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TiDEC: A Two-Layered Integrated Decision
Cycle for Population Evolution

Peijun Ye ™, Xiao Wang, Gang Xiong

Abstract—Agent-based simulation is a useful approach for
the analysis of dynamic population evolution. In this field, the
existing models mostly treat the migration behavior as a result
of utility maximization, which partially ignores the endogenous
mechanisms of human decision making. To simulate such a pro-
cess, this article proposes a new cognitive architecture called the
two-layered integrated decision cycle (TiDEC) which character-
izes the individual’s decision-making process. Different from the
previous ones, the new hybrid architecture incorporates deep
neural networks for its perception and implicit knowledge learn-
ing. The proposed model is applied in China and U.S. population
evolution. To the best of our knowledge, this is the first time that
the cognitive computation is used in such a field. Computational
experiments using the actual census data indicate that the cog-
nitive model, compared with the traditional utility maximization
methods, cannot only reconstruct the historical demographic fea-
tures but also achieve better prediction of future evolutionary
dynamics.

Index Terms—Agent-based model (ABM), cognitive architec-
ture, population evolution.

I. INTRODUCTION

HE ADVENT of agent-based modeling provides demo-
T graphic researchers and urban planners with an advanced
analysis tool to investigate the dynamic population distri-
butions in an alternative way. This kind of model usu-
ally grows emergent features at the systemic level by
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interacting heterogeneous agents with their neighbors and local
surrounding environments. Since its emergence, various stud-
ies have been conducting constantly, ranging from general
methodology [1], specific techniques [2], [3], to concrete appli-
cations [4], [5]. Among the applications, social population
evolution is an important field that has attracted research focus
in recent years [6]-[8].

Overall, population simulation involves two major steps,
namely, 1) population synthesis and 2) dynamic evolution. The
first step aims to generate a population baseline that statisti-
cally matches the reality for the studied area. Such a problem
can be modeled as a multiobjective or multidimensional
optimization, and can be effectively solved by the classic meth-
ods [9]-[11]. The synthetic population can be used as an initial
state of the system and plays a start point of the subsequent
simulation. The second step, dynamic evolution, builds an
agent model on each individual, defines computational mod-
els of environment that the agents embedded, and evolves the
system for a certain period of time. Different agent and envi-
ronment models have been used in different application fields,
such as distributed control [12], [13]; social game and coop-
eration [14], [15]; transportation simulation [16], [17]; and
social cognition [18]. For computational demography, research
mostly focuses on fertility, mortality, and migration. Given
an initial state, these three aspects sufficiently determine the
population features like the density, age structure, and spa-
tial distribution. Compared with the other two, migration has
attracted most studies up to now. This might result from that
fertility and mortality rates are usually available from pop-
ulation investigation. The existing migration models mostly
trigger agent’s behavior by maximizing their utilities (also
called pay-off in some scenarios) function or simply by cal-
culating the intensity of a social force. As shown in the next
section, such utility maximization usually endows the poten-
tial destination with a subjective utility and simplifies one’s
decision process as the utility computation. This operation
is reasonable to some extent for its relatively low computa-
tional complexity. However, it also treats the human decision
as a “black box” and ignores the fact that decision making
is a high-level cognitive process based on the basic cogni-
tive functions like memory, reasoning, and learning. Therefore,
grounding the agent-based model (ABM) at a more fine-
grained level might grasp the essence of the human decision
making in a plausible way and ultimately bring a compre-
hensive predictability to the simulation. With such motivation,
this article attempts to endogenously characterize the human
decision-making process in population evolution via cognitive
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computation. To the best of our knowledge, the contribution
of this article is two-fold.

1) A general cognitive architecture that simulates the
human decision-making process is proposed. Different
from the existing ones, the hybrid architecture, called
two-layered integrated decision cycle (TiDEC), intro-
duces deep neural networks (DNNs), which are able
to simulate the uncertainty of human perception. The
architecture also enables researchers to concentrate on
domain knowledge in ABM development rather than the
modeling of decision making.

2) The proposed TiDEC architecture is applied in agent-
based population evolution. This is the first time that
cognitive computation is introduced into such an area.
Compared with the traditional models, the cognitive-
based method is more fined-grained and is expected to
have a better generalization performance. To test and
validate our model, computational experiments based on
Chinese and U.S. census data are conducted. The results
indicate that the cognitive model, compared with the
traditional utility maximization, cannot only reconstruct
historical demographic features but also achieve a better
prediction of future evolutionary dynamics.

