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Summary

In this paper, an event-triggered heuristic dynamic programming algorithm for
discrete-time nonlinear systems with a novel triggering condition is studied. Dif-
ferent from traditional heuristic dynamic programming algorithms, the control
law in this algorithm will only be updated when the triggering condition is satis-
fied to reduce the computational burden. Three neural networks are employed,
which are model network, action network, and critic network. Model func-
tions, control laws, and value functions are estimated using neural networks,
respectively. The main contribution of this algorithm is the novel triggering con-
dition with simpler form and fewer assumptions. Additionally, a proof of the
stability for discrete-time systems using Lyapunov technique is given. Finally,
two simulations are shown to verify the effectiveness of the developed algorithm.
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1 INTRODUCTION

Adaptive dynamic programming (ADP) refers to a family of practical actor-critic methods for finding optimal solutions
in real time,1 and it is a self-learning method.2-8 In 1977, adaptive critic design was first proposed by Werbos,9 which
takes the advantages of neural networks (NNs). Then, several names emerged, eg, approximate dynamic programming
and asymptotic dynamic programming. Iterative methods are widely used in ADP to obtain solutions of the Bellman
equation indirectly.10-12 Adaptive dynamic programming can be divided into many categories, such as heuristic dynamic
programming (HDP)13-15 dual heuristic dynamic programming (DHP),16 action dependent DHP (also called Q-learning17),
globalized DHP,18 and so on. Adaptive dynamic programming has been widely used in real-world applications.19-22

Event-triggered control is an effective method to increase the efficiency because the amount of calculation is reduced
and the performance is maintained.23,24 Generally, conditions are required in event-triggered control, thus the controller
only works or updates when the conditions are satisfied.25,26 Many researchers started to pay attention to event-triggered
control methods in recent years. For discrete-time Markov jump systems, the event generator was proposed to select the
sampled states in the works of Song et al27 and Shen et al.28 An online event-triggered algorithm was developed using
NNs in the work of Vamvoudakis.29 Decentralized control for wireless sensor/actuator networks based on event-triggered
control was studied in the work of Mazo.30 In the works of Eqtami et al26 and Sahoo et al,31 event-triggered control methods
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for discrete-time systems were given. Analysis of event-triggered control methods for linear systems was presented in
the work of Heemels et al.32 In 2012, an event-triggered control algorithm was studied for multiagent systems in the
work of Dimarogonas et al.33 Besides, the event-triggered scheme was used for tracking control systems in the works of
Tallapragada and Chopra34 and Liu et al.35

With extensive research on ADP, many event-triggered ADP algorithms have been generated. Zhong and He36 proposed
an event-triggered control method based on ADP algorithms with an observer, which only used input and output data.
In the work of Dong et al,37 a novel event-triggered method with stability analysis was studied for nonlinear discrete-time
systems based on HDP algorithm.

In this paper, a novel event-triggered HDP method is studied to reduce the computational burden and computing time.
The difficulty of solving the event-triggered optimal control problems using HDP algorithm is that many hypotheses need
to be established to stabilize the system. Compared with the existing work,37 main contributions of this paper include the
following.

1. A novel triggering condition of event-triggered HDP algorithm is studied, which needs fewer assumptions to stabilize
the system. Hence, this event-triggered HDP method under the new condition will be more practical for applications.

2. The stability of the system is guaranteed with the new method by Lyapunov technique38 in 2 situations, ie, the event is
triggered or not. Additionally, we will show how to implement the algorithm using 3 NNs. The proof is given to show
that the system states and the estimation errors of the NN weights are uniformly ultimately bounded (UUB).

The rest of this paper is organized as follows. The formulation of the optimization problems for event-triggered non-
linear discrete-time systems is presented in Section 2. A new triggering condition is studied in Section 3, and the stability
of the system is also considered under the new condition. In Section 4, the implementation of the event-triggered HDP
algorithm is given. In Section 5, 2 simulations and analysis are presented to show the effectiveness of the method. The
conclusion is given in Section 6.

