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Abstract—Feature selection is fundamental to knowledge discovery from massive amount of high-dimensional data. In an effort to

establish theoretical justification for feature selection algorithms, this paper presents a theoretically optimal criterion, namely, the

discriminative optimal criterion (DoC) for feature selection. Compared with the existing representative optimal criterion (RoC, [21])

which retains maximum information for modeling the relationship between input and output variables, DoC is pragmatically

advantageous because it attempts to directly maximize the classification accuracy and naturally reflects the Bayes error in the

objective. To make DoC computationally tractable for practical tasks, we propose an algorithmic framework, which selects a subset of

features by minimizing the Bayes error rate estimated by a nonparametric estimator. A set of existing algorithms as well as new ones

can be derived naturally from this framework. As an example, we show that the Relief algorithm [20] greedily attempts to minimize the

Bayes error estimated by the k-Nearest-Neighbor (kNN) method. This new interpretation insightfully reveals the secret behind the

family of margin-based feature selection algorithms [28], [14] and also offers a principled way to establish new alternatives for

performance improvement. In particular, by exploiting the proposed framework, we establish the Parzen-Relief (P-Relief) algorithm

based on Parzen window estimator, and the MAP-Relief (M-Relief) which integrates label distribution into the max-margin objective to

effectively handle imbalanced and multiclass data. Experiments on various benchmark data sets demonstrate the effectiveness of the

proposed algorithms.

Index Terms—Feature selection, discriminative optimal criterion, feature weighting.

Ç

1 INTRODUCTION

FEATURE subset selection is a preprocessing process aimed
at identifying a small subset of highly predictive features

out of a large set of raw input variables that are possibly
irrelevant or redundant [15], [12]. It plays a fundamental role
in the success of many learning tasks where high dimen-
sionality arises as a big challenge, most evidently, in pattern
recognition [27], [7], knowledge discovery and data mining
[16], [42], information retrieval [9], [43], computer vision [4],
[1], bioinformatics [34], [6] and so forth. The effects of feature
selection [16], [15] have been widely recognized for its
abilities in, e.g., facilitating data interpretation, reducing
measurement and storage requirements, increasing proces-
sing speeds, defying curse of dimensionality and improving
generalization performance, etc.

In this paper, feature selection is investigated as it is
applied to classification scenarios. Suppose we are given
a set of input vectors fxngNn¼1 along with corresponding
targets (labels) fyngNn¼1 drawn i:i:d from an unknown
distribution pðx ; yÞ, where xn 2 X � RD is a training
instance and yn 2 Y ¼ f0; 1; . . . ; C � 1g is its label, N ,
D, C denote the training set size, the input space
dimensionality and the total number of categories,

respectively. The dth feature of x is denoted as xðdÞ,
d ¼ 1; 2; . . . ; D. The goal of feature selection is to select a
subset of M (M � DÞ most predictive features, i.e., to
find a preprocessing of data �ðxÞ : x! ðx � ��Þ, where
�� ¼ ½�1; . . . ; �D� 2 S ¼ f0; 1gD with jj�� jj0 ¼M is an opera-
tor selecting up to M elements from a D-vector, ðx �
��Þ ¼ ½xð1Þ�1; . . . ; xðDÞ�D� denotes the element-wise product
and jj � jj0 the L0 norm. Let the feature selection criterion
function be represented by Jð�Þ. Formally, the problem of
feature selection can be formalized as the following
optimization task:

�� ¼ arg max
��2S;jj�� jj0¼M

Jð��Þ: ð1Þ

From a methodological perspective, existing feature
selection algorithms can be generally divided into two
categories [15], [16]: Wrapper and Filter. The Wrapper (or
Embedded) methods use a specific type of classifier to assess
the quality of a feature subset, and select the optimal feature
subset by minimizing the training error of the chosen
classifier. In contrast, the Filter methods evaluate features
based on certain criteria that are independent of any classifier
and find the features by optimizing such criteria. In practice,
while the Wrapper methods have been frequently observed
to achieve better classification accuracy for the classifier
being choosed, they are also much more time-consuming;
and due to their dependence to the targeted classifier, they
usually provide less generic knowledge of the data.

A feature selection method typically consists of two basic

elements [10], [19]:

. Evaluation criterion, a measure to assess the goodness
of a feature subset �� .
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. Search strategy, a procedure to generate candidate
subset �� for searching the feature power set.

Over the past decades, a large number of algorithms have
been proposed for feature selection. However, most of the
existing evaluation criteria are based on heuristic intuitions
or domain knowledge. For example, the Relief algorithm [20]
is recently interpreted as a method that optimizes the
average heuristical margin [28], [14], [5], although the secret
behind the definition of the margin is unclear. To deepen our
understanding of existing feature selection methods and lay
guidelines for the development of new algorithms, it is
highly desirable to establish feature selection objectives (i.e.,
evaluation criteria) that possess sound theoretic under-
standing. To the best of our knowledge, the first effort for the
theoretical treatment of feature selection is the so-called
“Optimal Feature Selection” framework [21]. This work not
only laid a solid foundation for feature selection, but also
inspired the establishment of many successful algorithms
[34], [44], [24]. However, the framework in [21] is representa-
tive, i.e., it attempts to minimize the information loss for
modeling the relationship (e.g., the posterior distribution)
between input and output in the process of dimensionality
reduction. In practice, preserving the representative infor-
mation to small details could be wasteful of training
resources as our ultimate goal is merely classifying the data
coarsely to several categories. Also, this representative
framework could be practically risky as modeling posteriors
is a nontrivial task especially when the training data is rare.
Fortunately, we show in this paper that the “representative”
framework is not the only option, and establish a “dis-
criminative” framework for learning feature selectors. Un-
like the representative framework, a discriminative
counterpart considers classification directly by optimizing
the ability of the feature selector in discriminating data from
different classes. The discriminative framework is more
advantageous in practice because by directly optimizing the
discriminativeness (which relates to the difference of poster-
iors), it avoids direct modeling of the posteriors.