This article consists of six sections. After the introduc-
tion, in Section II, we review several main kinds of cognitive
architectures as well as agent-based migration models, and
give their potential pros and cons according to our previous
study. Section III elucidates the proposed TiDEC model in
an overview. By considering four decision factors, Section IV
shows the model implementation in population evolution.
Section V describes the data source of the Chinese and
U.S. population with model calibration. Then, computational
experiments are analyzed qualitatively and quantitatively. This
article is concluded in Section VI with some additional
discussions about the future work.

II. RELATED WORK
A. Cognitive Architecture

Basically, the mainstreams of cognitive architectures can be
categorized into two types, namely, symbolic and emergent.
The symbolic systems usually store the agent knowledge as a
group of formal logic rules and maintain a consistent knowl-
edge base (KB) within each agent. The reasoning process is
modeled as a sensation-decision-actuation cycle, which is iter-
atively conducted throughout the computation. The symbolic
systems distinguish basic cognitive functions and construct
their work flows in deliberation. Representatives are adap-
tive control of thought-rational (ACT-R) [19], state, operator,
and result (SOAR) [20], etc. Except a few general models,
most symbolic systems concentrate on a minority of cogni-
tive modules and aim to complete specific tasks like robot
control or problem solving [21], [22]. In contrast, the emer-
gent architectures are on the basis of the biological structure
of the brain. They try to “reproduce” the human cognition
from bottom up by simulating the cortex and neuron activ-
ities. The emergent architectures typically adopt hierarchical
structures where the basic cognitions for different aspects con-
currently take place at the bottom level and then the knowledge
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is refined at the top. Representatives of this type involve hier-
archical temporal memory (HTM) [23], Leabra [24], etc. The
emergent architectures are mainly used in pattern recognition
in computer vision or natural language processing. There are
also a few architectures that attempt to combine the two types,
such as the connectionist learning with adaptive rule induction
online (CLARION) [25]. However, these models character-
ize the cognitive process at a very coarse level. For instance,
CLARION uses four subsystems—action-centered subsystem,
nonaction-centered subsystem, motivational subsystem, and
meta-cognitive subsystem—to describe the cognition. Such
design lacks a strong representation of the decision making,
which motivates the work of this article. For a more detailed
review on cognitive architecture, the readers are suggested to
refer to [26].

B. Agent-Based Migration Model

Different from the traditional approaches where migration
flow is aggregated as the outcome of both push social force
of origin and pull social force of destination [27], ABM
(re)produces endogenous decisions by interacting individuals
with heterogeneous characteristics and idiosyncrasies. Up to
date, ABM might be the only method that allows for explicit
modeling of social interactions in multiple social networks.
Such advantage nourishes constant research about how the
migration takes place. To the best of our knowledge, there
are four main types of ABMs for population migration.

The first type is the minimalist model, appeared as early
in 1969, where migration takes place when the number of
neighbors in different race exceeds a predefined threshold.
This is the so-called Schelling’s segregation model [28].
Saadi et al. [29] maximized agent’s utility under particular
equilibrium conditions. They focus on urban-rural migra-
tion flow. Similar utility maximization is also used in Jiang’s
model [30]. Ichinose et al. [31] introduced the game theory to
analyze long-range migration. His model considers the coop-
eration in groups during migration. The second type comes
from microeconomic domain. Heiland links the migration with
economic foundations without interaction [32]. Employment
status and location are considered to maximize expected util-
ity. Biondo et al. [33] further considered return migration flow.
In his study, personal income and social capital both deter-
mine the time span of an agent’s dwelling. Rehm [34] used
multinomial logit, a classic formula for disaggregate choice in
economics, to model the migration behavior. The third type
concentrates on social psychology. Reichlova [35] presented
a hierarchical migration model using the theory of Maslow
need, where agent’s migration relies on safety, income, and
social needs. Kniveton et al. [36] and Smith [37] conducted
studies about population migration under climate changes in
some African countries. The fourth type of models achieves
migration behavior by heuristics. Rogers ef al. [38] studied the
migration with social-economic inequality. In his study, migra-
tion is more inclined to occur when the accessible resources
fall below a certain threshold. Hafizoglu and Sen [39] sim-
ulated migration behavior in geographically distributed com-
munities. Agents with binary and continuous states may either
adopt the dominant state of their community or migrate to
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Fig. 1. TiDEC.

others that are more consistent with them. As mentioned in
the previous section, the four types of ABMs are relatively
weak to reflect a general decision-making process. As such,
we attempt to introduce the cognitive cycle to simulate the
migration behavior at a more fine-grained level.