2 PROBLEM FORMULATION

Consider a nonlinear control system in discrete-time domain, which is formulated as

x(k + 1) = 𝑓 (x(k),u(k)), (1)

where x(k) ∈ Rn and u(k) ∈ Rm. Assume that 𝑓∶ Rn × Rm → Rn is Lipschitz continuous. The state x(k) = 0 is the
unique equilibrium point of the system under u(k) = 0, ie, f(0, 0) = 0. The control law u(k) is updated only when the
triggering condition is met. Hence, when the triggering condition is dissatisfied, the system will work under the control
input updated last time until the next triggering. A positive integer sequence {ki}∞i=0 is defined as triggering instants. Then,
the control input u(k) can be expressed as

u(k) = u(ki), ki ⩽ k < ki+1. (2)

The triggering error is described as
e(k) = x(ki) − x(k), ki ⩽ k < ki+1, (3)

where x(ki) is the state at the ith triggering instant and x(k) is the real-time state. A function v(x(k)) = u(k) is used to
represent the relationship between the control law and states. According to (3), the event-triggered control law u(ki) can
be rewritten as u(ki) = v(e(k) + x(k)). (1) can be rewritten as

x(k + 1) = 𝑓 (x(k),u(ki)). (4)

Define U(x(k),u(k)) as a continuous positive definite function called utility function given by

U(x(k),u(k)) = xT(k)Qx(k) + uT(k)Ru(k), (5)

where Q ∈ Rn×n and R ∈ Rm×m are positive definite symmetric matrices with appropriate dimensions. Then, the
performance index function of system (1) can be represented as

J(x(k)) =
∞∑
𝑗=k

U (x(𝑗),u(𝑗)) . (6)



WANG ET AL. 1469

Our objective is to minimize the performance index by designing the feedback control input u(k). On the basis of Bellman
optimality principle, the optimal cost function J∗(x(k)) at the instant k satisfies the discrete-time Hamilton-Jacobi-Bellman
equation

J∗(x(k)) = min
u(k)

{U (x(k),u(k)) + J∗(x(k + 1))}

= min
u(ki)

{U (x(k),u(ki)) + J∗ (𝑓 (x(k),u(ki)))} .
(7)

Then, the optimal control input u∗(ki) can be obtained as

u∗(ki) = arg min
u(ki)

{U (x(k),u(ki)) + J∗ (𝑓 (x(k),u(ki)))} . (8)

It is hard to solve nonanalytical equations like (7) and (8). Thus, an event-triggered HDP algorithm with a novel triggering
condition is studied in the next section to solve the problem.

3 TRIGGERING CONDITION AND STABILITY ANALYSIS

We define a threshold eT as the triggering condition with a positive constant C ∈
(

0,
√

2
2

]
to be designed as

eT =
√

1 − 2C2

2C2 ‖x(k)‖ . (9)

When the threshold eT is less than the triggering error ||e(k)||, the control law in system (4) will be updated and the
triggering error will return to zero. Thus, the triggering error e(k) is always less than or equal to eT in the stable operation
of the system, ie,

‖e(k)‖ ⩽ eT . (10)

Definition 1. (See the work of Jiang and Wang39)
A continuous function 𝛽(t) is a 𝜅-function if it is rigorously increasing and 𝛽(0) = 0; 𝛽(t) is a 𝜅∞-function if it is a
𝜅-function, and also, 𝛽(t) → ∞ as t → ∞.

Lemma 1. (See the work of Dong et al37)
A function V ∶ Rn → R is called an input-to-state stability Lyapunov function if the following inequalities:

𝛼1 (||x||) ⩽ V(x(k)) ⩽ 𝛼2 (||x||) (11)

V (𝑓 (x(k), v(e(k) + x(k)))) − V(x(k)) ⩽ −𝛼3 (||x(k)||) + 𝜎 (||e(k)||) , (12)
hold, where 𝜎 is a 𝜅-function, and 𝛼1, 𝛼2, and 𝛼3 are 𝜅∞-functions.

Assumption 1. (See the work of Eqtami et al26)
There must be a positive constant C ∈

(
0,

√
2

2

]
, which makes the following equation hold:

‖𝑓(x(k), v(e(k) + x(k)))‖ ⩽ C ‖x(k)‖ + C ‖e(k)‖ . (13)

Theorem 1. Under the Assumption 1, the discrete-time event-triggered system (4) is asymptotically stable under the
triggering condition

‖e(k)‖ ⩽
√

1 − 2C2

2C2 ‖x(k)‖ . (14)

Proof. Define a Lyapunov function in the following form:

V(x(k)) = xT(k)Qx(k) + uT(k)Ru(k). (15)

