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Abstract—Vehicles in Internet of Vehicles (IoV) exchange
information about location, environment, infotainment, as well
as social information with other units via vehicular communi-
cation networks. This makes IoV with key social entities in the
human-vehicle-infrastructure-roadside units (RSU) as integrated
intelligent transportation systems. Therefore, by identifying the
cyber-physical-social features of IoV and presenting its com-
plexity issues of both engineering and social dimensions, this
paper proposes and introduces the concept, architecture, and
applications of Parallel Internet of Vehicles (PIoV). Three main
components of PIoV are demonstrated, which are artificial IoV
to learn and describe the physical IoV, computation experiments
to evaluate and predict the consequences and values of driving
strategies, and parallel execution to prescribe the operation of
the physical IoV. PIoV makes it possible to achieve safe, smart,
effective, and efficient transportation management and control.
The final objective of PIoV is to equip IoV with descriptive,
predictive, and prescriptive intelligence based on the parallel
intelligence approach.

Index Terms—Parallel Internet of Vehicles; Cyber-Physical-
Social System (CPSS); Parallel Intelligence.

I. INTRODUCTION

Internet of Vehicles (IoV) is the extended application of

Internet of Things (IoT) technology in intelligent transporta-

tion systems (ITS) [1]–[4]. In recent years, the self-perception,

planning, and decision capabilities of vehicles have been

significantly improved with the development of artificial in-

telligence and self-driving technologies [5]–[10]. Information
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including news, signals, and orders are exchanged among

vehicles, people, and roadside-units (RSU), which inspired

novel scientific ideas and technical means considering social

signals to be the key means of management and control of

ITS [11]–[13].

The operation of IoV systems involves multiple pro-

cesses including information transmission, interaction, re-

organization, analysis, and scenarios-oriented decision mak-

ing in real-time traffic situations. On one hand, the driver’s

psychological and behavioral mutability, uncertainty, and in-

stability introduce new complexities for the cooperation of

drivers, vehicles, and RSU. On the other hand, the synthesis

of in-vehicle networks, inter-vehicle networks, and on-board

mobile networks inevitably makes human-in-car become an

indispensable link of more than one social networks, making

IoV a typical cyber-physical-social system (CPSS) [14]–[19].

CPSS augments the ability of cyber-physical systems (CPS)

by integrating additional human and social dimensions. CPSS

intends to integrate the advantages of human, machine, and

open-source intelligence, and achieve more efficient and ef-

fective CPS operations [5]. IoV is a typical CPSS, it is hard

to accurately predict and control a physical IoV system due to

the comprehensive complexity of human, machine, and envi-

ronment. Besides, current IoV technologies cannot guarantee

accuracy and robustness under complex real scenarios, making

it difficult to put IoV in practical use. Previous research mostly

focuses on the improvement of certain technologies under

some assumptions. However, there still lacks a new scheme

for the evolution of IoV systems.

The artificial societies, computational experiments, and par-

allel execution (ACP) approach developed by Fei-Yue Wang

and his group in the State Key Laboratory for Management and

Control of Complex Systems provides a paradigm for CPSS

research. It integrates artificial systems (A), computational

experiments (C) and parallel execution (P) to describe, predict,

and prescribe system behaviors in a parallel framework. The

ACP-based parallel intelligence [20] has been continuously

verified and improved through industrial practice in the last

decade, and has facilitated corresponding theories and methods

of parallel perception [21], [22], parallel vision [23]–[25],

parallel learning [26], [27] and parallel testing [28], [29]. The

wide use of those new theories and methods in transporta-

tion, logistics, robots, and autonomous driving has achieved

remarkable results. Therefore, in order to improve the accuracy

and robustness of IoV systems, this paper introduces parallel

intelligence into IoV systems and develops the ACP-based
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Parallel IoV (PIoV).

To summarize, the main contributions of this paper are as

follows.

1) In this paper, PIoV, an evolutional IoV scheme based

on the ACP approach, is firstly presented. Through the

modeling and prediction of the artificial IoV systems as

well as the co-optimization of the artificial IoV and the

physical IoV, a more optimized and robust IoV system

can be obtained.

2) The modeling of artificial IoV in the proposed PIoV

framework is discussed, which is achieved by using the

bottom-up multi-agent method. An example of multi-

agent modeling method is given for overtaking behavior

in IoV systems.

3) Computational experiment and parallel execution process

for the proposed PIoV are also demonstrated and dis-

cussed in detail. Based on computational experiment,

all kinds of experimental scenarios are designed for

providing suitable choices for different real traffic scenes.

