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Abstract. With the rapid growth of visual data on the web, deep hash-
ing has shown enormous potential in preserving semantic similarity for
visual search. Currently, most of the existing hashing methods employ
pairwise or triplet-wise constraint to obtain the semantic similarity or
relatively similarity among binary codes. However, some potential se-
mantic context cannot be fully exploited, resulting in a suboptimal visual
search. In this paper, we propose a novel deep hashing method, termed
Joint Multiply Semantics Hashing (JMSH), to learn discriminative yet
compact binary codes. In our approach, We jointly learn multiply se-
mantic information to perform feature learning and hash coding. To be
specific, the semantic information includes the pairwise semantic similar-
ity between binary codes, the pointwise binary codes semantics and the
pointwise visual feature semantics. Meanwhile, three different loss func-
tions are designed to train the JMSH model. Extensive experiments show
that the proposed JMSH yields state-of-the-art retrieval performance on
representative image retrieval benchmarks.

Keywords: Deep Hashing · Binary codes · Multiply semantics · Visual
search.

1 Introduction

With the explosive growth of image or video on the web, it is highly desirable
that the data should be organized and indexed efficiently and accurately. As
an approximate nearest neighbor (ANN) search technique, hashing [3,15,24,25]
has shown superior potentials for dealing with large-scale visual data, which
has received increasing attention in both the academia and industry. Generally,
hashing employs a set of hashing functions to transform each data into compact
binary codes, meanwhile retaining the semantic similarity of original data. Due to
the encouraging efficiency in both search speed and storage [3,22], more and more
hashing methods are proposed for visual retrieval tasks recently [2, 26,29–31].

Generally, hashing methods could be divided into two main categories based
on the type of hash functions: data-independent hashing [3, 10, 20] and data-
dependent hashing (also known as learning-based hashing) [8, 23, 29]. Data-
independent hashing methods always require long codes to achieve satisfying
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performance, while data-dependent hashing methods are prone to learning more
compact binary codes by utilizing a batch of training data. In this paper, we
focus on learning-based hashing with the application in visual search [21].

A fruitful of learning-based hashing methods have been designed for effi-
cient ANN search, where the efficiency comes from the compact binary codes
that are orders of magnitude smaller than high-dimensional feature descriptors.
Based on the generated binary codes, the similarity between the query and the
database can be efficiently computed. Meanwhile, the storage cost can be dis-
tinctly decreased. According to whether the supervision information is available,
the learning-based hashing can be roughly grouped into unsupervised and su-
pervised approaches. In contrast to unsupervised hashing [4,15,17,27] where no
supervision information is provided, supervised hashing mainly leverages super-
vision information (e.g., pointwise semantic labels, pairwise similarity affinity)
to perform hash learning. The supervised approaches have obtained better ac-
curacy in real-world visual search. Some representative works include Minimal
Loss Hashing [19], Supervised Discrete Hashing [22], Fast Supervised Discrete
Hashing [18]. Recently, some approaches [2, 13, 29, 32, 33] have shown that con-
volutional neural network (CNN) [6, 9] can be used as nonlinear hash functions
to learn end-to-end feature representations and binary codes, achieving state-of-
the-art results on public datasets.

The first proposed deep hashing work is Convolutional Neural Network Hash-
ing (CNNH) [28], which adopts the well-known architecture in [9] to learn dis-
criminative and compact binary codes with a pairwise constraint. CNNH consists
of two stages to learn the feature representations and binary codes. Nevertheless,
the feature representations cannot make feedback to hash coding and it cannot
fully show the efficiency of CNN in hash learning. On the basis of CNNH, Net-
work In Network Hashing (DNNH) [11] integrates image representations and
hash coding in a unified framework. Besides, DNNH employs a triplet-based
ranking constraint to maximize the margin between a similar pair and dissimilar
pair, and it designs a divide-and-encode module to reduce the redundancy among
binary codes. Furthermore, Deep Hashing Network (DHN) [33] is a representative
pairwise deep hashing work in a unified framework. It employs a cross-entropy
loss to enforce similar(dissimilar) pairs to have small(large) hamming distance
and formally controls the pointwise quantization error by a designed smooth sur-
rogate of the l1-norm. To better control quantization error, HashNet [1] proposes
a continuous scale strategy to approximately approach the discrete binary codes,
and takes into consideration class imbalance to obtain small(large) hamming dis-
tance between data pair. DPH [2] also takes into consideration class imbalance
for supervised hashing, and integrates the prior information into getting binary
codes. Other typical deep hashing methods can be found in [2, 12,15,16].

