.942 0.032 0.042 0.332
10 69643342 rs3758391 50 near gene T C 0.158 0.667 0.646 0.876 0.038 0.001 0.098
10 69624180 rs12415800 50 near gene G A 0.401 0.023 0.002 1.164 0.028 1.92 × 10−08 1.000

The first six columns give the chromosome (Chr.), genomic position (Pos.), SNP identifier (RSID), location in the gene locus (Location), reference allele (Ref.) on National Center for
Biotechnology Information Build GRCh37 and alternative allele (Alt.) called in 10 640 CONVERGE samples (5303 cases, 5337 controls). The next three columns show the alternative allele
frequency (Freq.) in three superpopulations according to the 1000 Genome Project.18 The final four columns present the results of association testing with major depressive disorder in
CONVERGE samples: odds ratio of association with major depressive disorder with respect to the alternative allele and standard error in the odds ratio were obtained from a logistic
regression model, P-values of association were obtained from a linear-mixedmodel with a genetic relatedness matrix containing all samples and linkage disequilibrium of each SNPwith the
index SNP rs12415800 from the original manuscript in EAS populations. SNP, single nucleotide polymorphism; EAS, East Asian; EUR, European; AFR, African.
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Fig. 1 Significant association of the SIRT1 rs4746720with cortical grey matter density in two clusters. (a) Spatial map of the two clusters where
the SIRT1 rs4746720 genotypes had an effect on grey matter density. A multiple regression model and voxel-wise t-test was applied to test the
correlation between rs4746720 and grey matter density. The colour bar specified the statistics of the t-test. Significance was thresholded at the
uncorrected voxel-wise P-value of 0.001 and the family-wise, error-corrected cluster-wise P-value of 0.05. (b) Detailed summary of the two
clusters. Coordinates referred to theMontreal Neurological Institute (MNI) space inmm. (c) The rs4746720 risk-allele (G) carriers exhibited higher
mean grey matter density in the two clusters compared with non-risk allele carriers (two-tailed t-test). Frontal_Inf_Orb_L, orbital part of the left
inferior frontal gyrus; Frontal_Inf_Orb_R, orbital part of the right inferior frontal gyrus; GM, grey matter.
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Fig. 2 Linkage disequilibrium plots between rs12415800 and adjacent single nucleotide polymorphisms (SNPs) across the SIRT1 gene locus in
Asian populations and their association with major depressive disorder in the CONVERGE sample. Statistical results of association with major
depressive disorder were extracted from the CONVERGE samples.4 A physical map of the region is given and depicts known genes within the
region. The recombination rates expressed in centimorgans (cM) per megabase (Mb) (National Center for Biotechnology Information Build
GRCh37; light blue lines) are shown on the right y-axis. Position in Mb is on the x-axis. Linkage disequilibrium of each SNP, with the top SNP
rs12415800 displayed as a purple diamond, is indicated by its colour (data from the 1000 Genomes Project, pilot 1, Asian panel). The plots were
drawn using LocusZoom.19 Chr10, chromosome 10.

Please refer to this figure online to view the original colours in the key and plot points more clearly.
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genetic methods have also been applied to investigate the functions
of specific MDD-risk SNPs in previous studies.20,21 In contrast to
white matter, which shows linear increase in volume, previous
studies have suggested a pattern of rapid neurogenesis and related
volume increase of grey matter from early childhood to the adoles-
cent period, followed by a process of selective elimination and mye-
lination which leads to volume loss and thinning.22 Associations of
cortical and subcortical volume with people with MDD have been
extensively reported. For instance, based on data from 8927 partici-
pants using an individual participant data-based meta-analysis
approach, the MDD working group within the Enhancing Neuro
Imaging Genetics through Meta-Analysis (ENIGMA) reported sub-
cortical volume differences, which were greatest in the hippocam-
pus, between people with MDD and healthy controls.23 Again, the
same group collected brain MRI data from >10 000 people and
found significant differences in cortical thickness in 13 out of 68
regions examined, encompassing the medial prefrontal cortex,
rostral anterior and posterior cingulated cortex, insula and fusiform
gyrus.24 More importantly, the development of cortical and subcor-
tical grey matter regions is largely influenced by genetic factors, sug-
gesting a neurobiological basis underlying the risk variants
identified in MDD genetic studies.25,26

In the current study, we found significant association between
rs4746720, a genome-wide significant SNP located within the
SIRT1 locus, and grey matter density in the inferior frontal cortex,
with the risk allele-G carriers predicting higher mean grey matter
than the non-risk allele carriers. In support of the result observed
in our study, accumulating evidence from sMRI studies have sug-
gested the involvement of neuroanatomical changes in the frontal
lobe in mood disorders, including both MDD and bipolar dis-
order.27,28 For example, abnormalities of both grey matter and cor-
tical thickness have been reported in the inferior frontal gyrus in
patients with MDD.27,29 Furthermore, through systematic meta-
analysis, Kempton et al30 found that, compared with the structure
of a healthy brain, MDD was associated with smaller volumes of
the frontal lobe and several other brain regions. More importantly,
people with MDD showed increased rates of subcortical grey matter
hyperintensities compared with healthy controls.30

We next moved from the imaging genetic finding to the putative
mechanisms for the inferior frontal gyrus. It has been reported that
the inferior frontal gyrus is involved in a number of cognitive pro-
cesses of potential relevance toMDD, including response inhibition,
set switching, socioemotional learning and sustained attention.31

Moreover, the patients with MDD showed dysfunction of language
processing and cognitive performance, possibly due to impairment
of the network of the ‘theory of mind’, which includes inferior
frontal gyrus.32 These studies strongly suggest the possibility that
loss of the functional integrity of the inferior frontal gyrus may
underlie trait dysfunction in MDD.

Notwithstanding its significant strengths, our study has some
inherent shortcomings due to its design. First, we employed
healthy participants but not people with MDD. Although the use
of healthy controls for imaging genetics at the level of brain function
avoids potential confounders related to chronic illness and medical
treatment, it is unclear whether grey matter density in the inferior
frontal cortex was correlated with the symptoms of depression.
Second, the sample size (N = 92) recruited in our study was rela-
tively small when compared with other neuroimaging studies,23,24

which may obscure other true correlations. Third, we performed
the whole brain-wide correction for each association test,
however, whole brain-wide correctionmight preclude some positive
associations of moderate association. We acknowledge that brain
regions other than the inferior frontal cortex might also be involved
in the pathogenesis of depression. Third, it is worth noting that only
Han Chinese women with severe MDD were recruited in our

CONVERGE MDD genome-wide association study.4 On one
hand, this could definitely have minimised the phenotypic and
aetiologic heterogeneity, allowing for the discovery of the risk var-
iants; but on the other hand, this could have precluded some prom-
ising risk variants.

In sum, our results provide evidence for a potential role of the
SIRT1 gene in the brain, implying a possible pathophysiological
mechanism underlying susceptibility to major depression.
However, additional investigation of the underlying molecular
pathways within affected brain regions is warranted.
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