Through parallel execution, two-way feedback for physi-

cal IoV and artificial IoV is obtained in a highly-efficient

way.

4) The implementation system design for PIoV is presented,

which includes PIoV management and control center,

intelligent vehicle platform, and dispatching platform.

Besides, one of its application cases is also introduced.

The remainder of this paper is organized as follows. Section

II outlines the concept and framework of PIoV. Section III de-

scribes the artificial IoV based on multi-agent modeling meth-

ods, the computational experiments that enables predictive

intelligence of PIoV, and the parallel execution that enables

prescriptive intelligence of PIoV. Besides, the implementation

details of PIoV are also described in Section III. Finally, some

conclusions and prospect are given in Section IV.

II. IOV AND CPSS

IoV is the implementation of IoT in transportation area,

which possesses common IoT characteristics and is a typical

complex network system [30]. Traditionally, IoV architecture

has similar features as IoT, and is commonly divided into three

layers, i.e., on-board vehicle layer, communication layer, and

cloud layer. The on-board vehicle layer collects perception

information and provides application services. Communication

layer transmits information. Cloud layer is not only responsible

for data analysis, calculation, and modeling based on different

social and economic needs, but also provides support for

vehicular application services. Each layer provides data needed

for decisions in its next layer, as shown in Fig. 1.

On one hand, the perception and service layer collect

information of vehicles, road, environment, as well as vehicle’s

location. On the other hand, it also provides entertainment,

traffic safety, and traffic environment identification services,

which are the foundation of IoV services, such as self-driving

decision-making, intelligent traffic control, and vehicular in-

formation services. Recent advances on high-precision sensors

as well as sensor fusion technologies have improved the envi-

ronmental awareness of vehicles. In particular, computer vision

technologies based on deep neural networks give vehicles

the ability to clearly identify surrounding objects. Advanced

sensors such as Radar and lidar also compensate for the lack

of accuracy of GPS to some extent [31]. However, current

perception and localization technologies for IoV still lack

robustness, which makes it not safe enough to be used. For

example, insufficient diversity of manually collected and an-

notated sample data leads to mis-judgement in some complex

traffic situations.

Communication layer realizes connected vehicles by using

the network transmission and data communication technolo-

gies. At the same time, according to the network load condition

and the access resource limitation, stable, safe, and high-

quality information transmission channels are built. There

are several solutions for different kinds of IoV communica-

tions, such as dedicated short-range communication (DSRC)

technology, cellular network technologies, and other wireless

communication technologies. However, in spite of their good

performance on coverage, latency, and data rate, there still

lacks a candidate suitable for all IoV scenarios like vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I) [32]. Be-

sides, routing and security issues are still open problems in

IoV communications. Commonly investigated routing proto-

cols such as topology-based routing protocols and location-

based routing protocols still cannot guarantee the packet loss

rate requirements. Researches have also revealed that current

vehicular communication networks are vulnerable to cyber

attacks [33].

Inspired by the idea of “Local simple, cloud complex” [34]

and with the help of edge computing, cloud computing, social

computing, and pervasive computing, cloud layer makes full

use of the transmitted information in IoT, Internet, social

networks, and Internet of mind to enable key functions and

applications such as intelligent planning and decision making.

Usually, RSUs serve as a central node which provides the

content-centric information for different kinds of IoV services.

Emerging technologies such as named data networking (NDN)

and software-defined networks (SDN) promoted the develop-

ment of cloud layer services [35].

The concept of CPSS [36], which is defined as a complex

system constituted by a physical system, a social system

including human beings [37], and a cyber system that connects

both [38], was firstly proposed in 2010 [5]. CPSS integrates

physical world and social world by intelligent human-machine

interaction in cyber world, achieving intelligent management

and control of such socio-technical complex systems. The

introduction of social system poses new challenges to the

management and control of the CPSS. These challenges main-

ly include cyber networks in the information domain, mental

elements in the cognitive domain, and social networks in the

social domain.

Clearly, IoV is a typical CPSS system with “human in the

loop”. Each pedestrian, vehicle, roadside facility, and mobile

base station can be considered as a network node in IoV. They

are connected by social networks, the Internet, and the IoT,

and then construct the interactive communities that provide

support for IoV services. As a special complex network, IoV

system elements are time-varying and structurally distribut-
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Fig. 1. General infrastructure of IoV systems.

ed, and the participating individual’s behaviors also present

uncertainty, complexity, and diversity. All of these make the

internal dynamic mechanism of IoV difficult to understand.