Among these methods above, they generally construct data pairs’ similar-
ity affinity as the ground truth for supervised hash learning. Specifically, the
similarity is defined as 1 if two samples share at least one label information,
and otherwise -1, then they employ the defined similarity affinity to obtain
similarity-preserving binary codes in Hamming space. However, the defined simi-
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larity affinity fails to employ the high-level semantic information offered by label
information, and the generated binary codes cannot show the high-level seman-
tics. In addition, although existing hashing works perform feature learning and
hash coding in an end-to-end way, they little make effort about extracting dis-
criminative feature, as well as the effect on binary codes.

In this paper, we propose a joint multiply semantics hashing approach to ad-
dress the above challenges. Specifically, we jointly learn three semantic properties
to generate discriminative yet compact binary codes, including preserving the
semantic similarity between a pair of binary codes, guaranteeing the pointwise
codes’ high-level semantics and learning the semantic visual feature.
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Fig. 1: An overview of the proposed deep hashing termed JMSH, which accepts
image pairs as its input. In this framework, The AlexNet network is employed
for extracting image feature, followed by a hashing layer with K neural units,
which transforms the feature into K -bit binary codes. For each pair of binary
codes, we utilize their similarity affinity to preserve the semantic similarity in
Hamming space. Besides, we attempt to employ the label information to exploit
the pointwise codes and feature semantic property.

2 Joint Multiply Semantics Hashing

Learning-based hashing has become an important research topic in multimedia
retrieval, which trades off efficacy from efficiency. In this section, we will intro-
duce our proposed joint multiply semantics hashing approach. The framework
of the JMSH is shown in Figure 1, which accepts paired images as the input
and processes them through the deep feature learning and hash coding. In this
framework, we learn multiple semantic properties, including the pairwise codes
semantic similarity, the pointwise codes semantics and the pointwise feature se-
mantics.
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2.1 Problem Formulation

Given a training set of N points I = {Ii}Ni=1, the goal of learning-based hashing
is to learn a set of hashing functions to encode each data point Ii into a compact
K-bit binary code B = {bi}N×K , bi ∈ {−1, 1}K . The corresponding label matrix
is denoted as T = {t i}Ni ∈ R N×C and C denotes the number of classes. The
term tim is the m-th element of ti and tim = 1 if Ii is from class m, and otherwise
tim = 0. Then, existing hashing generally denotes the paired similarity sij = 1
if two samples share at least one class label, and otherwise sij = −1 [23].

For training sample pairs {(Ii, Ij , sij), sij ∈ S}, the discrete binary codes
should preserve their similarity in Hamming space. Although several different
objective functions can be leveraged to achieve this goal, the widely-used one
is to leverage the inner product of two binary codes [2, 23] to approximate the
discrete semantic similarity. Specifically, for a pair of codes bi and bj , the close
relationship between their Hamming distance DH(bi, bi) and their inner product
bTi · bj can be described as: DH(bi, bj) = 1

2 (k − bTi · bj). Given the pairwise
similarity relationship Sij , the maximum posterior estimation of binary codes
can be described as:

p(B|S) ∝ p(S|B)p(B) =
∑
sij

p(sij |bi, bj)p(bi, bj), (1)

where p(S|B) is the likelihood function; p(B) is the prior distribution. For each
pair of sample, p(sij |bi, bj) is the conditional probability of similarity sij given
a pairwise binary codes (bi, bj). In particular, p(sij |bi, bj) can be defined as
follows:

p(sij |bi, bj) =

{
σ(θij), sij = 1

1− σ(θij), sij = 0
(2)

where σ(x) = 1/(1+e−x) is the sigmiod(·) function; θij = ηbTi ·bj , and η is used
to balance the saturation of σ(x) in terms of different length of binary codes [1].
We can observe that the meaning of Equation 2 is highly consistent with the
Hamming distance dH(bi, bj).

2.2 The Pairwise Semantic Similarity

Since deep learning [10] based hashing methods have shown superior perfor-
mance over the traditional handcrafted feature [2], we construct an end-to-end
framework based on Convolutional Neural Network to simultaneously perform
feature learning and hash coding. In order to have a fair comparison with other
deep hashing methods, we choose the widely-used AlexNet [10] as our basic net-
work. The CNN model consists of 5 convolutional layers and 2 fully connected
layers for extracting image feature fi. The hashing layer followed the connected
layers is designed to encode fi into binary codes bi. Specifically, the binary codes
can be obtained by following formula:

bi = sign(Wh · fi), (3)



Towards Joint Multiply Semantics Hashing for Visual Search 5

where Wh is the weight of hashing layer and we omit its bias term for simplicity;
sign(·) is the sign function, sign(x) = 1 if x > 0, and otherwise sign(x) = −1.