Then, we will consider whether the Lyapunov function is a nonincreasing function under 2 situations that the
triggering condition is dissatisfied and the triggering condition is satisfied.
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I. The triggering condition is dissatisfied
We define a series of functions as follows:

𝛼1(‖x‖) = xT(k)Qlx(k) + uT(k)Ru(k), (16)

𝛼2(‖x‖) = xT(k)Qgx(k) + uT(k)Ru(k), (17)

ΔV = V(𝑓 (x(k), v(e(k) + x(k)))) − V(x(k)), (18)

𝛼3(‖x(k)‖) = ||q||2 (1 − 2C2) ‖x(k)‖2
, (19)

𝜎(‖e(k)‖) = 2C2||q||2‖e(k)‖2
. (20)

Ql and Qg in (16) and (17) can be obtained by (11). The matrix q in (19) and (20) is determined from xTQx = xTqqTx =||xTq||2. According to (15) and (18), the left side of (12) can be rewritten as

ΔV = 𝑓 (x(k), v(x(ki)))TQ𝑓(x(k), v(x(ki))) + v(x(ki))TRv(x(ki))
−
(

xT(k)Qx(k) + v(x(ki))TRv(x(ki))
)
.

(21)

Since the triggering condition is dissatisfied, the control law will not be updated, ie, u(k) = v(x(ki)), in the period.
Thus, (21) can be simplified as

ΔV = 𝑓 (x(k), v(x(ki)))TQ𝑓(x(k), v(x(ki))) − xT(k)Qx(k). (22)

Substituting (13) to (22), we can get

ΔV ⩽ ||q||2 ((C ‖x(k)‖ + C ‖e(k)‖)2 − ‖x(k)‖2)
. (23)

According to the Cauchy-Schwarz inequality, (23) becomes

ΔV ⩽ ||q||2 (2C2‖x(k)‖2 + 2C2‖e(k)‖2 − ‖x(k)‖2)
⩽ ||q||2(2C2 − 1)||x(k)||2 + 2C2||q||2‖e(k)‖2

⩽ −𝛼3 (‖x(k)‖) + 𝜎 (‖e(k)‖) . (24)

Thus, the condition (12) holds, and the function V is an input-to-state stability Lyapunov function. Additionally,
substituting the triggering condition (14) into (24), then we will get

V(𝑓 (x(k), v(e(k) + x(k)))) − V(x(k)) ⩽ 0. (25)

Hence, the function V is guaranteed to be nonincreasing when triggering condition is dissatisfied.
II. The triggering condition is satisfied
When the triggering condition is satisfied, the control law will be updated, and the system will work under the

updated control law. According to the work of Wei et al,6 the Lyapunov function V(x(k)) is nonincreasing.
Combining the aforementioned results, we can get that, no matter whether the triggering condition is satisfied

or not, the Lyapunov function V(x(k)) is nonincreasing based on a proper constant C. Therefore, the system (4) is
asymptotically stable, and the proof is completed.

Remark 1. It can be seen that the discrete-time event-triggered system (4) is asymptotically stable with triggering
condition (14) under Assumption 1. Compared with the existing work,37 the new triggering condition needs fewer
assumptions to stabilize the discrete-time systems.

4 NEURAL NETWORK IMPLEMENTATION

There are 3 main parts in the studied event-triggered HDP algorithm. The model network approximates the system. The
critic network approximates the value function by iteration, and the action network approximates the control law. The
weights of action network update only when the triggering error is greater than the threshold.

First, some notations are given. W(k) represents the weight matrix between the hidden layer and output layer, and Y(k)
represents the weight matrix between the input layer and hidden layer. Define 𝜎(𝛾(k)) = (1 − e−𝛾(k))∕(1 + e−𝛾(k)) as the
activation function. 𝜂 is the learning rate.
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I. Model Network
Approximate the system (4) with a 3-layer NN, which is denoted as

x̂(k + 1) = WT
m𝜎

(
Y T

m
[
x(k);u(k)

])
. (26)

Our target is to minimize the error in the following form by regulating the weight matrix:

Dm(k) =
1
2

dT
m(k)dm(k), (27)

where dm is the estimation error defined as

dm(k) = x̂(k + 1) − x(k + 1). (28)

The update algorithm of the weight matrix of model networks can be expressed as

Ŵm(k + 1) = Ŵm(k) − 𝜂m

(
𝜕Dm(k)
𝜕Wm(k)

)
= Ŵm(k) − 𝜂m

(
𝜕Dm(k)

𝜕xm(k + 1)
𝜕xm(k + 1)
𝜕Wm(k)

)
.