III. TWO-LAYERED INTEGRATED DECISION CYCLE

To simulate the whole process of human decision mak-
ing, we propose a cognitive model called TIDEC. As shown
in Fig. 1, the model is a hybrid structure and intended to
capture all the essential cognitive elements. At the bottom
is a DNN layer which represents the agent’s biological sen-
sory and motor systems. The perception DNN (proactively
or passively) receives the low-level sensory signals from the
environment and converts them into symbolic concepts or
numerical values for the high-level deliberative system. In par-
ticular, the agent’s concept space can be modeled as a set
of <entity, attribute, value> tuples. The perception DNN uses
the environment state features as its input vector and outputs
the value of each attribute. For specific scenarios, the attribute
values can be either symbolic or numerical.

The actuation DNN controls the agent’s actuators according
to the input parameters provided by the deliberative results.
The interaction DNN plays a similar function and they can be
integrated into the perception and actuation according to the
signal-flow directions. Here, we distinguish them in the sense
of functionality. To represent uncertainty, the DNN may endow
some percept attributes with probabilistic values. Such results
are provided to the upper-level system for further reasoning.
The perception, actuation, and learning parameters are affected
by the agent’s physical state, such as age and certain disease.

The top layer of the cognitive model is a probabilistic
symbolic system, which simulates human logic or numeri-
cal reasoning and learning. This high-level system attempts
to reflect the deliberative process of the brain. Based on
multiple inputs (with their probability) from the bottom layer,
the memory stores uncertain facts about the world as well as
about himself. This part is also called the declarative knowl-
edge. By comparing current environment state and historical

knowledge, particular learning algorithms such as Q-learning
can be conducted. The reasoning module keeps procedural
knowledge which is mainly composed of rules. Further rea-
soning will be proactively performed based on memory to
generate extended facts. It is the most important process of
deliberation and is affected by social norm, personality, and
physical state. The reasoning will update the motivations that
represent the agent’s desires in several aspects. The motiva-
tions are sorted in different priority by attention to satisfy the
most urgent needs. Starting from current declarative memory,
the motivation with highest priority will be decomposed in
planning and generate a series of actions. These actions will
be maintained until the corresponding motivation is fulfilled
or canceled. Each action is executed by sending the related
control objectives to the actuation DNN.

IV. POPULATION EVOLUTION USING TIDEC

In this section, the proposed TiDEC model is used in
population evolution. Different from the traditional models,
the agent’s behavior is deemed as a perception—reasoning—
planning—actuation loop. This loop is conducted throughout
the agent’s “life.” For simplicity, we ignore the immigration
and emigration abroad and only consider fertility, mortality,
and domestic migration across cities. We select four significant
decision factors, which are personal income, family attraction,
registration, and ethnic group. Social network is also consid-
ered in both of the migration and matrimony (thus impacts the
fertility).

A. Perception, Interaction and Actuation

The first stage of the agent’s decision cycle is to observe
and retrieve information from environment (perception) and
social networks (interaction). In our migration scenario, this is
implemented via a three-layered neural network, using the four
decision factors mentioned before as its inputs. For personal
attributes, agent income and residential place are detected.
Personal income is stochastically determined according to the
local economic level of the city. Only employed agents have
such input. The residential place will be sent to memory for
further processing. For social network interaction, the agent
will record the locations of his family members. He will also
record the personal income, registration places, and the ethnic
groups of his friends. These facts are sent to memory to update
the agent’s belief. The actuation network here is simplified as
essential program operations that facilitate the simulation, such
as the exit from the original area when migrated.

B. Memory

Memory contains the observed results directly from per-
ception and interaction. Basically, there are two kinds of
declarative knowledge. One is variable knowledge like the
personal and other agents’ locations or incomes. They are
typically stored as tuples like <agent;, attr;, value;> which
represents the agent ID, the ith attribute’s name, and value,
respectively. Note that the attributes may have symbolic val-
ues. The other is permanent cognition such as the geographical
knowledge. This information is encoded as a mental map
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representing temporal, spatial, or other relationships among
interested objects.

The process of perception and memory update is illustrated
in Fig. 2. Each piece of knowledge in the variable memory
contains a probability (shown in the brackets) for a particular
attribute value. The probability is updated in every training
iteration, through the perception DNN. In an online case,
such an update takes place in every simulation step via online
learning. Note that for simplicity, Fig. 2 only gives one value-
probability pair for each attribute, while in implementation,
the attribute usually involves several values and each value
corresponds to a probabilistic weigh that the DNN will cal-
culate. Fig. 2 also omits the normalization of the probability,
which is a usual operation in DNN via a softmax function.
Note that memory does not necessarily reflect the reality. It
may include incorrect beliefs represented by a wrong proba-
bility here. Nevertheless, the agent will treat these beliefs as
correct ones from his point of view and make decisions based
on them.