Given a certain evaluation criterion, feature selection is
reduced to a combinatorial search problem, where each state
in the search space is a possible feature subset. To achieve the
optimal subset is NP-hard since the search space is
exponential in the number of features. Therefore, heuristic
search procedures are necessary. Existing search strategies
are generally divided [19] into three classes: complete
(exhaustive, best first, branch and bound, beam, etc.), heuristic
(forward/backward sequential, greedy, etc.), or stochastic
(simulated annealing, genetic algorithm, etc.). The recently
proposed feature weighting procedure [33], [5], [43] is a
greedy search strategy. It assigns to each feature a real valued
number to indicate its usefulness, making it possible to
efficiently search the feature power set simply by searching in
a continuous space. For this reason, this paper will fix the
search strategy at feature weighting and focus mainly on the
aspect of evaluation criterion. However, extensions to other
search schemes are straightforward (e.g., [38]).

In this paper, we first present a theoretically optimal
criterion for feature selection, namely the discriminative
optimal criterion (DoC), as a complementarity to the
representative one (referred to as representative optimal
criterion (RoC) [21]). The DoC directly attempts to maximize
the classification accuracy and naturally reflects the Bayes
error in the objective. Compared to RoC, DoC is practically

favorable if our ultimate goal is for the purpose of
supervised classification. However, DoC itself is computa-
tionally intractable as it involves unknown probabilistic
densities. To make DoC practical, we then propose an
algorithmic framework for feature selection, which selects a
subset of features by minimizing the Bayes error estimated
by a nonparametric estimator. Many existing approaches as
well as new ones [38], [39] can be naturally derived from
this framework. For example, taking feature weighting as
an example search strategy, we show that the Relief
algorithm attempts to greedily minimize the nonparametric
Bayes error that is estimated by k-nearest-neighbor (kNN)
method. This new interpretation of Relief not only reveals
the secret behind the margin definition in margin-based
feature selection algorithms [28], [14], [5], but also enables
us to identify the weaknesses of these methods so as to
establish new algorithms to mitigate the drawbacks. In this
paper, an alternative algorithm, called Parzen-Relief (P-
Relief), is proposed, which resembles the standard Relief
algorithm, but instead of kNN, it uses the Parzen window
method to estimate the Bayes error. We show that the
empirical performance of Parzen-Relief usually outper-
forms Relief. In addition, we find that the Relief makes an
implicit assumption that the class distribution is balanced
among every “one-versus-rest” split of the data. This
undesirable assumption rarely holds in practice and
substantially limits the performance of Relief in handling
imbalanced or multiclass data set. To mitigate this draw-
back, we derive a MAP-Relief (M-Relief) algorithm based
on the proposed algorithmic framework, which incorpo-
rates the class distribution into the margin maximization
objective function and thus effectively captures the imbal-
anceness among classes. Both Parzen-Relief and MAP-
Relief are of the same computational complexity as the
standard Relief algorithm; yet, both of them demonstrate
significant performance improvement over Relief as illu-
strated by our experiments on various benchmark data sets.

The organization of this paper is as follows: we briefly
review the related work in Section 2 and then present the
discriminative framework for feature selection in Section 3.
Section 4 offers a new interpretation for Relief, and
furthermore establishes two alternatives, i.e., the Parzen-
Relief and MAP-Relief algorithm. In Section 5, we present
the experiments and empirical results on both UCI data and
large-scale real-world tasks. Finally, in Section 6, we
summarize the whole paper.

2 RELATED WORK

2.1 Theoretically Optimal Feature Selection

The “optimal feature selection” framework [21], for the first
time, places a sound theoretical foundation for the feature
selection task. Based on the information theory, this
framework defines the optimality of a feature subset in
the sense that it retains the most amount of information
required for modeling the dependence between the input
variables (features) and output variable (label) in the
reduced-dimensional space. Let �ðxÞ denote the representa-
tion of x after the dimensionality reduction defined by � ,
this framework requires that the posterior pðyj�ðxÞÞ be as
close as possible to the original one pðyjxÞ:
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min
�
KLfpðyjxÞjjpðyj�ðxÞÞg

s:t: : jj�� jj0 ¼M;
ð2Þ

where KLfpðxÞjjqðxÞg ¼ EX½pðxÞ log pðxÞ
qðxÞ� denotes the Kull-

back-Leibler (KL) divergence between two distribution pðxÞ
and qðxÞ. We refer to this criterion as representative optimal
criterion to emphasize its goal of retaining the information
for modeling the relationship between the input and
output. A variety of existing criteria could be seen as
instances of RoC. For example, the entropy or mutual-
information (MI) criterion and its variations [15], and also
the objectives used in [29], [44], [34], [24], [43], etc. However,
in the context of supervised classification, RoC might
unnecessarily complicate matters because modeling poster-
ior distributions for high-dimensional data is nontrivially
more challenging than classifying the data coarsely to
several classes. Clearly, if our ultimate goal is for classifica-
tion purpose, an obvious objective is the classification
accuracy; and there is no reason for going beyond this
objective for more complicated ones.

2.2 Existing Discriminative Methods

There have been attempts for discriminative methodology
of feature selection. Most of them are focused on developing
algorithms by exploiting certain heuristic perspectives or
domain knowledge, and hence significantly different from
what we present in this paper as our emphasis here is to
establish a general framework for discriminative feature
selection from a theoretically optimal perspective.

In [27], Saon and Padmanabhan proposed to reduce the
input dimensionality by approximately minimizing the
Bayes error. They established algorithms for constructing
linear feature transformation by maximizing the average
pairwise divergence or minimizing the union Bhattacharyya
error bounds and proved that these optimizations asympto-
tically relates to Bayes error minimization. To make their
approach tractable, Gaussian assumption has to be made
for the class-conditional densities, which, however, limits
the performance of their methods for multimode non-
Gaussian data that are quite common in practical applica-
tions. This limitation is also shared by similar methods such
as the Bhattacharyya distance approach [7], [35].

In the context of vision recognition, Vasconcelos [31]
proposed a feature selection approach based on the infomax
principle. Although their criterion was tied to the Bayes
error, the relation is quite loose and the resulted feature
learner is often suboptimal in the sense of minimum Bayes
error. In an independent work, Carneiro and Vasconcelos
[4] proposed a joint feature extraction and selection
algorithm by minimizing the Bayes error. For estimating
the objective, the authors adopted a generative methodol-
ogy by assuming Gaussian mixture models for the class-
conditional distribution. A technical difficulty for this
method is that the number of mixture components, which
has dominant importance in their method, is very difficult
to be determined in practice. In [32], Weston et al. proposed
a learning algorithm that jointly learns feature selection and
classification by minimizing a zero-norm regularized loss
function to encourage featurewise sparseness of a classifier.
To make the algorithm computation tractable, convex loss
functions, e.g., the hinge loss function used in support vector

machines (SVMs), have to be employed as the optimization
objective. Although the Bayes error can be naturally
reflected by the zero-one loss function, these convex
surrogate loss functions offer poor approximation to the
zero-one loss.