By taking the negative log-likelihood of the Equation 2, we can get the fol-
lowing optimization problem:

min
∑
sij

(log(1 + eθij )− sijθij), (4)

It is easy to find that the above optimization problem can make the Hamming
distance between two similar points as small as possible, and simultaneously
make the Hamming distance between two dissimilar points as large as possible.
This exactly matches the goal of supervised hashing with pairwise labels.

Due to the binary discrete constraint bi ∈ {−1, 1}K , it is hard to optimize
the Equation 4. As in existing hashing methods [16, 33], continuous relaxation
is applied to the binary constraints. Meanwhile, we resort to l2 regularizer to
narrow the gap between the relaxation term and its corresponding binary codes:

minLpair =
∑
sij

(log(1 + eΩij )− sijΩij) +
α

2

N∑
i

||hi − bi||2 +
1

2
‖Wh‖2F , (5)

where hi = Whfi; Ωij = ηhTi · hj ; ‖ · ‖F denotes the Frobenius norm.

2.3 The Pointwise Semantics

The label information offers rich high-level semantics of a raw image. The above
similarity learning only employs the course similarity affinity for hash coding,
resulting in the generated binary codes failing to show the rich semantic prop-
erty of an image. Existing hashing methods make less research to exploit the
relationship between the generated binary codes and label information.

To obtain specific-semantics binary codes, we attempt to reconstruct the
label information by the generated binary codes:

minLb =
1

2

N∑
i

||Wbbi − ti||22 +
1

2
‖Wb‖2F , (6)

where Wb is a line projection matrix, and Wbbi denotes the reconstructed label
information. Due to ti ∈ {0, 1}C , we input the Wbbi into the sigmiod(·) function
to obtain approximated 0 or 1.

By Equation 6, we establish a non-linear relationship to link the binary codes
and its corresponding label information, and the final binary codes can show the
high-level semantic property of an image.

Since the proposed hashing method performs feature extracting and hash
coding in an end-to-end way, the discriminative ability of feature inevitably
makes an effect on the quality of hash coding. Although Most of existing deep
hashing approaches simultaneously perform feature extracting and hash coding
in a unified framework, they do nothing on how to extracting discriminative
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feature. As our above analysis, the image label provides supervised information
for mining semantic structures in images.

In this paper, in order to make the feature have more discriminative power,
we intentionally build a semantic relationship between feature representations
and its label information:

min Lf =
1

2

N∑
i

||Wffi − ti||2 +
1

2
‖Wf‖2F , (7)

where Wf is a line projection matrix, and Wffi denotes the predicted label
information. Noting that we input Wffi into the sigmiod(·) to obtain approx-
imated 0 or 1. By the Equation 7, the feature is characteristic of the semantic
property of an image, and the final feature representations have more discrimi-
native power.

2.4 Joint Optimization

The proposed framework simultenously perform feature learning and hash cod-
ing, the final objective of the proposed JMSH is formulated as follow:

minLpair + β1Lb + β2Lf

=
∑
sij

(log(1 + eΩij )− sijΩij) +
α

2

N∑
i

||hi − bi||2 +
1

2
‖Wh‖2F

+
β1
2

(

N∑
i

||Wbhi − ti||2 + ‖Wb‖2F ) +
β2
2

(

N∑
i

||Wffi − ti||2 + ‖Wf‖2F ).

(8)
By the above formula, we can obtain the discriminative yet compact bi-

nary code in terms of learning multiple semantic properties. Learning a dis-
criminative feature is conducive to obtain compact binary codes, and learning
specific-semantics binary codes would improve the quality of binary codes. In
Optimization, we adopt the stochastic gradient descent algorithm to update all
these above parameters until convergence.

3 Experiments and Analysis

To evaluate the effectiveness of the proposed JMSH, extensive experiments are
conducted on two benchmarks against the state-of-the-art hashing methods.

3.1 Datasets

CIFAR-10 is a benchmark image dataset for similarity retrieval, consisting of
60,000 color images. Each image belongs to one of the ten categories, and the size
of each image is 32× 32. Following the setting in [33], we sample 100 images per
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class as the query set. For the unsupervised methods, all the rest of the images
are used as the training set. For the supervised methods, 5,000 images (500
images per class) are further selected from the rest of the images for training.
NUS-WIDE is a public web image dataset downloaded from Flickr.com, and
it contains nearly 270,000 images with one or multiple labels of 81 semantic
concepts. Following the setting in HashNet [1], the subset of 195,834 images
that are associated with the 21 most frequent concepts are used, where each
concept consists of at least 5,000 images. We sample 100 images per class as the
query set. For the unsupervised methods, all the rest of the images are used for
training. For the supervised methods, 500 images per class are further selected
from the rest images for training.