The introduction of DNN can simulate the uncertainty of
individual perceptions from person to person, provided that
different individual samples are used to train the network.
However, limited by the computational resources, creating a
DNN for each agent is feasible only in the scenarios with a
few agents. For a certain number of participants, a common
network may be an alternative way for the implementation.
Fig. 3 shows the structure of the system, in which each agent
sends his surrounded social and environmental signals to the
DNN and receives the probabilistic symbolic representations
as his perception. Such aggregated form will not sacrifice the
heterogeneity of agents, since the DNN is able to distinct dif-
ferent individual perceptions via corresponding training data.
Note that in the figure, we only draw the perception network.
The actuation network can be analogously designed.

C. Social Norm, Personality and Physical State

The three functions represent the agent’s endogenous states.
Social norm, enforced by the society or organization, refers to
the regulations or customs that the agent needs to comply

IEEE TRANSACTIONS ON CYBERNETICS
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with. They are not mandatory. But the agent will be pun-
ished (such as be isolated by others) if he violates them. In
our application, the agent prefers to dwell in his registered
place, since it may probably bring him much inconvenience
if he does not have local registration (such as limitations to
purchase a house, or limitations to enroll the nearest school
for his child). In addition, for minor ethnic groups, agent is
inclined to live in the place where the same ethnic group is
prevalent. This social norm stems from the cultural recogni-
tion and has already been proved by Schelling’s model [28].
The satisfaction from registration is quantified as

1
SIreg = k
dist(ResCity,RegCity)

If agent has a local reg
otherwise

ey

where dist means the distance between the agent’s residen-
tial place and registration place. k is a constant that keeps
(k/[dist(ResCity, RegCity)]) < 1. To avoid the break point,
we set

k= min

dist(ResCity, RegCity).
ResCity#RegCity ist(Res 11y, Reg ly)

To calculate the satisfaction from the ethnic group, we rank
the cities with the proportion of each minor group in descend-
ing order according to the census data. The satisfaction for
minorities is computed as

#<ResCity>

Sleth =1 = ————— 2)

| <City>|
where # means the sequential index of the residential city and
| -| means the total number of cities. Personality characterizes
one’s behavioral style or pattern. Radical people are less tol-
erant of dissatisfaction, and thus more possible to migrate. In
contrast, the conservative share high thresholds for dissatisfac-
tion and more adaptive to the current situation. In particular,
we set three types of personalities, radical, medium, and con-
servative. They are distinguished via a tolerance variable.
Physical state stores the agent’s physical conditions and social
attributes, including his age, gender, current city, etc. These
three cognitive functions may vary from person to person.
Different norms/types/states as well as different parameters
will lead to different decision styles. Therefore, they are the

sources of heterogeneity among agents.

D. Reasoning

Reasoning plays the most central role in the decision mak-
ing. It is based on the facts in memory, and also supported
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by a specific kind of knowledge called procedural knowl-
edge. The basic procedural knowledge in population migration
is that if the agent dissatisfies the current situation, then he
will migrate to another place. The satisfaction is influenced
by social norm, personality and physical state, and its com-
putation concentrates on four interested aspects. The first is
personal income, determined by the local economic condi-
tions. Employed agent will receive a particular amount of
pay-offs (perceived and recorded in his memory), and com-
pare his income with his friends (perceived from his social
networks). If this metric is lower (higher) than the average
level, he will become unsatisfied (satisfied) in the economic
aspect. The greater the deviation between the two values, the
more unsatisfied (or satisfied) he is. The second is the family
attraction. If family members do not live with the agent, he will
be eager to move to them. The amount of attraction depends
on the number of members that are differently located from
the agent himself. Family attraction is only effective to married
adults. The third aspect is registration, which is only applica-
ble to some countries. Agent tends to live in the place where
they registered. The last factor is the ethnic group from social
norms, as alluded before. When the agent does not belong to
the dominant ethnic group in his dwelling city, he may proba-
bly not be recognized by the major people. Thus, he seeks to
migrate to other places. The cultural recognition from similar
ethnic group is a weak social norm but cannot be neglected.
Each decision factor is computed as

Si = SI[ — SAvei - (Si (3)

where the subscript i represents the income, family, regis-
tration, or ethnic group factor. Slye; and Sley, are calculated
through (1) and (2). The family satisfaction is defined as

Sl = ] )
|mem|
where |memyj,| is the number of members in the same city,
and |mem| represents the total number of members.