The recently proposed spectral framework [45] formu-
lates feature selection as a graph-based optimization.
Typically, a spectral feature learner is established by
1) conveying basic assumptions and heuristical intuitions
into pairwise similarity of or constraints on the training
instances; 2) constructing a affinity graph based on the
defined similarity; and 3) building a learner by spectral
analysis of the graph. Although the spectral graph theory
[8] is usually employed to provide justifications for spectral
selectors, it provides no guidelines on how to construct the
graph, which is of central importance to the success of such
graph-based learning algorithms since the performance is
extremely sensitive to both graph structures and edge
weight settings. As a consequence, one has to resort to
heuristics to establish graph for spectral learning. In a recent
work [38], we show that spectral feature learning algo-
rithms could be derived from theoretic frameworks such as
RoC and DoC. The resulted algorithms encode the RoC or
DoC objectives into a well-defined graph and learns
features by spectrally embedding the derived graph. The
theoretic analysis and empirical results in [38] validate the
advantage of our efforts in establishing feature learning
algorithm top-down from a theoretic optimal perspective.

2.3 Feature Weighting and Relief

Feature weighting [33], [43], [5] is a greedy search strategy for
feature selection. By assigning to each feature a real valued
weight to indicate its quality, it simplify the combinatoric
search problem to a continuous optimization task.

Among the existing feature weighting methods, the
Relief algorithm [20], [26] is considered one of the most
successful techniques due to its effectiveness and simplicity
[25]. It is also frequently employed to enhance the
performances of the lazy learning algorithms [33]. Recently,
Gilad-Bachrach et al. [14] established a new variation of
Relief based on the concept of margin. This idea was further
exploited by Sun [28] to provide a new interpretation of
Relief as a max-margin convex optimization problem. This
perspective not only simplifies the computation of Relief
significantly but also explains some property of Relief.
However, the margin is a heuristical concept defined based
on simple intuitions, thus, the secret behind the success of
Relief is still unclear. In this paper, we show that DoC offers
a more insightful interpretation to Relief.

According to Sun [28], Relief is equivalent to a convex
optimization problem

max
XN
n¼1

wTmn

s:t: : jjwjj22 ¼ 1;w � 0;

ð3Þ

where w ¼ ðw1; w2; . . . ; wDÞT is a weighting parameter
vector, mn ¼ jxn �MðxnÞj � jxn �HðxnÞj is called the
margin vector for the sample xn, HðxnÞ and MðxnÞ denote
the nearest-hit (the nearest neighbor from the same class)
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and nearest-miss (the nearest neighbor from different
classes) of xn, respectively. By using the Lagrangian
relaxation and deriving the Karush-Kuhn-Tucker optimal-
ity, a simple close-form solution to (3) can be derived, i.e.,

w ¼ ðmÞþ=jjðmÞþjj2; ð4Þ

where m ¼ 1
N

Pn
n¼1 mn is the averaged margin vector, ð�Þþ is

an elementwise positive part operator, i.e., ðaÞþ ¼ maxða;0Þ.

3 A DISCRIMINATIVE FRAMEWORK FOR FEATURE

SELECTION

3.1 Discriminative Optimal Feature Selection

Feature selection plays a crucial role in machine learning.
Yet, as oppose to learning algorithms, most of the feature
selection criteria are based on heuristical intuitions or
domain knowledge. A formal framework for feature
selection in the literature is the representative optimal
criteria framework proposed by Koller and Sahami [21],
which placed a sound theoretic foundation for the feature
selection task. Here, we propose another theoretic optimal
framework as the discriminative counterpart for RoC.
Unlike RoC, this criterion considers classification directly
and naturally reflects the Bayes error rate in the reduced-
dimensional space.

We view feature selection as a preprocessing procedure
that is independent of any classifier [15], [21]. In other
words, we focus on a Filtering setting. A discriminative
approach would select a subset of M features such that the
data are essentially most discriminant in terms of the selected
features. For this purpose, assume � is a decision rule (i.e.,
classifier) that maps each input sample x directly onto a class
label y, the optimal feature selector should minimize the
generalization error of an ideal classifier ��, which is, the
Bayes error rate

min
�

inf
�
Ex½errð�j�ðxÞÞ�

s:t: : k�k0 ¼M;
ð5Þ

where Exferrð�j�ðxÞÞg ¼ Ex½1�maxcpðcj�ðxÞÞ� is the gen-
eralization error of a decision rule � in the reduced-
dimensional space, c 2 f0; 1; . . . ; C � 1g is a class label,
and inf denotes the infimum of a set. We call this optimal
criterion as discriminative optimal criterion to highlight its
goal to maximize the essential discriminative ability of the
selected features.

The RoC criterion has been proved powerful for its
ability in keeping maximum amount of information for
modeling the posterior distribution pðyj�ðxÞÞ, which is of
course useful for various domains [3], [21]. Besides, it is also
closely related with the Bayes error for classification [17].
However, in the context of supervised classification,
preserving the representative information to a very fine
resolution might be wasteful of the limited training
examples because our ultimate goal is merely to classify
the data very coarsely into several classes. Moreover, for
many applications where x have very high dimensionality,
modeling the posterior probability with limited samples
could be highly illposed. In contrast, there are plenty of
compelling reasons for using discriminative criteria to

assess the quality of features in classification scenarios [3].
One of such justifications is addressed concisely by Vapnik
[30] as we quote: “one should solve the problem (classifica-
tion) directly and never solve a more general problem
(modeling pðyjxÞ) as an intermediate step.”