3.2 Experimental Setting and Protocols

As in standard evaluation protocol in [1, 2, 16], the similarity information for
hash learning and for ground-truth evaluation is based on image class labels: if
images i and j share at least one label, they are similar and sij = 1; otherwise,
they are dissimilar and sij = 0. In addition, to avoid the effect caused by a
class-imbalance problem between similar and dissimilar similarity information,
we empirically set the weight of the similar pair as the the ratio between the
number of dissimilar pairs and the number of similar pairs in image batch.

For the traditional hashing methods, each image is represented by a 4096-
dim deep feature extracted from AlexNet [9] as the input. For the deep hashing
methods, the raw image pixels are used as input. All deep methods adopt the
AlexNet [7] as its basic architecture. In the JMSH, we fine-tune the front five
convolutional layers and two fully-connected layers copied from the AlexNet
model pre-trained on ImageNet2012 and train the semantic hashing layer. As
the hashing layer is trained from scratch, we set its learning rate to be 10 times
that of the lower layers. The initial learning rate is set to 10−5 and the weight
decay parameter is 0.0005. The mini-batch size is fixed to be 200 and the input
image is normalized to 256 × 256. For the hyper-parameters α, β1 and β2, we
first fix β1 = 0 and β2 = 0, we conduct cross-validation to search α from 101

to 10−4. We find that the optimal result can be obtained when setting α to be
10−1. Then we search β1 and β2 from 101 to 10−5, and we find the result is
optimal when setting β1 and β2 to be 10−2 and 10−3, respectively.

We compare retrieval performance of the JMSH with the classical state-
of-the-art hashing methods, including the traditional hashing and deep hash-
ing. The former includes LSH [3], SH [27], ITQ [5], KSH [10], FastH [14]
and SDH [22]. The latter includes DNNH [11], DHN [33], HashNet [1] and
DPH [2], where most of these methods obtains similarity-preserving binary
codes according to the pairwise similarity affinity, such as DPH, HashNet, DHN,
FastH and SH.

In the evaluation, several metrics are adopted to measure the quantitative
performance. All methods are evaluated with four lengths of binary codes (8-
bit, 16-bit, 24-bit and 32-bit), and under four standard evaluation metrics: Mean
Average Precision (MAP), Precision-Recall curves (PR) and Precision curves
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within Hamming distance 2 (P@H ≤ 2). For fair comparisons, all methods use
identical training and test sets, which are sampled from the dataset.

Table 1: Mean Average Precision (MAP) of Hamming Ranking for Different
Number of Bits on Two Image Datasets.

Method
CIFAR-10 NUS-WIDE

8 bits 16 bits 24 bits 32 bits 8 bits 16 bits 24 bits 32 bits

LSH [3] 0.1280 0.1368 0.1474 0.1637 0.1658 0.1867 0.2127 0.2494

SH [27] 0.1200 0.1254 0.1215 0.1277 0.1684 0.1694 0.1653 0.1765

ITQ [5] 0.1834 0.1997 0.2035 0.2087 0.2649 0.3142 0.3289 0.3407

KSH [10] 0.3860 0.4551 0.4701 0.4914 0.4696 0.5564 0.5684 0.5855

FastH [14] 0.4190 0.5006 0.5353 0.5436 0.5054 0.5962 0.6257 0.6386

SDH [22] 0.3192 0.5026 0.5318 0.5458 0.3608 0.5876 0.6080 0.6212

DNNH [11] 0.5561 0.6041 0.5876 0.5857 0.6121 0.6456 0.6574 0.6586

DHN [33] 0.5918 0.6554 0.6586 0.6601 0.6713 0.6823 0.6835 0.6871

HashNet [1] 0.6568 0.6925 0.7234 0.7401 0.6772 0.7001 0.7122 0.7239

DPH [2] 0.6672 0.6922 0.7243 0.7448 0.6852 0.7121 0.7199 0.7265

JMSH 0.6962 0.7214 0.7326 0.7454 0.6916 0.7221 0.7316 0.7328

3.3 Results and Discussions

Table 1 shows the MAP scores for different lengths of binary code on the CIFAR-
10 and NUS-WIDE dataset, respectively. It is observed that our method con-
stantly outperforms the baselines, including traditional hashing methods with
CNN feature and deep learning based hashing methods.