In (3), S; is the relative satisfaction. Positive S; means the
agent is satisfied with the current situation, while negative S;
means unsatisfied. SI; and SAve; stand for the original indi-
vidual satisfaction and the average level of one’s friends. §; is
the threshold determined by one’s personality. If the agent is
radical, which means low tolerance of dissatisfaction, §; will
be a positive real number. This indicates that his S; is easier
to reach negative. When the agent is conservative, §; will be
a negative number and the situation is vice versa.

E. Motivation, Attention and Planning

The four factors considered before may generate four inde-
pendent motivations, which are the pursuits of eliminating
dissatisfaction (if it has) in each aspect. The attention mecha-
nism endows every motivation with a degree of significance,
representing how eager he would like to tackle such problem.
The final decision is achieved by

S = a - Sincome + B * Stam + ¥ - Sregist
+(1—a—B—=¥) - Sethnic &)

where Sincome is directly perceived, and Stam, Sregist> and Sethnic
are computed as before. «, B, y, (¢ + B + y) € [0, 1), are

attention weights for each factor. When some of them equal
to zero, it means those related motivations are fulfilled and
excluded in the final decision making. S is the final satisfaction
level that decides whether to migrate or not.

When an agent decides to migrate, he will make concrete
steps or actions to realize his motivations. A group of such
actions that fulfill a particular motivation is defined as a plan,
which is generated by the planning module. For our pop-
ulation migration, planning is not so complicated as other
applications (such as resource assignment problems in arti-
ficial intelligence). The agent only determines his destination
in this process based on the future expectation.

In addition to the cognitive migration, an agent also evolves
his social networks as well as potential family formation to
complete procreation. In each round, an agent has a probability
to get a new friend from his local “neighbors”. And his current
friends also have a probability to weaken their relations. This
will evolve the weights of the agent’s perception from each
of his friends. Every qualified unmarried adult is possible to
find a spouse in his residential locations to form a family. The
possibility, influenced by social norms, increases with his age
until 40. In other words, when an unmarried adult gets older,
he will face more pressure from the society thus be more active
to seek a spouse. This social norm is especially in compliance
with Chinese people. Seeking a spouse is conducted in parallel
with migration behavior. For fertility, every married female
aged between 20 and 50 with no child will have a probability
to give a new birth. The new child will be added to her family
members after initialization, and the “mother” will change her
procreative status into “Has Child”. The total child number
of one female can be set arbitrarily according to the reality.
For mortality, every person has a probability to “die”. Such
probability also relies on his age.

Every qualified unmarried adult is possible to find a spouse
in his/her residential locations to form a family. The mate
selection uses the attraction score model defined as [40]

MS = e—\/th-‘rSV (6)

where th = 80 — age,, — agey is the age threshold. sv means
the score variables defined as

sv = (age,, — agef)2 + (eduy, — eduf)2 +pre+r1s  (7)

where edu € {1, 2,...,9} stands for educational level; pre €
{—10, =9, ..., 0} stands for social pressure which increases
with the agent’s age until 40; and rs form a uniform distribu-
tion U[0, 9] is a random score. Seeking a spouse is conducted
in parallel with migration behavior. The married female aged
between 20 and 50 with no child will have a probability to
give a new birth. The new child will be added to her family
members after initialization, and the “mother” will change her
procreative status into “Has Child”. For mortality, every per-
son has a probability to “die”. Such probability also relies on
the mortality rate by his/her age.

The whole decision cycle, as elucidated before, starts with
perception and interaction, and ends with actuation. Each
agent repeats such cycle constantly until he die. Therefore,
the population system is evolved forward to emerge dynamical
characteristics. The main loop of the evolution is presented
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Algorithm 1 Agent Decision Cycle

1: Initialize agent.attribute, agent.famMem, agent friends;
2: while curYear < endYear do
3:  for each agent a do

: // Physical State:

4
5 a.age < a.age + 1; // age increases

6: if a.age > 50 then

7: Do die with probability DeathRate(a.age);

8: end if

9 /I Social Network:

0 if gender = F and age > 20 and age < 50 and IsMarried
and !HasChild then

11: a.FamMem < a.FamMemU GetNewAgent(a); // Fertility

12: end if

13: if a.friends.Num < UpperLimit then

14: Select a candidate cand from the friends of each a.friend

using Eq. (8);