(29)

II. Critic Network
The critic network is used to approximate the iterative value function J(x(k)), which is denoted as

Ĵ(x(k)) = WT
c (k)𝜎

(
Y T

c (k)x(k)
)
. (30)

The target is to minimize the error function in the following form by regulating the weight matrix:

dc(k) = J(x(k)) −
[
J (x̂(k + 1)) + U(k)

]
, (31)

Dc(k) =
1
2

dT
c (k)dc(k). (32)

The update algorithm of hidden-to-output weight matrix of the critic network is expressed as

Ŵc(k + 1) = Ŵc(k) − 𝜂c

(
𝜕Dc(k)
𝜕Wc(k)

)
= Ŵc(k) − 𝜂c

(
𝜕Dc(k)
𝜕J(k)

𝜕J(k)
𝜕Wc(k)

)
.

(33)

III. Action network
The action network is used to approximate the iterative control input u(k), which can be expressed as

û(k) = WT
a (k)𝜎

(
Y T

a (k)x(k)
)
. (34)

Our target is to minimize the error in the following form by regulating the weight matrix:

da(k) = J (x̂(k + 1)) + U(k) − Uz, (35)

Da(k) =
1
2

dT
a (k)da(k), (36)

where Uz can be set to zero according to the work of Si and Wang.40 The weights update algorithm for the action network
can be expressed as

Ŵa(k + 1) = Ŵa(k) − 𝜂a

(
𝜕Da(k)
𝜕Wa(k)

)
= Ŵa(k) − 𝜂a

(
𝜕Da(k)
𝜕J(k + 1)

𝜕J(k + 1)
𝜕x̂(k + 1))

𝜕x̂(k + 1))
𝜕u(k)

𝜕u(k)
𝜕Wa(k)

+ 𝜕Da(k)
𝜕U(k)

𝜕U(k)
𝜕u(k)

𝜕u(k)
𝜕Wa(k)

)
.

(37)

Define the weight approximation error as
w̃(k) = ŵ(k) − w∗(k). (38)

Then, the stability analysis is given as follows.
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Theorem 2. If the event-triggered systems update the weights of NNs through the update laws (33) and (37), no matter
whether the triggering condition is satisfied or not, the closed-loop state x(k) and the network weight approximation errors
w̃c and w̃a are UUB under the conditions that

1√
2
< 𝛼 < 1, (39)

𝜂c <
1

𝛼2‖𝜎c(k)‖2 , (40)

𝜂a <
1‖𝜎a(k)‖2 . (41)

Proof. I. The triggering condition is satisfied
Define a Lyapunov function as

L = 1
𝜂c

tr
[
w̃T

c w̃c
]
+ 1

𝛾𝜂a
tr
[
w̃T

a w̃a
]
+ 1

2
‖𝛿(k − 1)‖2‖‖‖w̃T

c (k − 1)‖‖‖2
, (42)

where 𝛾 > 4∕(𝛼2 − 1
2
). According to the work of Liu et al,41 we can get that the first difference function of (42) is

negative under the conditions (39) to (41). Thus, the closed-loop state x(k) and the network weight approximation
errors w̃c and w̃a are UUB when the triggering condition is saitisfied.
II. The triggering condition is dissatisfied

Define a Lyapunov function in the following form:

L = xT(k)x(k) + tr
{

w̃T
c w̃c

}
+ tr

{
w̃T

a w̃a
}
. (43)

The first-order difference is calculated as
ΔL = xT(k + 1)x(k + 1) − xT(k)x(k)

+ tr
{

w̃T
c (k + 1)w̃c(k + 1)

}
− tr

{
w̃T

c (k)w̃c(k)
}

+ tr
{

w̃T
a (k + 1)w̃a(k + 1)

}
− tr

{
w̃T

a (k)w̃a(k)
}
.

(44)

When the triggering condition is dissatisfied, the 2 networks stop working, and the network weights remain constant.
Therefore, the first difference function (44) becomes

ΔL = xT(k + 1)x(k + 1) − xT(k)x(k). (45)

According to (25), the first-order difference function 𝛥L < 0 holds. Thus, the closed-loop system state x(k) and the
network weight approximation errors w̃c and w̃a are UUB when the triggering condition is dissatisfied.