Meantime, “human-vehicle” collaborated driving style driven

by intelligent driving technology will exist for a long time in

the future. This typical phenomenon not only needs to consider

the complicated factors such as fast mutability, uncertainty,

and dynamics of the driver’s behaviors, but also requires to

think about the difficulty of understanding the intention and

habits. In addition, a variety of social signals introduced by

the coupling of in-vehicle networks, inter-vehicle networks,

and onboard mobile networks have brought new challenges to

the management of complex transportation [39].

Two fundamental characteristics are essential to CPSS. The

first is inseparability, i.e., a CPSS is a complete and integrated

system and cannot be explained via independent analysis of its

components [40]. The second characteristic is unpredictability,

which means that the global behaviors of a CPSS cannot be

explained or determined in advance at a large scope. In IoV,

due to the deep integration of people, vehicles, processes,

and systems, and the dynamic, self-organizing, abrupt, and

highly complex nature of human behaviors, the accuracy and

effectiveness of the system’s “behavior model” are highly

dependent, making it impossible to be directly controlled.
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Feedback & 
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Fig. 2. Framework of the ACP-based parallel intelligence approach.

Therefore, the behaviors of IoV cannot be accurately predicted

even given current status and control conditions.

III. THE ACP-BASED PARALLEL INTERNET OF VEHICLES

At the beginning of this century, Parallel intelligence was

proposed as an original research paradigm. It mainly focused

on CPSS systems with high sociality and engineering com-

plexity, which are enabled by the ubiquitous mobile intelligent

devices and social signals. The framework of ACP-based par-

allel intelligence approach is shown in Fig. 2. Through data-

driven descriptive intelligence, experiment-driven predictive

intelligence, and interactive prescriptive intelligence, parallel

intelligence provides agile, focused, and convergent solution-

s for indefinite, diverse, and complex issues. It augments
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technologies including wireless communication, multi-agent

modeling, computer graphics, machine learning, social media

networks, etc., and is driven by physical, cyber, and social

signals.

A. Parallel IoV

The basic idea of PIoV is to introduce ACP-based parallel

intelligence into IoV. The framework of PIoV is illustrated in

Fig. 3. It is composed of “three stages”, namely, artificial IoV

systems, computational experiments, and parallel execution.

With the help of software-defined objects (SDO), software-

defined relationships (SDR), and software-defined processes

(SDP), etc., artificial elements and the relationship among

them in IoV, such as V2V, V2I, and vehicle-to-pedestrian,

are described and designed. Then, the computable and pro-

grammable artificial system is formed for the physical IoV

system. Social and economic policies that cannot be tested

and evaluated in the physical system, such as oil price rising

and highway toll free of charge, now can be easily tested and

evaluated in artificial IoV systems. Based on the operating data

of both physical IoV system and the artificial IoV system,

optimized policies on the operations of IoV can be gained.

By delivering the validated policies into the physical IoV, the

physical IoV “rehearsals” the policy operating process under

the guidance of the artificial IoV, ensuring that these pairs

jointly run along our expected directions and goals.

1) Artificial IoV: With the aid of knowledge representation

and knowledge engineering, the artificial IoV takes advantage

of the theories and methods of artificial society [41]. For

various elements and problems in IoV, it constructs software-

defined objects (SDO), software-defined processes (SDP), and

software-defined scenes (SDS). After that, it constructs and

cultivates “software-defined IoV” through integrating thou-

sands of traffic scenes. Therefore, the intelligent transportation

“computational lab” is established, which studies computation-

al experiments of complex problems and decisions in IoV

systems. An artificial IoV system mainly includes several

components as shown in Fig. 4.

System modeling is achieved by using the bottom-up multi-

agent method. There are at least eight types of intelligent agent

objects, including artificial human, artificial vehicle, artificial

road, artificial roadside unit, artificial base stations, artificial

buildings, artificial weather, artificial time, etc. Each agent is

capable of simple calculation and interaction. Weather and

time factors are considered as special agents. In view of

the combinations among time, light conditions, rain, snow,

wind, fog, and so on, specific artificial IoV subsystems for

different real traffic scenes are built by defining the interaction,

organization, and coordination rules among agents. Through

the redefinition of the actions and interaction rules of the

agents, various traffic scenarios can be simulated and assessed,

and the knowledge of different situations can be acquired.