15: a.friends < a.friends U cand; // Add new friends

16: end if

17: if a.friends.Num > LowerLimit then

18: Remove SelMem(a.friends); // Remove friends;

19: end if

20: IsMarried?Divorce with DivRate(curYear): Marry with a
local friend with MarRate(curYear);

21: /I Perceive and Interact:

22: a.city < ResCity;

23: a.income < Income(a.city, curYear);

24: Update the States of Each mem € a.FamMem;

25: Observe the States of Each mem € a.friends;

26: /! Reasoning:

27: Compute Relative Satisfaction S; using Eq. (3);

28: /I Attention:

29: Update attention weights «, 8, y;

30: Compute S using Eq. (5);

31: if S < tollerance then

32: // Planning:

33: destCity; < arg max friend.city Sis

34: Select targetCity from destCity; with probability

By, (l-—a—-B—vy)

35: /I Actuation:

36: Migrate to rargetCity;

37: end if

38:  end for

39: curYear < curYear + 1;
40: end while

in Algorithm 1, where the “Perceive and Interact” part is
computed through DNN. The initialization phase includes the
agent’s basic attributes, family members, and social friends,
where the basic attributes and family members are created in
the initial population synthesis, and the social network is gen-
erated by connecting agent pairs with probability Aagent,. The
probability is computed as

—A\-dist(agent,a
)Lagent,u = (ag ) (8)

where dist is the distance between the two agents using their
residential cities, and A is a constant. We also set an upper
limit of the number of friends according to the agent’s age.

V. COMPUTATIONAL EXPERIMENT RESULTS
A. Experiment Design and Model Calibration

Computational experiments are composed of two sequen-
tial phases: 1) basic population synthesis and 2) dynamic

IEEE TRANSACTIONS ON CYBERNETICS

TABLE I
INDIVIDUAL ATTRIBUTES

Attributes Values Number of Values
Gender Male, Female 2
Age 0-5, 6-10, ..., 95-100, ;=100 21
Res. Prov. Beijing, Tianjin, ... 31
Res. City Beijing, Shanghai, ... 361
Eth. Group Han, MengGu, ... 58
Reg. Prov. Beijing, Tianjin, ... 32
Marital Status Married, Unmarried 2
Proc. Status Has Child, Not Have Child 2

evolution. The objective of the former is to generate a syn-
thetic population according to the baseline and thus determine
an initial system status of the evolution. For the Chinese
population scenario, we consider eight individual attributes
(listed in Table I) and choose the fifth national census data
(surveyed in 2000) to be the input of the population syn-
thesis. There are two kinds of cross-classification tables in
the census data. One is called short table, which contains
basic personal attributes and covers the whole national pop-
ulation. The other is long table, which not only contains all
the attributes of the short table but also includes additional
features like migration pattern, educational level, economic
status, marriage, and family, procreation, housing condition,
etc. The statistics from the long table only cover about 9.5%
of the whole target population. Another input data source is
the disaggregate sample, which involves 1180111 individ-
ual records. Each record reveals the values of investigated
attributes from a particular person (with private information
omitted). In our experiments, the disaggregate sample and
short table are used as the seed and marginal controls for basic
population synthesis, while the long table is treated as an eval-
uation benchmark. The joint distribution inference method is
adopted to generate the initial population [41]. Notice that in
contrast with the original paper where the location only con-
sists of 31 provinces, we have extended the synthesis into a
much more fine-grained level—361 prefectures and municipal-
ities. Initial social networks are constructed according to Erdos
and Renyi random graph combined with spatial network mod-
els [42]. As some surveys indicate, random graph and spatial
networks are two dominant approaches to synthesize social
network [43].

The second phase is the dynamic evolution. Chinese Annual
Population Statistics (2001-2015) are used to calibrate and
evaluate the TiDEC model. The statistics provide annual
demographic natural growth as well as death, average income,
and marriage rate at the city level. We first use the early
10 years’ (2001-2010) data to calibrate our model. Denote
these 11 (with baseline 2000) years’ data as

Jio1 (), i (), -+ fim ()
where n = 10 and
: . T
Jin () = (x[ll], A .,x%])

stands for the population distribution at the end of the ith year.

x/[.i] means the number of population under a particular attribute
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Fig. 4. Results of basic synthetic population. (a) Gender*Res. Type*Age Inter. (b) Gender*Ethnic Group. (c) Gender*Res. City*Marital Status.

combination such as
(Gen. = Male, Age = 43, Res. City = Beijing, .. .).