3.2 Nonparametric Bayes Error Minimization

Both RoC and DoC are theoretically optimal but computa-
tionally intractable. In particular, we cannot compute the
exact Bayes error in practice because neither the ideal
decision rule nor the precise posterior distribution is known
a priori. Therefore, approximation procedures for estimat-
ing the Bayes error is necessary. In general, there are two
distinct approaches for estimating the Bayes error objective
of DoC, which, interestingly, are reflected precisely into the
taxonomy of feature selection algorithms.

. Wrapper methods optimizes the generalization error
of a specific form decision rule � 2 H through a
nested/joint optimization

� ¼ arg min
�

min
�2H
fEx½errð�j�ðxÞÞ�g

¼ arg min
�2H;�
fEx½errð�j�ðxÞÞ�g;

ð6Þ

where H denotes a hypothesis space. Clearly, this is
equivalent to estimate the Bayes risk by
inf�2HfEx½errð�j�ðxÞÞ�g, which is then used as a
measure to assess the usefulness of a feature subset
so as to search for the optimal subset. However,
because of the nontrivial coupling between � and �

in the optimization, it is highly likely that the
selected features are not optimal for classifiers other
than the specified form (i.e., for decision rules not in
the hypothesis space H).

. Filter methods1estimates the Bayes risk without
using a specific form of classifier, for instance, the
approximation of the Bayes risk can be obtained by
estimating the probability distribution involved in (5)
[13], [14], or by a compact bound (upper or lower) of
the Bayes risk [27], [35]. Here as an example, assume
we have some kind of prior knowledge about the data
and accordingly design a generative model. In
particular, suppose we consider a binary-class Naı̈ve
Bayes generative model: pðxjyÞ ¼

QD
d¼1 pðxðdÞjyÞ,

where y 2 f1; 0g, pðxðdÞjy ¼ cÞ ¼ N ðxðdÞj�d;c; �d;cÞ, the
DoC framework naturally boils down to the following
criterion for feature ranking:�

xðdÞn � �d;1�y
�2�

�2
d;1�y �

�
xðdÞn � �d;y

�2�
�2
d;y:

If we further assume identical variance �2
d;1 ¼ �2

d;0 for
the generative model, the criterion above turns out
to be the feature ranking criterion well known as
Fisher Score [18], [32]

FSd ¼ j�d;1 � �d;0j
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
d;1 þ �2

d;0

q
:
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In order to obtain generic approaches that are not
confined to any learning algorithms, in this paper, we limit
ourselves to the Filter setting for feature selection. More-
over, to establish feature learning algorithms that are robust
to the underlying data distribution, we will focus on
nonparametric techniques for estimating Bayes error,
leading to a framework we referred to as nonparametric
Bayes error minimization.

Given a set of training data fðxn; ynÞgNn¼1, the expectation
over x can be approximated by the empirical average. To
estimate pðcj�ðxnÞÞ, there are two types of methods, namely,
the parametric and nonparametric estimation methods. In
this paper, we use nonparametric estimators to estimate
pðcj�ðxnÞÞ. Since we have

E½1� pðyj�ðxÞÞ�

¼ 1� 1

2
E½pðyj�ðxÞÞ þ 1� pðc 6¼ yj�ðxÞÞ�;

we can minimize the Bayes error equivalently by optimiz-
ing the following objective:

Jð�Þ ¼ E½pðyj�ðxÞÞ �
X
c6¼y

pðcj�ðxÞÞ�

/
Z

x

pðxÞðpðyÞpð�ðxÞjyÞ �
X
c 6¼y

pðcÞpð�ðxÞjcÞÞdx

	 1

N

XN
n¼1

p̂ðynÞp̂ð�ðxnÞjynÞ �
X
c 6¼yn

p̂ðcÞp̂ð�ðxnÞjcÞ
 !

:

ð7Þ

While most classical parametric densities are unimodal
(have a single peaks), nonparametric density models can
effectively capture the multimodality properties that are
frequently observed in many practical problems. Indeed,
one of the advantages of using nonparametric estimators is
its assumption-free property, i.e., the results will be robust
to any probability distribution since the estimators do not
rely on specific distribution assumptions. However, directly
estimating pðcj�ðxnÞÞ based on the limited training data
might incur singularity problems, because in most tasks, xn
is continuous and usually in a very high-dimensional space.
Fortunately, because we always have pðcjxnÞ / pðcÞpðxnjcÞ,
we could adopt another much more efficient scheme. In
particular, we can estimate pðcÞ by the class ratio of the
training data:

PN
n¼1 Iðyn ¼ cÞ=N ; thereafter, we can estimate

pðxnjcÞ efficiently using nonparametric estimators.
There are two commonly used nonparametric estimators,

namely the k-nearest-neighbor method and the Parzen
window method (or kernel density estimator). If a kNN
estimator is employed, we have

p̂ðxjcÞ ¼ k=Nc

V
ðkÞ
c ðxÞ

; ð8Þ

where Nc is the number of examples in the class with label
c, and V ðkÞc ðxÞ denotes the volume of the hypersphere from
x to its kth nearest neighbor in class c. Basically, this method
employs a Monte Carlo procedure to estimate the probabil-
istic density by counting the proportion of the examples
falling into the k-nearest-neighbor sphere.

In contrast, the Parzen-window estimator [3], [13]
estimates the density function of a probability by averaging

over all the examples with a kernel (or window) function.
For example, to estimate pðxjcÞ, we have

p̂ðxjcÞ ¼ 1

Z

X
n:yn¼c

g
x� xn
&

� �
; ð9Þ

where Z is a factor for normalization, gð�Þ is a kernel

function with bandwidth parameter &, for example, the

popular Gaussian RBF kernel expð� jjx�xn jj2
2&2 Þ.

So far, we have successfully established an algorithmic
framework for feature selection based on the notion of
nonparametric Bayes error minimization. Integrated with a
chosen search strategy, a variety of feature selection
algorithms can be derived from this framework. As a case
study, we exemplify the framework in Section 4 by employ
feature weighting as an example search strategy. We show
that several existing feature weighting algorithms as well as
new ones can be naturally derived from this framework.

4 RELIEF AS NONPARAMETRIC BAYES ERROR

MINIMIZATION

As we have mentioned, a feature selection algorithm
consists of two necessary components, evaluation criterion
and search strategy. We have successfully established a
generic criterion for feature selection. To acquire a practical
feature selection algorithm, we need to choose a specific
search strategy. As a case study, in this section, we use
feature weighting as search strategy for its simplicity and
efficiency. However, extensions to other search strategies
are also possible. For example, in [38], we established DoC-
based algorithms for learning feature transformations, and
in [39], we devise an algorithm that employ DoC for
multiple kernel learning.