For example, overtaking behavior in traffic systems is com-

plex where accidents usually happen due to driver’s inaccurate

judgements. Through the multi-agent modeling of overtaking

in the artificial IoV system, the knowledge of overtaking under

various scenarios can be obtained and intelligent assistance

can be provided to drivers. In the artificial IoV system, the

vehicle agent is modeled with the ability of perception, motion,

and cognition [42]. Through the interactions of the agents,

the velocity of the overtaking vehicle (Vo), the velocity of

the vehicle in front (Vf ), the velocity of the vehicle in the

neighbouring lane (Vn) as well as the the distance to the

front vehicle (Sf ), and the distance to the backward vehicle

in the adjacent lane (Sb) can be acquired. In order to avoid

collisions, the feasibility of the lane changing maneuver must

be calculated. For instance, if the adjacent lane is in the same

direction as shown in Fig. 5, and assuming that Vo < Vf .

While Vo < Vn, the lane changing can happen only when

[14]:

Sf > D. (1)

Sb >
V 2

n − V 2

o

2dcc
+ τVn +D. (2)

and if Vo > Vn, the overtaking vehicle must calculate the

feasibility based on the formula (3), (4) to avoid collisions.

Sb > D. (3)

Sf >
V 2

o − V 2

n

2dcc
+ τVo +D. (4)

where D is the minimum safe distance to avoid collision, dcc
is the maximum deceleration of the backward vehicle, and τ

stands for the driver’s reaction time which is influenced by the

road agent and weather agent.

The judgement of the feasibility is more complicated if

the opposite lane needs to be occupied while overtaking. If

the velocity of the front car Cr in the opposite lane is Vr,

the overtaking vehicle must calculate the time needed for

overtaking (To) as well as the time before the collision with

Cr happens, which is given by equation (5).

Tc =
L

Vo + Vr

. (5)

To < Tc must be satisfied [15] before the operation.

In the artificial IoV system, the vehicle density, speed, and

reaction time under different roads and weather conditions

can be changed, thus various models with different parameters

can be created. Based on the data generated by these models,

the feasibility of overtaking under different scenarios can be

automatically calculated and simulated in advance, making the

overtaking behavior much more intelligent and safer.

By building digitized artificial vehicles, artificial population,

artificial scene of complex traffic systems, some works have

been completed for dynamic mechanism based on analysis and

experiment. In 2003, Fei-Yue Wang et al. [16] proposed to

apply digital vehicle/highway techniques in intelligent trans-

portation system, aiming to improve the driving safety and

guide the safe driving behavior through reminding drivers

about the potential threats. Subsequently, the basic idea and

framework of Artificial Transportation Systems (ATS) [17]

and ACP-based management and control method for complex

transportation system [18] were proposed in 2004. Fenghua

Zhu et al. [19] took the whole transportation system as a
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Fig. 3. Infrastructure and analysis of PIoV.

Fig. 4. Composition of artificial IoV (AIoV) subsystem.
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Fig. 5. Lane changing process of overtaking.

temporal communication system, adopted the method of Petri

nets to model ATS interactions and processes, simulated the in-

teraction behavior of complex traffic system, and then provided

scientific control strategy for physical transportation systems.

With the help of JXTA computing platform, Qinghai Miu et al.

[43] designed an ATS based on peer-to-peer computing, which

built ATS by P2P communication mechanism and verified

the feasibility by the simulation experiments. It provided the

fundamental method for the construction of digital intelli-

gent transportation computational laboratory. Jinyuan Li et

al. designed a growth model of ATS based on the iterative

evolution of rules by introducing the multi-agent modeling

method [44]. Fengzhong Qu et al. [45] proposed the concept of

intelligent transportation space, and clearly demonstrated the

CPSS characteristic of transportation systems, and emphasized

the need to fully consider the interaction among the pedes-

trian, vehicle, road unit, mobile base stations, and satellite

traffic factors. By building the virtual intelligent transportation

space corresponding to the physical space, control strategy

for physical space transportation system is found with the

help of virtual space strategy of calculation, experiment, and

evaluation. Miao et al. [46] designed an agent-oriented mod-

ularized and distributed simulation platform for the modeling

and calculation of the artificial transportation systems. By

using artificial population for game design, 3D simulation

environment and the management for mobile roles (including

vehicles and pedestrians, etc.) is achieved by using Delta3D

game engines and dynamic role mechanism of Delta3D. In

[21], Sewall et al. reconstructed and visualized the continuous

traffic flow based on the discrete data of time and space, which

enables users to watch virtual traffic events in the virtual world.
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This method is able to reconstruct the traffic flow and realize

the immersive visualization of virtual city.