Specifically, on the CIFAR-10 dataset, we can achieve an average MAP abso-
lute increase of 24.88% compared to the traditional hashing method SDH [22] for
different lengths of binary codes, and achieve an average MAP absolute increase
of 2.04% and 1.65% compared to the state-of-the-art deep hashing methods
HashNet [1] and DPH [2], respectively. For the NUS-WIDE dataset, the pro-
posed JMSH shows a certain MAP improvement over these baselines, and the
specific average MAP absolute increase can be up to 1.61% and 0.46% compared
to the state-of-the-art hashing HashNet and DPH, respectively. The reason is
that this dataset has in total of 21 class concepts and the structure information
is more complicated among data pairs. Combined with the above analysis, the
proposed JMSH show better results compared to the current hashing, the reason
is that existing hashing methods mainly employ the pairwise similarity affinity
to obtain similarity-preserving binary codes, overlooking the rich semantic infor-
mation offered by label information. However, in the proposed JMSH, we further
integrate the high-level semantic label information into the feature learning and
binary codes learning, and improve the quality of the final binary codes.

The performance in terms of Precision within Hamming radius 2 (P@H=2)
is very important for efficient retrieval with binary codes since such Hamming
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ranking only requires O(1) time for each query. As shown in Figures 2-3(a),
JMSH consistently achieves the best precision on two datasets. With the length
of code becoming longer, P@H=2 of JMSH can still show a decreasing tendency.
This validates that the JMSH can learn more compact binary codes than these
baselines. As using longer codes, the Hamming space will become sparse and
few data points fall within the Hamming ball with radius 2. This is why most
hashing methods achieve the best accuracy with moderate code lengths.

(a) Precision within Hamming radius 2 (b) Precision-recall curve @ 16 
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Fig. 2: Comparative evaluations on the CIFAR-10 dataset. (a) Precision curves
within Hamming distance 2; (b) Precision-recall curves with 16 bits.
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Fig. 3: Comparative evaluations on the NUS-WIDE dataset. (a) Precision curves
within Hamming distance 2; (b) Precision-recall curves with 16 bits.

The retrieval performance in terms of Precision-Recall curves (PR) is shown
in Figures 2-3(b), respectively. It is clear that the JMSH shows a certain improve-
ment compared to these comparison methods. Specifically, in low or high recall
ratio, our method obtains a higher precision, which is desirable for precision-first
practical retrieval systems. on the CIFAR-10, it shows a relatively higher initial
recall over these baselines, and the reason is that the JMSH can put more similar
pairs into the Hamming ball with low radius r, where the r increases from the
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minimum of 1 to the maximum of K (the code length). These obtained best re-
sults benefit from two components. First, We integrate the high-level semantics
into the learning of binary codes. Second, We further learn the discriminative
feature with the help of label information, and it is conducive to generate com-
pact binary codes.

Table 2: Comparison of different loss terms in terms of MAP scores @ 16-bit
binary codes.

Lpair Lpair + Lb Lpair + Lf Lpair + Lb + Lf

CIFAR-10 0.6986 0.7162 0.7059 0.7214

NUS-WIDE 0.7018 0.7155 0.7062 0.7221

3.4 Empirical Analysis

Table 2 reports the MAP scores of JMSH on two datasets about different loss
functions. Each loss is corresponding to learning a semantic component, and
reflects their individual effect in the objective function. The pairwise similar-
ity learning loss Lpair is used to generate similarity-preserving binary codes in
Hamming space; the pointwise codes semantics learning loss Lb explores the
specific-semantics binary codes for enhancing the robust; the pointwise visual
feature learning loss Lf facilitates the discriminative power of feature represen-
tations, and improves the quality of binary codes. It is observed that the three
semantics learning can promote each other, generating the optimal binary codes
for improving search performance.

4 Conclusion

This paper studies deep learning-based hashing approaches by learning multiply
semantic properties to support efficient and effective visual search. The proposed
deep hashing method, i.e., JMSH, can generate more compact binary codes based
on three components: (1) learning the pairwise codes semantic similarity; (2) ex-
ploiting the pointwise codes high-level semantic property; (3) extracting more
discriminative visual feature in an end-to-end framework. Extensive experimen-
tal results have shown the effectiveness of the proposed JMSH on two widely-used
image retrieval datasets, compared with the state-of-the- art methods. In the fu-
ture, we further exploit the multiple semantics learning on cross-modal datasets,
improving cross-modal retrieval accuracy.
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