We first show that the famous Relief algorithm can be
naturally derived from the proposed framework. Since
Relief is originally established for binary classification tasks,
we first consider binary labels, i.e., yn 2 f0; 1g. We will
extend the results to multiclass scenarios later. Let us first
assume a simplest case of balanced class distribution
pðc ¼ 1Þ ¼ pðc ¼ 0Þ ¼ 0:5, and estimate the class-conditional
probability by a simple 1-Nearest Neighbor (1NN) estima-
tor, we have

Ĵn ¼ p̂ðc ¼ ynj�ðxnÞÞ � p̂ðc 6¼ ynj�ðxnÞÞ
/ p̂ð�ðxnÞjc ¼ ynÞ � p̂ð�ðxnÞjc 6¼ ynÞ

¼ 1=N

V ð1Þ
� 1=N

V ð2Þ

/ 1

jj�ðxnÞ �Hð�ðxnÞÞjjM2
� 1

jj�ðxnÞ �Mð�ðxnÞÞjjM2
;

ð10Þ

where Jn denotes the objective w.r.t. the sample xn, HðxnÞ
and MðxnÞ are the nearest-hit and nearest-miss of xn,
respectively, V ð1Þ and V ð2Þ denote the volumes of the hyper-
spheres from xn toHðxnÞ and toMðxnÞ, respectively. We then
plug this evaluation criterion (10) into the feature weighting
optimization scheme [28]. Basically, feature weighting
assigns a real-valued weight for each feature and approx-
imates the goodness of a feature set by a linear combination of
the goodness of each feature Jð�Þ ¼

P
�d¼1 wdJ

ðdÞ, where J ðdÞ
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denotes the quality measure of the dth feature, wd is the
weight for the dth feature xðdÞ. We have

max
XD
d¼1

wd
XN
n¼1

Ĵ ðdÞn

s:t: : jjwjj22 ¼ 1;w � 0;

ð11Þ

where

ĴðdÞn ¼ p̂
�
c ¼ ynjxðdÞn

�
� p̂
�
c 6¼ ynjxðdÞn

�
¼ 1		xðdÞn �HðxðdÞn Þ		�

1		xðdÞn �MðxðdÞn Þ		 ;
MðdÞ

n and HðdÞn denote the nearest-miss and nearest-hit of xn
in the dth dimensional subspace.

Clearly, (11) will be identical to the Relief optimization of
(3) if we further take two approximation precedures: 1) use
J ðdÞn ¼ jxðdÞn �MðdÞ

n j � jxðdÞn �HðdÞn j, a loosely equivalent term
to optimize [18], and 2) approximate MðdÞ

n and HðdÞn with
MðdÞðxnÞ and HðdÞðxnÞ, which denote the dth elements of
MðxnÞ and HðxnÞ, respectively. The second approximation
means, instead of using D 1D nearest-miss’s MðdÞ

n , we use a
single D-dimensional nearest-miss MðxnÞ and approximate
the dth 1D nearest-miss MðdÞ

n with the dth element of MðxnÞ.
Note that the second approximation could be very poor if
the data contains a large number of redundant or noisy
features. For a discussion on this issue, the readers may
refer to [37].

We summarize the findings into a new interpretation to
the Relief Algorithm.

Proposition 4.1. The Relief algorithm approximates a feature
selection method based on nonparametric Bayes error mini-
mization with assumptions:

1. Binary classification task.
2. Balanced label distribution.
3. 1NN estimator.
4. Greedy search based on feature weighting.

RELIEF was originally proposed as an online feature
selection algorithm based on some heuristical intuitions
[20]. It is considered one of the most successful algorithms
for assessing the quality of features. As the first effort
toward the better understanding of this algorithm, Robnik-
Sikonja and Kononenko [25] interpreted Relief’s evaluation
criterion as the ability to explain particular concept, i.e., “the
ratio between the number of the explained changes in the
concept and the number of the examined instances.”
Recently, Sun [28] proved that RELIEF is an online solution
to a convex optimization problem, where the evaluation
criterion is a margin-based loss function. While this
interpretation is able to explain some of the properties of
Relief, the success of these max-margin feature selectors is
rarely investigated. Particularly since the margin is a
heuristical concept, behind which the secret is still at large.
Here, by deriving from a theoretically optimal framework,
we offer a new interpretation to Relief as well as to other
margin-based feature weighting algorithms. This new
perspective raises opportunities to establish new max-
margin feature weighting alternatives and also to identify
weakness of existing feature weighting methods so as to
improve them.

4.1 Parzen-Relief

By exploiting the new interpretation of Relief, we establish
an alternative feature weighting algorithm which resembles
the standard Relief algorithm in all aspects except that the
Parzen widow instead of kNN estimator is used to estimate
the conditional distribution.

We use the well-known isotropic Gaussian RBF kernel

kðx;x0Þ ¼ 1ffiffiffiffiffiffi
2�
p

&
exp � jjx� x0jj

2&2

� �
: ð12Þ

Given a set of training data fxngNn¼1; pðxÞ can be estimated
by

p̂ðxÞ ¼ 1

N

XN
n¼1

kðx;xnÞ:

Plugging the above into the objective (7), we have

max
XN
n¼1

1

j�ðoÞn j
X
i2�

ðoÞ
n

kðxn;xiÞ �
1

j�ðeÞn j
X
j2�

ðeÞ
n

kðxn;xjÞ

0
@

1
A; ð13Þ

where �ðoÞn ¼ fi : yi ¼ yng and �ðeÞn ¼ fj : yj 6¼ yng denote
the Homogenous and Heterogeneous Index Set of xn.