Corresponding to physical IoV system, generation, inter-

action and evolution processes of the vehicle behavior in

artificial IoV system are complete. On one hand, it greatly

alleviates the data deficiencies in the physical IoV system

(especially the extreme environment data and the abnormal

situation data); On the other hand, with the help of statistical

machine learning, data mining, and deep learning methods,

initial state parameters of artificial IoV system are set up

based on the parameters of the physical IoV data. At the same

time, combining with rule learning method, agent behavior

rules are automatically extracted, and then the interaction

between objects in artificial IoV is modelled by the bottom-up

multi-agent method. Such artificial IoV system, cultivated by

mainframe computers and multi-agent technology, can model

and show static and dynamic characteristics of actual traffic

system. For example, the behavior characteristics of drivers are

simulated by the interaction between driver agent and vehicle

agent; traffic environmental awareness is achieved through

the Interactions between vehicle agent and road agent. This

design of the large-scale artificial scene could “visually” and

“ parametrically” explain “complex macro phenomenon orig-

inated from micro”. It further explains the structure, function,

and dynamic characteristics of different levels in the complex

network system, as shown in Fig. 6.

2) Computational Experiments: The main purpose of the

computational experiments is to design the quantitative group-

ing strategy and sequential interaction rules for all kinds of

intelligent objects with the help of the “computing lab” of

the artificial IoV. Then, it produces all kinds of complex

traffic scenes, and makes vehicles running and learning by

means of experiments. Furthermore, the application of the

“knowledge” is also reversely analyzed and evaluated; Thus,

the driving strategies suitable for different real traffic scenes

could be obtained through the artificial vehicle running in the

artificial traffic laboratory. Fig. 7 illustrates the experiment

design methods in the “computational lab”.

The main process includes three steps. Firstly, with the

help of data mining, machine learning, and statistical analysis

techniques, features and rules are extracted for the operation

of physical IoV, and a physical IoV data support center is

built. Secondly, based on operations and interaction rules of

the extracted people-vehicle, vehicle-vehicle, vehicle-roadside

unit, artificial IoV and its traffic scenes are built to realize

the simulation of physical IoV operation. Finally, experiments

are designed for different targets around specific scenarios, the

management and control of specific strategies are also tested

and evaluated. If a strategy meets the predefined target, it can

be applied into the physical IoV and guide its operations. The

experimental architecture is shown in Fig. 8. By building a

dynamic network allocation method based on complex adap-

tive system, the computational experiments could be designed,

implemented, evaluated, and validated. Consequently, it is

possible to learn the existing traffic patterns and to predict

potential traffic patterns, and can provide effective prevention

before some severe traffic patterns happen.

In the computational architecture, there are two main operat-

ing modes: learning and training, experiment and evaluation.

There are plenty of work about intelligent driving, such as

virtual learning, training, testing, and evaluation. By “driving

vehicle” in the artificial traffic environment integrated with a

lot of artificial scenes, the ability of complex environment per-

ception and complex scene cognition is significantly improved

before the vehicle going on road. It offers valuable experience

for the experimental experiment in PIoV. In 2003, Fei-Yue

Wang et al. [22] proposed the concept of “Digital-Vehicle

Proving Ground (DVPG)”. The DVPG can generate testing

tasks in an active or passive manner, satisfy at least two types

of services: standard testing and specific testing, and provide

training and assessment for self-driving vehicles. Li Li et al.,

proposed work about parallel testing of vehicle intelligence via

virtual-real interaction in Science Robotics in 2019 [47], [23],

which integrated scenario-based test and functionality-based

tests method and proposed a new framework of Intelligent

test. Then, “Parallel Learning” [24] was proposed, which uses

state transition to depict system change, makes the vehicle

obtaining driving experience from virtual traffic scenes. The

method could identify specific “traffic/driving mode”. Once

perceiving certain “local characteristics”, the overall traffic

or driving conditions could be predicted; Thus, the driving

decision-making and path planning could be adjusted. The

Carcraft and Carcastle project about self-driving of Alphabet,

Google, and Waymo, construct a virtual city and virtual

space to provide driving learning environment for intelligent

vehicles. This method makes the vehicle “decision” in the real

world rather than “look like decision” in the real world [25].

Kunfeng Wang et al. [26], recently proposed to use “virtual

image” to train and test the object detection method. This

method not only solves the lack of real data sets, but also

provides a new data set for detection visual identification

algorithm. Different with Waymo method, Kunfeng Wang et

al. have also established open-source parallel visual research

platform (http://openpv.cn) to promote the research of parallel

visual [27]. Eric P. Xing et al., proposed “unified unsupervised

method from reality into the virtual domains” [28], which

exploits Conditional Generative Adversarial Networks to map

the physical driving image into virtual space and predict

vehicle control commands to improve the performance of

prediction task for vehicles instruction.