Actually, fj;)(x) can be viewed as the system state of the ith
year. Thus, according to the main loop in Table I, the state
transition equation from the ith to the (i + 1)th year is

(Tig + B)" - (I = Dpay) - fig @) = fiis 1@

st Y =1
r
[i]

where Tj;; = () € R™*™ is the state transition probabilistic
matrix. Its element tLﬁ means the transition proportion of pop-
ulation from state r to state c¢. If r and ¢ are only different in
the Residential City, then T};; is actually the migration prob-
abilistic matrix. By = (bi

€))

¢) € R™ is the fertility matrix,
where b£’£ represents the probability that an agent in state r
create a new agent in state c¢. D = diag(d%’], ...,d,[,l,]) is
the mortality matrix that gives the death rate of each state.
In the state transition equation, fj;(x) and f{;41](x) are statisti-
cal population distributions from the annual data. By; and Dy;
are the fertility and mortality rates from the annual statistics.
Thus, our objective is to compute the migration matrix T7;.
However, such problem is an underdetermined system with m
equations and m x m variables. We choose one of its solutions
to be the migration matrix 7f;}.

From a microscopic view, Ty; is the aggregation of agent
behavior, where element z%], in essence, means the agent
migration probability from state r to state c. Such probabil-
ity depends on the agent decision rules and ultimately by the
rule parameters. Therefore, we can compute the parameters by
solving

6 = argmin |P16) - 1], (10)

where 6 is the migration parameter vector, and Pyc] (@) is the
migration probability generated by the rules.
In our scenario, the tolerance threshold §; is randomly set
from a truncated normal distribution
8; € (—0.1,0.1) ~ N(0,0.1).
Therefore, the parameter vector 0£’C] = (oc%], ,3%], y,[ci]) and
Pll@) = P(S < 8} - [«!!P{destCity;,. = c}

+ BIP(destCity gy = ¢} + 711 P{destCity,g, = |

+ (1 — o — B — I P{destCity.y, = c}]. (11)
Note that

E(S) = allESine) + BYE(Stam) + ¥ E(Steg)
(- alfl — B~y B

where E(-) represents the expectation. By (10)—(12), we
acquire can solve 096]

As a comparison, the proposed model is also tested in the
U.S. population dataset. However, the available U.S. census
data does not provide annual county statistics. Our experiment
considers all the 3138 counties in U.S. homeland (exclud-
ing Alaska, Hawaii, and Puerto Rico). Two types of data,
annual disaggregate samples and statistics from 2000 and 2010
census, are used as inputs. The samples contain basic indi-
vidual attributes like gender, age, ethnic group, marital status,
employment, etc. The migration pattern is also recorded in the
data. Therefore, we use the samples to calibrate the model and
evaluate the simulation results according to the 2010 overall
census data.

12)

B. Simulation Results

As the experiment design, result analysis also consists of
two parts: 1) evaluation of the initial basic population and
2) annual evolutionary spatial distribution. As shown in Fig. 4,
three partial joint distributions from long table are adopted
as benchmarks. Fig. 4(a) focuses on Gender*Residential
Type*Age Interval, where the numbers of real and simulated
populations are the coordinates. Note that according to Table I,
the partial joint distribution has 2 x 3 x 21 = 126 combina-
tions. Therefore, there are 126 error points in this subfigure.
We can see that the regression line has a coefficient of 0.9978
with a goodness of fit of 0.9996, which means the basic
synthetic population is quite accurate in this view. Fig. 4(b)
presents the relative errors of Gender*Ethnic Group, which
has 2 x 58 = 116 error points. The errors are computed by

ActNum — SynNum
err =
ActNum

where ActNum and SynNum stand for actual number and
synthetic number under each attribute combination. Clearly,
all the error points are located between —100% and 100%.
Only 25 out of 116 points scatter outside £50%. Further
analysis shows that the error mostly comes from minor eth-
nic groups, where the small actual population number brings
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average errors.

a larger relative error. When our investigation falls down to
city level, things could be worse, as Fig. 4(c) illustrates.
There are 2 x 361 x 2 = 1444 data points for the partial
distribution Gender*Res. City*Marital Status, and they basi-
cally form two clusters. One is near 45° line, which indicates
the population matches the benchmark quite well. The other
lies under the 45° line, which means the population is under
generated. The regression line has a slope of 0.77 and the
goodness of fit is 0.8374. This is acceptable in general.