Using feature weighting as search strategy, which
optimizes the quality of the feature set by greedily
optimizing the weighted linear combination of the good-
ness of each feature, we have

w ¼ arg max
w�0;jjwjj22¼1

XD
d¼1

wd
XN
n¼1

p̂
�
c ¼ ynjxðdÞn

�
� p̂
�
c 6¼ ynjxðdÞn

�
:

Following a series of similar simplification, we get a new
feature weighting method, which we called “Parzen-Relief”

max
XN
n¼1

wTmp
n

s:t: : jjwjj22 ¼ 1;w � 0;

ð14Þ

where the margin mp
n ¼ ½mpð1Þ

n ; . . . ;mpðDÞ
n �T , the dth element

is defined as mpðdÞ
n ¼:

1

j�ðoÞn j
X
i2�

ðoÞ
n

kd
�
x
ðdÞ
i ; xðdÞn

�
� 1

j�ðeÞn j
X
j2�

ðeÞ
n

kd
�
x
ðdÞ
j ; xðdÞn

�
;

and kdðxðdÞ1 ; x
ðdÞ
2 Þ ¼ expð� jx

ðdÞ
1
�xðdÞ

2
j2

2&2
d

Þ.
Note that the P-Relief algorithm has the same computa-

tional complexity as the standard Relief algorithm. The only
difference between Relief and P-relief is the step computing
the margin, in which Relief looks through the homogenous
and heterogenous index set to find the nearest-hit and
nearest-miss for each Xn, while P-Relief averaging the kernel
terms kðxi;xnÞ for xi in the homogenous set and kðxj;xnÞ for
xj in heterogenous set. Clearly, these two steps are of the
same complexity, Oðj�ðoÞn j þ j�ðeÞn jÞ.

4.2 MAP-Relief

An undesirable assumption made by the Relief algorithm,
as suggested by our derivation of Proposition 4.1, is that the
label distribution is balanced among “one-versus-rest” split
of different classes such that to maximize a posterior (MAP)
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probability is equivalent to maximize the class conditional
probability (likelihood). In multiclass classification scenar-
ios, this implies P ðcÞ ¼ 1=2 for all the classes c ¼ 0; 1; . . . ; C,
which is clearly impossible in practice. To address this
problem, we derive from our proposed algorithmic frame-
work to get a refined definition of the margin which turns
out to integrate the label distribution into the max-margin
objective. In particular, we have

p̂ðc ¼ ynj�ðxnÞÞ � p̂ðc 6¼ ynj�ðxnÞÞ
/ p̂ðc ¼ ynÞp̂ð�ðxnÞjc ¼ ynÞ � p̂ðc 6¼ ynÞp̂ð�ðxnÞjc 6¼ ynÞ

/ p̂ðynÞ
jj�ðxnÞ �Hð�ðxnÞÞjjM2

� ð1� p̂ðynÞÞ
jj�ðxnÞ �Mð�ðxnÞÞjjM2

;

ð15Þ

Incorporating this objective into the feature weighting
optimization formulation, we obtain the following convex
optimization problem:

max
XN
n¼1

wTm�
n

s:t: : jjwjj22 ¼ 1;w � 0;

ð16Þ

where the refined margin is given by

m�
n ¼ p̂ðynÞjxn �MðxnÞj � ð1� p̂ðynÞÞjxn �HðxnÞj;

� ¼ ½P ð0Þ; . . . ; P ðC � 1Þ� is the label distribution. We term
this algorithm as MAP-Relief, where MAP is an abbreviation
of max a posterior. In Section 5, we will show that while the
performance of other algorithms in the Relief family
degrades significantly when the data set is strongly
imbalanced, M-Relief is much more robust.

Besides its robustness in handling imbalanced data,
another advantage of M-Relief algorithm is that it can
naturally deal with multi class tasks. The original Relief
algorithm only works for binary classification problems
[20]. ReliefF [22] extends it to multiclass scenarios by a
heuristic updating rule, which is equivalent to solve Relief
with the margin vector

mF
n ¼

X
c 6¼yn

p̂ðcÞjxn �McðxnÞj � jxn �HðxnÞj;

where McðxnÞ is the nearest miss of xn in class c, c 2 0; . . . ;
C � 1. Therefore, one needs to search for k-nearest-hit and
kðC � 1Þ-nearest-miss for each sample to solve ReliefF.
However, from our new interpretation of Relief, this is
clearly unnecessary, because in general the following
relationship always holds:X

c6¼yn
pðcÞpðxnjcÞ ¼ pðxn; c 6¼ ynÞ ¼ ð1� pðynÞÞpðxnjc 6¼ ynÞ:

The Iterative-Relief (I-Relief, [28]) algorithm deals with
multiclass data using a margin vector defined somewhat
similar with our definition m�

n, but with an implicit
assumption P ðynÞ ¼ 0:5. Obviously, this assumption is
inappropriate for problems involving (C > 3) categories.
This could become more severe when C goes larger such
that the “one-versus-rest” splits (i.e., fxi : yi ¼ cg and fxj:
yj 6¼ cg) of the data set become more and more imbalanced.

It is interesting to see that M-Relief possesses advantages
of both ReliefF and I-Relief, and at the same time mitigates
their drawbacks: 1) Similar with ReliefF, M-Relief incorpo-
rates the class distribution to tackling imbalanceness;
2) Similar with I-Relief, M-Relief needs only one, instead
of k
 ðC � 1Þ, nearest-miss for each pattern. Both advan-
tages, i.e., computational efficiency and ability to handling
imbalanced data, would become especially valuable when
we are facing problems with very large number of classes.

5 EXPERIMENTS

In this section, we empirically validate our claims by
conducting extensive experiments to evaluate the effective-
ness of the proposed methods. To achieve fair comparisons,
we only consider algorithms with greedy search strategies
such as feature weighting or feature ranking as baselines.
We first test the proposed algorithms along with other
competitors on UCI data sets in a controlled manner. We
then extend our experiments with applications to two large-
scale real-world tasks, i.e., text term selection and micro-
array gene selection.

5.1 Experiments on UCI Data Sets

To demonstrate the performance and empirical behavior of
the proposed feature weighting algorithms, we first
conducted experiments in a controlled manner. For this
purpose, 12 benchmark machine learning data sets from the
UCI machine learning repository2 are selected because of
their diversity in the numbers of features, instances, and
classes. The statistical information of the data sets are
summarized in Table 1. To establish a controllable experi-
ment setting and also to facilitate the comparison, 50 irre-
levant features (known as “probes”) are added to each data
example. Each of the probes is sampled independently from
a spherical Gaussian distribution N (0, 20).3 Two distinct
metrics are used to evaluate the effectiveness of the feature
selection algorithms. One is the classification accuracy of a
kNN classifier (in some cases also by the Lagrangian
Support Vector Machine (LSVM, [23]), an efficient imple-
mentation of SVMs). The other metric is the Receiver
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2. Available at: http://archive.ics.uci.edu/ml/.
3. Experimental results with probes generated from other distributions

(e.g., uniform, multinomial) are similar.