5 EXAMPLES

Two examples are used to validate the studied algorithm.

Example 1. First, apply the method to the mass-spring-damper system.37 The state-space model is given as follows:{
ẋ1 = x2,

ẋ2 = − b
m
− ks1

m
+ Fext

m
,

(46)

where m = 1 kg is the mass of the body and ks1 = 9 N/m is the linear spring constant. The drag force is b = 3 N·s/m.
The Fext represents the force from outside, ie, the control law u(k). Choose the sampling period as T = 0.01 s, and the
discrete-time state-space function is[

x1(k + 1)
x2(k + 1)

]
=
[

0.0099x2(k) + 0.9996x1(k)
−0.0887x1(k) + 0.97x2(k)

]
+
[

0
0.0099

]
u(k). (47)

Define the performance index function as

J =
∞∑

k=0

(
xT(k)Qx(k) + uT(k)Ru(k)

)
, (48)
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FIGURE 1 The trajectories of the current angle x1. HDP, heuristic dynamic programming [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 2 The trajectories of the angular velocity x2. HDP, heuristic dynamic programming [Colour figure can be viewed at
wileyonlinelibrary.com]

where Q = I1, R = I2, and I is the identity matrix with appropriate dimensions. We use both traditional HDP algorithm
and event-triggered HDP algorithm to optimize the control law for comparison. Two 3-layer 2-12-1 back propagation
NNs are chosen for the critic network and the action network, respectively. Choose the initial state as x0 = [−0.5, 0.5]
and the constant C = 0.7.

In Figures 1 and 2, the trajectories of 2 states using 2 algorithms are presented, respectively. Figure 3 shows the
control law in the event-triggered HDP algorithm. Apparently, the control law is updated only when the triggering
condition is satisfied. Figure 4 represents the summary of the performance index function. The triggering error ||e(k)||
and the triggering threshold eT are shown in Figure 5. It can be seen that the threshold is always greater than the
triggering error. We also record the number of the control law updates in Figure 6. The traditional HDP algorithm is
implemented by 500 updates, while the event-triggered HDP algorithm is completed by only 115 updates. Thus, it can
be seen that the event-triggered method gets a competitive result with less calculation.

Example 2. In this part, we consider a nonlinear discrete-time control system in (49)

x(k + 1) = F(xk,uk) = xk + sin(0.1x2
k + uk). (49)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 6 Comparison of training times. HDP, heuristic dynamic programming [Colour figure can be viewed at wileyonlinelibrary.com]

Choose the initial state as x0 = 0.5 and the constant C = 0.55. The form of the performance index function is
the same as (48), where Q = 0.04I and R = 0.01I. We use both traditional HDP algorithm and event-triggered HDP
algorithm to control the system and obtain the optimal performance index function. Two 3-layer 1-8-1 back propa-
gation NNs are chosen for the critic network and the action network, respectively. For each iteration, the action NN
and the critic NN are trained for 100 times. Both traditional HDP algorithm and event-triggered HDP algorithm are
operated at the same time for comparison.

In Figure 7, the trajectories of the state in 2 algorithms are presented to show the effectiveness. The control law in
event-triggered HDP algorithm is shown in Figure 8. Apparently, the control law is updated only when the event is
triggered. The triggering error ||e(k)|| and the triggering threshold eT are presented in Figure 9. It can be seen that
the triggering error will be reset if it is greater than the threshold. Figure 10 represents the summary of the perfor-
mance index function. We also record the number of training times in Figure 11. The traditional HDP algorithm is
implemented by 50 times of training, while the event-triggered HDP algorithm by 10 times.

Time

0 5 10 15 20 25 30 35 40 45 50

S
ta

te
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Traditional HDP

Event-Triggered HDP

FIGURE 7 The trajectories of states. HDP, heuristic dynamic programming [Colour figure can be viewed at wileyonlinelibrary.com]
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6 CONCLUSION

In this paper, a new triggering condition has been proposed based on event-triggered HDP algorithm for discrete-time
systems. Under this triggering condition, the stability of the system is proved. Simulations are presented to show the
effectiveness that the event-triggered HDP algorithm could reduce more than three-quarters of the computation. The
selection of constant C will be studied in future work.
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