Computational experiment is one of the most important

components in PIoV. In complex physical IoV, it is hard to

collect complete data for object state, organizational behav-

ior, and the evolution process. However, artificial IoV could

simulate the whole network system, and automatically acquire

or generate accurate annotation information in “learning and

training” mode. Thus, complex experiments could be finished,

while conventional methods could not be executed because

of a huge economic cost. Meanwhile, through computational

experiments, specific training for artificial IoV can be carried

out from the perspective of global optimization to satisfy

the needs of specific applications, such as specific traffic

scene, driving function, and traffic tasks. Further, under the

operating mode of “experiment and evaluation”, the results

of the artificial IoV are used to comprehensively evaluate the

performance and the degree of danger in complex situations.
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3) Parallel Execution: PIoV jointly considers in-vehicle

networks, inter-vehicle networks, onboard mobile networks,

and social networks, as shown in Fig. 9. By building virtual

artificial IoV corresponding to physical IoV and with the help

of computational experiments, IoV management and control

experiment can be designed to be repeatable, configurable,

computable, and guidable. For effective evaluation, computa-

tional experiments forecast and guide the operation state of

physical IoV. The computational experiment results become a

possible outcome in the running state of the system, but are

no longer just “simulation” of the physical operation status.

The physical IoV provides the real data information to the

PIoV, and provides the state parameters for the establishment,

adjustment, and optimization of the artificial IoV mode. Com-

putational experiments use the real data for model training,

generate a large number of “artificial data”, and carry out a

large number of learning based on the “mixed huge amounts

of data” from both real “small data” and artificial “big data”.

Therefore, the system scenario learning and cognitive ability

can be improved and optimized. On the other hand, by parallel

execution, computational experiment results are fed back to the

physical IoV for real-time and online reference, prediction, and

prescription.

Parallel vehicles, human-vehicle coordinated individuals

that connect network infrastructure and human social network

in the CPSS space, is the key to address the problem of

human-vehicle and vehicle group coordination. The human-

vehicle coordination unit realizes collaborative perception,

planning, and decision-making. Through the direct&indirect

interaction between vehicle and environment, the control and

feedback of information perception among the elements of

IoV environment can be realized. Through the life service

interaction provided by social networks, it is possible to

implement the extension of social demand and relationship in

IoV. These social relationships of the owners of those vehicles

are either based on sociological relations such as colleagues,

roommates, and classmates, or based on the geographical

location. For example, if someone is a frequent traveler for

work and needs the network to connect to his colleagues,

customers, and family. His vehicle becomes a member of

vehicular network and is able to get information about the

routes that are frequently used between home to company

and his companies to the locations of customers, as well as

the places in his surroundings that are covered by a stronger

signal, less congested cells and its operator base stations.

In this way, if a new colleague firstly joins the vehicular

network, he/she can automatically obtain various knowledge

such as the routes to the customer’s companies, test sites,

and other interested places. Moreover, the artificial vehicles in

virtual transportation space are not restricted by the position

and energy in physical space and are not restrained by data

communication bottleneck. Based on the interactions with

other artificial vehicles, several important tasks are completed

by crowdsourcing, including environment information collec-

tion, cooperative path planning, complex scene perception and

situational cognition, etc.

Based on the parallel perception, parallel learning, parallel

driving, parallel planning, and parallel testing methods in

PIoV, the artificial vehicles guarantee the information interac-

tion, strategies feedback, and two-way optimization between

physical and artificial IoVs. Besides, it improves performance

of perception, decision-making, planning and control, and

realizes the overall optimization of network resources and

traffic resources for different demands. Therefore, the in-

creasing control and management requirements in IoV system

can be satisfied, and intelligent and collaborative solutions
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and framework are provided for intelligent vehicle system

in different automation levels and for the future intelligent

transportation systems.

AlphaGo, appeared in recent years, can be taken as the

best example of parallel learning, parallel assessment, and

parallel decision-making. Taking the historical “small” data

of human chess players as input, self-gaming, self-adaption,

and self-evolution is carried out by the experiments, and then

“mixed big data” is generated by a great number of real and

virtual chess games. After that, the potential result is evaluated,

and the “knowledge” about the efficiency value and their

behavior strategies is concluded. Besides, parallel evolution
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is achieved by the gaming with human player. In this paper,

the artificial vehicle and the physical vehicle also follow this

process. Through the interaction and parallel execution, two-

way feedback mechanism is achieved, which is highly-efficient

and in real-time. Therefore, it guarantees monitoring early

warning and feedback for the physical IoV systems.