TABLE 1
Characteristics of 12 UCI Data Sets



Operating Characteristic (ROC) curve [28], which can
indicate the effectiveness of different feature selection
algorithms in identifying relevant features while ruling
out useless ones. To eliminate statistical deviations, all the
experiments are averaged over 20 random runs. The
hyperparameters, for example, the number of nearest
neighbors k in kNN and the regularization parameter C in
LSVM are tuned by a fivefold cross validation procedure
using the training data.

We first apply Relief and P-Relief to the eight binary
classification data sets. The purpose of this experiment is to
examine which nonparametric estimator (kNN or Parzen)
works better for the nonparametric DoC framework. For
this comparison, both kNN and LSVM are used as the
classifier. The hyperparameter in P-Relief, i.e., the kernel
(widow) width) is fixed at a default value: &d ¼ 0:01. Fig. 1

shows the average testing error of each selector-classifier
combination, as a function of the number of top-ranked
features. The ROC curves are plotted in the Fig. 2. As a
reference, the best average classification error and standard
deviation of each algorithm are also plotted as a bar chart in
Fig. 5. From these results, we can see that, although P-Relief
shares the same computational complexity as Relief, it
usually achieves better performance than Relief. In parti-
cular, in terms of the testing set classification accuracy, P-
Relief outperforms Relief in seven (out of eight) data sets
and performs comparably on the other one. The improve-
ments on the seven data sets are all significant, according to
student t-test with confidence threshold 0.01. These ob-
servations suggest that, for estimating the DoC criterion for
feature weighting, Parzen-window approach seems prefer-
able over kNN estimator as it empirically leads to better
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classification accuracy. With respect to the ROC measure,
we see that, for all the eight data sets, P-Relief achieves a
much larger area under ROC curve than Relief does. For
some data sets (e.g., Breast, Ionosphere, Splice), P-Relief
even achieves an ideal ROC shape. These observations
suggest that the P-Relief has a better ability of retaining
useful features while eliminating useless ones, and further
indicates that, the Parzen-window method can achieve
better estimations of the DoC-based feature quality.

One of our contributions is that we identified the
weakness of Relief in handling imbalanced data and
accordingly proposed the MAP-Relief algorithm to address
the issue. We now test this claim by comparing Relief,
ReliefF and the proposed M-Relief on imbalanced and/or
multiclass data. For this purpose, four binary data sets,
which are relatively more imbalanced, and four multiclass
data sets are used. To facilitate the comparison, a biased-
sampling procedure is further applied to the four binary
classification data sets to make them even more imbalanced.
Particularly, we randomly sampled 80 percent of the
sample data from the minority class and hid them in the
experiment. Since Relief is originally established for binary
classification, to enable it to apply to multiclass tasks, we
use the margin definition used in I-Relief [28]. To achieve a
fair comparison, we use one nearest hit and C � 1 nearest
misses (one for each class) in ReliefF. This configuration is
to ensure that the performance differences are mainly
caused by the strategies used to handling imbalance rather
than other factors.

Among the three algorithms, ReliefF is relatively more
time-consuming than the other two because it needs
searching nearest miss for each class. However, the
differences are not very significant because the number of
classes are not very large. For convenience, only the kNN
classifier is used to estimate the classification error. Fig. 3
shows the testing error of each approach, as a function of
the number of top-ranked features. The ROC curves are
plotted in Fig. 4. And the bar plot indicating the best

average testing errors and standard deviations are also
shown in Fig. 5. Note that for binary classification, ReliefF
and Relief are identical to each other. From these results, we
arrive at the following observations: 1 the performance of
Relief is degraded significantly when the data is highly
imbalanced; 2) By exploiting the proposed framework to
integrate the label distribution with the margin definition,
M-Relief improves the performance significantly while not
introducing much extra computation. In particular, it
performs the best in six (out of eight) data sets in terms of
the classification error metric, and in seven data sets in
terms of the ROC metric. According to a similar significance
test, M-Relief significantly improves the classification
accuracy on six out of the eight data sets.

5.2 Term Selection for Natural Language Text
Classification

An important application of feature selection is to select the
most informative terms (words or phrases) for natural
language text classification. This task is important yet
challenging as the original feature space (vocabulary)
usually consists of hundreds of thousands of terms. The
extremely high dimensionality of natural language texts is a
core challenge for text classification, and term selection has
been shown to be the most effective way to improve both
classification performance and computational efficiency
[41]. In this section, we apply our algorithms to this task.
Six benchmark text data sets from Trec (the Text REtrieval
Contest, http://trec.nist.gov) collection that are frequently
used in natural language analysis are selected. The
information of each data set is summarized in Table 2.
Note that, to illustrate the degree of imbalance of each data
set, the maxcP ðcÞ is also given in the last column of Table 2.

We compare ReliefF and P-Relief on these data sets with
no probe added. For evaluation, k-NN classifiers are applied
to the reduced-dimensional data, and the Macro-average F1

(MacroaveF1) and Micro-average F1 (MicroaveF1) [40] are
used to assess the classification results. To obtain statistically
reliable results, tenfold cross validation (i.e., 90 percent as
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training data and 10 percent as testing data for 10 repetitions)
is used to estimate these evaluation metrics.

Fig. 6 plots the performance curves (i.e., accuracies
versus number of selected terms) of ReliefF and P-Relief on
the six text data sets. From the results, we can see that P-
Relief outperforms ReliefF drastically in almost all the data
sets. In addition, our algorithm is able to eliminate up to
98 percent of terms while improving the classification
performance by up to 0.38 (relative: 85 percent), compared
to the results of ReliefF or those without term selection. As a
reference, we also show in Fig. 7 the amounts of
performance improvements of P-Relief compared to ReliefF
and all-features (i.e., results without feature selection).