For dynamic population evolution, the simulation is con-
ducted for 15 years, from 2001 to 2015. Limited by compu-
tational resources, the scale factor of our experiments is set
to be 10000, which means every agent in simulation repre-
sents 10000 people in reality. To test the performance of our
new cognitive model, the results are compared with the tra-
ditional utility maximization. The experiments are performed
for five times. Fig. 5(a)—(d) presents the spatial distribution
of 2001, 2005, 2010, and 2015. The subfigures, respectively,
contain 266, 286, 286, and 288 points, due to the lack of
some city populations in the annual statistical report. Due to
the lack of some urban populations in the annual statistical
report, the comparable data contains 266, 286, 286, and 288
cities, and the subfigures, respectively, have those numbers of
error points. The coordinates of each point are the numbers of
real and simulated populations for a specific city. As can be
seen, the simulation reconstructs spatial distributions very well
in early years, but tends to under generate populations as the
computation goes on. This trend is reflected by the increasing
deviations of the regression coefficient. It indicates that the
simulation deviates from the reality as the evolution goes on.
The reason for such phenomenon may be the error propagation
where former errors are passed to the following computational

T T T T T T T )
NS S P H L P SOND DO NS SRR SN ] g
S SRR NS SRS NSRRI RN S P TP PSPPI R D WX
L S S R S S S R R L S S S S N
Year Year
(b) (©)

Results of annual population. (a) 2001. (b) 2005. (c) 2010. (d) 2015. (e) Five cities with maximum average errors. (f) Five cities with minimum

cycle. In essence, it gives the following computation a more
inaccurate start point. Such error accumulation, as a result,
leads to larger deviations in later years. The constant item of
regression line first decreases and then increases during the
whole simulation. This means at the beginning, our calibrated
model is able to recover the inaccuracy from the basic syn-
thetic population to some extent. However, the total error also
goes up after several rounds. On the other hand, the goodness
of fit stays above 0.9 all the time. It demonstrates that random
errors in each simulation round always stay at a low level.
The traditional utility maximization approach is also used as
an evaluation benchmark (represented by circles in the fig-
ure). The results clearly show that in each year, our cognitive
method gets a slightly better performance.

For further analysis, we select five cities with maximum
and minimum average errors and draw their error lines as
Fig. 5(e) and (f). As can be seen, the largest relative errors
stay between 50% and 75%. They also contain large standard
deviations, ranging from 25% (TongChuan) to less than 5%
(WuWei). In contrast, the smallest errors fall below 10%, also
with small standard deviations about 5%. This result further
shows that our cognitive model is able to reproduce and predict
demographic spatial distribution very well.

The experiment conducted on the U.S. population dataset is
shown as Fig. 6. Obviously, both regression lines have larger
deviations than those in Chinese scenarios, which means both
models are worse applicable for this case. However, the slope
and goodness of fit of the upper line (cognitive model) are
closer to 1, meaning that the synthetic data by this model
match the real census data more accurately overall. Intercepts
in the axis of ordinate also indicate a smaller systemic error
with cognitive method than utility maximization. Therefore,
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Fig. 6. Results of 3138 counties from U.S. Homeland in 2010.

from the perspective of statistics, the cognitive-based method
can be viewed to have a better reconstruction capability. This
partly manifests that the proposed model has a relatively better
generalization performance.

VI. CONCLUSION

This article proposed a new hybrid cognitive architecture
called TiDEC to simulate the whole process of human decision
making. In contrast with the existed cognitive architectures
which mainly focus on symbolic computation, it integrates
DNN that can simulate the uncertainty of human perception.
The proposed architecture also provides a general computa-
tional framework that can regulate the ABM development.
By decomposing the model of decision making into several
modules, engineers and researchers for different applications
only need to consider the concrete rules in each module.
This enables researchers to concentrate on domain knowledge
itself and thus facilitates the ABM development in various
fields. The cognitive-based method is introduced into the
population evolution, which is the first time in such area.
Comparative experiments on the Chinese and U.S. popula-
tion datasets indicate that this method brings a more accurate
modeling of decision making as well as a better generalization
performance.

As a general framework, the proposed architecture can be
used in various applications, not only in the simulation with
artificial environments (like our population migration case) but
also in the real-virtual human-in-the-loop simulation. For the
latter scenario, neural network can be a suitable way and might
be the only way to perceive the personal data, such as pic-
tures, voice, motion states from blog, cell phone, and wearable
devices into symbolic inputs. By such a way, a mirrored intelli-
gent agent corresponding to the actual individual in reality can
be created to simulate the individual’s behavior. This is called
the parallel society or symbiotic simulation. Therefore, using
the actual perception data to describe, predict, and prescribe
the individualafs behavior is worth to be explored.
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