To conclude, PIoV makes up for the lack of accuracy and ro-

bustness of traditional IoV through the above mentioned three

steps, including the aspects of perception, communication, and

service, etc. The augmented virtual data from artificial IoV

systems enhances vehicles perception and localization abilities

in dynamically changing environments. Routing and security

issues faced in the communications of IoV can be properly

solved by strategies rehearsal via computational experiments.

For example, various cyber attacks in IoV can be experimented

in artificial IoV harmlessly. Thus, corresponding protection

strategies can be tested and prepared. Due to the limitations of

IoV communication technologies, robust routing performance

is hard to achieve in the case of high speed movements,

which limits the mobility of traditional IoV system. In PIoV,

various vehicles movement scenarios can be configured at

the same time, then an optimized routing choice can be

gained and the limitation on mobility is reduced. What’s

more, a globally optimal IoV system can be achieved based

on the comprehensive consideration and modeling of human,

vehicles, roads, and so on.

B. System design and implementation

IoV system is a typical system engineering, the implementa-

tion difficulty lies in resource integration, which requires the

cooperation of government, commercial companies, and the

public. It is difficult to deploy and implement IoV systems,

which needs to be promoted by many parties.

However, the proposed PIoV system involves the Cyber

space, physical space, and social space both in the real and

virtual world. By setting up the artificial PIoV module, it can

perform 3D simulation on the actual PIoV. The computational

experiment module conducts a variety of experiments to

explore different possibilities in the artificial system, thereby

breaking through the limitations of reality and realizing the

management and control of multiple intelligent vehicles via

the combination of virtual and real methods.

Based on the existing equipment and Parallel Driving 3.1

system [29], a PIoV application case (Fig. 10) for multi-

intelligent vehicles management and control is proposed.

Corresponding to those three stages of PIoV, the system is

constructed with three-parts: PIoV management and control

center, Intelligent vehicle platform, and PIoV dispatching

platform. Each module is described in detail below.

1) PIoV management and control center: PIoV manage-

ment and control center is the key to the PIoV system. It pro-

vides all-weather and all-round monitoring and management

of the PIoV, and realizes the optimization of various services,

resource scheduling, equipment monitoring and maintenance.

PIoV management and control center consists of simulation

equipment, industrial personal computer (IPC), server, video

monitoring platform, image splicer, switch (telecommunica-

tions) and remote networking equipment. It contains two

Fig. 10. PIoV application case for multi-vehicle management and control.

major functional modules: the artificial PIoV module and the

computational experiment module. The artificial PIoV module

performs dynamic real-time data acquisition and 3D visual

simulation on the actual PIoV, and includes various artificial

intelligent agents as shown in Fig 4. The computational

experiment module includes data management and analysis

section, learning and training section, and experiment and

evaluation section. The data management and analysis section

captures, stores, and analyzes data from both actual and virtual

PIoV systems. The learning and training section applies corre-

sponding algorithms from the algorithm library to optimize the

various PIoV services. The experiment and evaluation section

performs verification and optimization based on the actual

PIoV system, so as to guide the real-time vehicle operations.

In particular, if an abnormal situation is detected, it can be

displayed in real time on the large screen, and emergency

command and control will be conducted.

2) Intelligent vehicle platform: Intelligent vehicle platform

contains several automated vehicles with different levels. All

vehicles are connected to the PIoV management and control

center and PIoV dispatching platform. Radar, lidar, camera,

industrial personal computer (IPC), human-machine interac-

tion device (HMI), emergency stopping equipment, wireless

transmission equipment, differential GPS and inertial naviga-

tion IMU are installed on the vehicles.

Lidars and cameras are used to sense the environment.

Positioning information is obtained by inertial navigation

and GPS combined navigation. The control system makes

decision based on the environment perception and position-

ing information. The mode switching module simultaneously

receives vehicle vertical and horizontal control signals from

the control system, PIoV Management and control center,

and PIoV dispatching platform. Finally, the mode switching

module executes a certain type of control signal according to

a real-time mode selection command of the PIoV Management

and control center.

3) PIoV dispatching platform: The dispatching platform

includes a driving simulator and a dispatching system. The

driving simulator includes a display screen, a steering wheel,

a throttle, and a brake pedal. The screen displays the envi-

ronmental and status information of the intelligent vehicle

platform in real time, the driving state of the artificial vehicle
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Fig. 11. Driving route map [48].

in the artificial PIoV, and the real-time trajectory on the map,

on which the location of all vehicles can be viewed in real

time.