Another interesting observation is that the scores learned
by our algorithm are intuitively more reasonable than those

learned by ReliefF. As shown in Fig. 8, P-Relief scores
naturally in favor of common terms over rare terms, which
is consistent with a well-known heuristic in natural
language analysis that common terms (i.e., terms with
higher DF or TF) are usually more informative than rare
ones for text classification [41]. In contrast, ReliefF occa-
sionally assigns high credits for terms that appear only once
in the whole corpus.

5.3 Gene Selection for Microarray Genomic Cancer
Diagnosis

We finally apply our algorithms to the task of gene selection
for cancer diagnosis from DNA microarray gene expression
data. For this purpose, we select six well-known microarray
data sets, 9 Tumors, Leukemia1, Leukemia2, Lung

Cancer, SRBCT, and DLBCLA, which are all publicly
available at http://www.gems-system.org. The information
of each data set is also given in Table 2.

A practical challenge in gene selection is that the
microarray data sets usually consist of a very limited
number of samples (usually less than 100) with extremely
high dimensionality (usually greater than 10,000). As shown
in Table 2, the feature-size to sample-size ratio is as high as
156 (i.e., the number of features are 156 times as many as the
number of examples). This severe curse of dimensionality is
a key challenge in genomic microarray data analysis, e.g., a
simplest linear learner could be highly underdetermined on
such data sets. Therefore, for this task, both classification
accuracy and the size of selected features are crucially
important, that is, we want to achieve as high as possible
accuracy with as few as possible features.
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Fig. 5. Average testing errors and standard deviations, at optimal feature size.

TABLE 2
Statistics of Six Natural Language Text Data Sets and

Six DNA Microarray Gene Expression Data Sets

Fig. 4. Comparison of Relief, ReliefF, and M-Relief on UCI data: feature selection ROC.



We compare the two DoC-based algorithms, ReliefF and

P-Relief, and two famous RoC-based feature ranking
algorithm, Information Gain (IG) and Chi-Square (�2) [41],

[34], on these data sets. According to existing reports [34],
[41], [16], these two RoC approaches are among the best

performing feature rankers on microarray data. Similar to
the term selection experiment, because the feature sizes of
microarray are already very large, we do not add any

probes. For testing, we apply k-NN classifiers, and
MacroaveF1 and MicroaveF1 are used as evaluation metrics.

Due to the sparsity of data, all the results are obtained by
using leave-one-out cross validation. For the sake of

computational feasibility, each algorithm is only evaluated
at feature size: 1, 2, 5, 10, 20, 40, 60, 100, 200, 500, and ALL.

As we already mentioned that both accuracy and effective

feature size are important for this task, we report both the

classification accuracy and the best feature size in Table 3.

From Table 3, we can see that for almost all the data sets, the

two DoC-based approaches, ReliefF and P-Relief, perform

significantly better than the two RoC-based approaches (IG

and �2). Both ReliefF and P-Relief substantially improve the

performance of k-NN compared to using all genes, whereas

IG and �2 perform slightly worse on some of the data sets

(e.g., leukemia2). This observation empirically validates

the effectiveness of our DoC framework in comparison with

the RoC framework. In addition, we can see that, except for

9-Tumors, in which our proposed algorithm P-Relief

performs comparably with ReliefF, for all the other five

data sets, P-Relief consistently outperforms ReliefF. For

example, for leukemia1, SRBCT, and DLBCT, our algo-

rithm is able to achieve 100 percent accuracy with only tens

of genes. Although ReliefF achieves similar performance on
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Fig. 7. Average improvements and standard deviations of P-Relief over
ReliefF and all-features on text data sets.

Fig. 8. Learned feature (word) weights of ReliefF and P-Relief ordered
by term frequency (TF) or document frequency (DF).

Fig. 6. Average F1-measures of ReliefF and P-Relief on six text
classification data sets.

TABLE 3
Comparison of ReliefF, P-Relief, and Information Gain on Microarray Gene Expression Data: Each Entry Represents the Average

F1 Measure at the Best Feature Size, the Number in () Represents the Corresponding Feature Size

The best results are highlighted in bold.



SRBCT and DLBCT, the number of genes selected by ReliefF
are relatively larger than P-Relief. Indeed, the high accuracy
and compact gene expression obtained by our algorithm
would enable experts in bioinformatics look directly into
these genes to infer the molecular mechanisms and under-
lying causes of these cancers.

6 CONCLUSION

A natural criterion for feature selection would be to
minimize the Bayes error in the reduced-dimensional space,
because the generalization error of any classifier is lower
bounded by Bayes error and the Bayes error only depends
on features rather than classifiers, hence, Bayes error serves
as an ideal measure to assess the quality of feature subsets.
Based on this notion, we have presented a discriminative
optimal criterion for feature selection, which possesses
several compelling merits compared with its representative
counterpart.

Although theoretically optimal, the discriminative opti-
mal criterion is computationally intractable as it involves
probabilities that are not known a priori. To this end, we
have presented an algorithmic framework for feature
selection based on nonparametric Bayes error minimization.
We show that the proposed framework offers sound
interpretations to existing approaches and also provide
principled building blocks for establishing new algorithms.
For example, when feature weighting are used as the search
strategy, this framework reveals that the Relief algorithm
greedily attempts to minimize Bayes error estimated by
kNN estimator. The new interpretation of Relief insightfully
explains the secret behind the heuristical margin. As an
alternative, a new algorithm named Parzen-Relief is
proposed. Furthermore, the new interpretation enables us
to identify the weaknesses of Relief so as to improve it. In
particular, to enhance its ability in dealing with imbalanced
and/or multiclass data, we have proposed a MAP-Relief
algorithm, which exploits the proposed framework to take
advantage of the label distributions, leading to an weighted
max-margin optimization problem.

Being independent to any feature subset search strategy,
the proposed algorithmic framework is generic enough for
establishing various feature selection algorithms. In [38], we
showed that DoC can be employed for learning affinity
graphs or pairwise similarities and developed an algorithm
for learning feature transformation. In [39], we further
exploited the DoC framework and established efficient
algorithms for multiple kernel learning as well as ranking
aggregation. For more systematic study, we plan to
investigate new DoC-based algorithm instances for solving
real-world challenges. We would also like to examine the
asymptotic properties [2] of DoC and establish theoretic
guarantee for DoC-based algorithms.
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