The dispatching system performs reasonable takeover of the

multi-mode vehicle, rational dispatching, and traffic command

and diversion, thus realizing the communication cooperative

management and improving public service support capability

of the PIoV system.

C. Application Case

In March 2018, an application case for monitoring and

takeover of multi-mode vehicles is performed in China In-

telligent Vehicle Integrated Technology Research and Devel-

opment and Test Center, Changshu, Jiangsu [48]. As shown in

Fig. 11, two self-driving vehicles (A and B) and two human-

driving vehicles are operated at the test site at the same time.

The self-driving vehicle A and B travel along the red and blue

trajectories respectively. In the course of driving, when the

vehicles encounter perception limitations and internal faults,

the self-driving vehicles will either initiate takeover, or be

taken over passively by PIoV management and control center

when exceptions are detected.

Starting from point A, self-driving vehicle A is interfered

by GPS interferometer when arriving at the point G. Vehicle

A initiates to request takeover from the PIoV management

and control center after detecting the abnormal GPS data. At

this time, the PIoV management and control center feeds back

the request to the PIoV dispatching platform, synchronizes the

current state information of the vehicle to the driving simu-

lator, and then the dispatch driver takes over the vehicle by

remote control with the driving simulator. When the dispatch

driver drives vehicle A out of the GPS jammer interference

range, the driver clicks the exit remote control button on the

driving simulator, and PIoV management and control center

sends the command to the mode switching module of vehicle

A, which switches back to automatic driving mode.

Starting from point B, self-driving vehicle B successfully

avoids obstacle from the vicinity of I1-I2 and automatically

drives to the J1 point along the route. The PIoV management

and control center monitors the trajectory with a jagged

abnormality, and actively sends a takeover request to the

driving simulator, i.e. vehicle B is taken over passively. After

the driver has discharged the fault, the PIoV management

and control center sends command to vehicle B. The mode

switching module switches back to automatic driving mode.

During the process, PIoV dispatching platform performs

rational dispatching for the other two human driven vehicles

in order to avoid congestion and interference. At the same

time, the status information, the location, and trajectory of the

vehicles are displayed on the screen of the PIoV dispatch-

ing platform in real time, thus realizes the communication

cooperative management and improves public service support

capability of the PIoV system.

IV. CONCLUSION AND DISCUSSIONS

In this paper, based on the systematic analysis of IoV in

the view of CPSS, a novel PIoV framework was proposed

and thoroughly discussed by applying parallel intelligence

theory and ACP approach in the IoV area. PIoV integrates

data mining, machine learning, artificial intelligence, virtual

reality, knowledge of automation, etc., and comprehensively

considers the fusion of information, psychology, simulation,

and decision-making. Further, this paper analyzed the structure

and functional characteristics of different levels for the com-

plex IoV system, and provided new ideas and methods for the

intelligent management and control of the future transportation

systems.

IoV is a complex system that involves many individual

behaviors. The efficiency of prescription strategy is largely

related to whether the driver and the administrator completely

execute the plan. In physical IoV systems, due to the subjective

and/or objective factors, users might not carry out the opti-

mized plan. Therefore, how to compute, flexibly adjust, and

allocate available resources according to social acceptance is

one of the most challenging and important problems that need

to be solved.

Currently, the research about parallel driving, parallel learn-

ing, and parallel testing has gained significant attention among

international counterparts. PIoV shows a bright future for

promoting the applications of IoV. However, there are some

challenges on the realization of a complete PIoV system.

Firstly, there are no unified paradigms for the agent-based

modeling of objects in IoV, in particular, the description and

modeling of the communication process. Besides, there also

lacks effective modeling and analysis methods of humans.

Secondly, IoV consists of large volume of sensor data and

communication data with different forms, it is hard and

time-consuming for accurate analysis and prediction of these

data, where an efficient data mining approach of multi-modal

data that fully meets the real-time needs of IoV is needed.

Thirdly, a well-performed standardized interface is needed for

the parallel execution, which is also challenging due to the

diversity of interfaces of different kinds of devices.

With further development of related technologies, as an

integrated authentication platform, the proposed PIoV will

become one of the most important directions in the future

research of intelligent transportation systems. Considering
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the continuously developed self-driving technology and the

increasing business requirements, the research and application

of PIoV would receive great attention. In addition to further

development of fundamental technologies such as communi-

cation and computing, more efforts should be paid to refined

artificial IoV system modeling, as well as application-oriented

services. Therefore, our future work will focus on agent-based

modeling, multi-modal data process methods, standardized

interface for parallel execution, among others.
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