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A Unified Framework of Latent Feature
Learning in Social Media
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Abstract—The current trend in social media analysis and appli-
cation is to use the pre-defined features and devoted to the later
model development modules to meet the end tasks. Representation
learning has been a fundamental problem inmachine learning, and
widely recognized as critical to the performance of end tasks. In
this paper, we provide evidence that specially learned features will
addresses the diverse, heterogeneous, and collective characteristics
of social media data. Therefore, we propose to transfer the focus
from themodel development to latent feature learning, and present
a unified framework of latent feature learning on social media.
To address the noisy, diverse, heterogeneous, and interconnected
characteristics of social media data, the popular deep learning is
employed due to its excellent abstract abilities. In particular, we
instantiate the proposed framework by (1) designing a novel re-
lational generative deep learning model to solve the social media
link analysis task, and (2) developing a multimodal deep learning
to lambda rank model towards the social image retrieval task. We
show that the derived latent features lead to improvement in both
of the social media tasks.

Index Terms—Deep learning, feature learning, india buffet
process, social media.

I. INTRODUCTION

S OCIAL media is defined as the means of interactions
among people in which they create, share, and exchange

information and ideas in virtual communities and networks
[1]. Recently, more and more users participate in content
creation rather than just consumption in these social media
networks. With the explosive growth of user generated data on
the web, social media has become one of the most popular web
applications, and plays an important role in related multimedia
applications. Social media problems have been extensively
investigated in multimedia research community, ranging from
image/video annotation [2] and multimedia retrieval [3] to user
recommendations [4] and target advertisement [5].

Manuscript received October 12, 2013; revised March 04, 2014; accepted
April 28, 2014. Date of publication May 06, 2014; date of current version
September 15, 2014. This work was supported in part by the National Basic
Research Program of China under Grant 2012CB316304, the National Nat-
ural Science Foundation of China under Grants 61225009, 61373122, and
61303176, the Beijing Natural Science Foundation under Grant 4131004, and
the Singapore National Research Foundation under its International Research
Centre at the Singapore Funding Initiative and administered by the IDM Pro-
gramme Office. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Cees Snoek.
Z. Yuan, J. Sang, and C. Xu are with the National Lab of Pattern Recognition,

Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
(e-mail: zqyuan@nlpr.ia.ac.cn; jtsang@nlpr.ia.ac.cn; csxu@nlpr.ia.ac.cn).
Y. Liu is with the Department of Computing, Hong Kong Polytechnic Uni-

versity, Kowloon 999077, Hong Kong (e-mail: csyliu@comp.polyu.edu.hk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2014.2322338

Fig. 1. Example images from Flickr to demonstrate the diversity characteristic
of social media data.

Different from conventional multimedia data, social media
network exhibits unique characteristics, which poses practical
challenges to social media analysis and applications. Many so-
lutions have been proposed to address these challenges. In the
following, we elaborate the social media data characteristics and
challenges in its generation, distribution and interaction, as well
as briefly review the corresponding solutions.
Firstly, from the perspective of generation, social media data

are noisy and diverse. The user-generated mechanism gives rise
to their low quality and large quantity. Users with various back-
grounds use social media to record their daily life, resulting in
subjective social media data and featuring a diverse distribution
of attributes like resources, appearance and degree of diffusion.
The diversity characteristic poses challenges to the basic social
media analysis tasks, such as social image classification. The
social media data expressing the same concept, even from the
same modality, may vary much from each other, making dis-
criminative representation very difficult. Fig. 1 shows some ex-
ample images from Flickr associated with user-generated tags of
“flower” and “running”, respectively. While the images in the
same row express the same concept, their appearances are very
different. To address this challenge, the idea of social media data
preprocessing is applied. By removing noise from user-gener-
ated content to obtain clean and refined data, application-spe-
cific algorithms are designed for solutions [6]. Typical research
topics include video duplicate detection [7], image tag refine-
ment [8] and social media organization [9]. While social media
data preprocessing can address the noisy and diverse issues in
some degree, it is hard to distinguish between the concept-re-
lated parts and the concept-free parts to get the concept semantic
representation for diverse media.
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Fig. 2. (a) Linked friends information of a user in Facebook, and (b) two sample
images uploaded by a user in Flickr associated with social tags.

Secondly, from the perspective of distribution, social media
data are heterogeneous. It is very common that multiple forms
of data, e.g., text and image, exist simultaneously on the same
social media platforms. Fig. 2 shows part of the linked friends
information of a user in Facebook (a), and two sample images
uploaded by users in Flickr associated with social tags (b). Since
social media data of different modalities follow much different
statistical distributions, the latent feature structure is quite com-
plicated. Data with different structures and distributions prevent
from integrated social media understanding. Take user mod-
eling as an example, to understand user preferences from the
online activities, viable solutions need to model heterogeneous
user data, e.g., registration profile, browsing history, shared im-
ages and videos, added comments and annotations, in a princi-
pled way. To overcome the difficulty of heterogeneity for social
media data, social media semantic understanding methods are
proposed by extracting semantics for each modality of data via
multimedia content analysis, and gaining overall understanding
of heterogeneous data in the derived semantic space. Typical
research topics include cross-modal retrieval [10], topic and
event identification [11], and social media knowledge mining
[12][13]. However, the models in this kind of methods are usu-
ally shallow and have limited representation capabilities [14].
The task of learning the modality-free unified representation is
still a challenge in social media analysis.
Last, but maybe the most important, from the perspective of

interaction, most of the social media data are interconnected.
We refer to it as the “collective” effect that social media data do
not exist independently but interact with each other. The collec-
tive effect is either explicit or implicit, e.g., the interaction of
observed user-user relation to their online behaviors is explicit,
while the interaction of collaborative annotation to derive the
final tag metadata is implicit. The collective effect among so-
cial media data violates the independently and identically dis-
tributed assumption in most statistical machine learning algo-
rithms. Both content and collective information need to be con-
sidered for solutions. Social media network analysis methods
are proposed to address this challenge, by embedding the inter-
connected social media data into tensors [15] or social graphs
[5], where social network analysis methodology and metric is
exploited for solution. Typical research topics include commu-
nity detection [16], social behavior mining [17], and contextual
social media analysis [18]. These methods mostly aim at the ex-
plicit “collective” effects, and ignore the implicit ones. More-
over, in these existing models, the latent representation is not
in the unified semantic level, which cannot handle the complex

links in social media network, especially for the heterogeneous
ones.
From the discussion above about the social media challenges

and existing solutions, we can see that most of these current so-
cial media research efforts are devoted to the high-level model
development, while representation learning, one of the funda-
mental and hot research topic in machine learning, is largely
ignored. The importance of feature learning is far from being
emphasized in current social media community, and we believe
that it is a promising research line to take advantage of feature
learning to address the challenges in social media networks.
In this paper, we present a novel framework on the latent

feature learning to solve the high-level tasks in social media
networks from an alternative feature representation perspective.
We tackle the analysis and applications in social media network
with latent features automatically learned from a specially de-
signed deep architecture.
A preliminary version of this work was introduced in [19].

The extension in this paper mainly includes two aspects:
1) we explicitly present a unified framework of deep architec-
ture-based latent feature learning in Section II-B; and 2) we
extend the proposed framework towards unified multimodal
feature learning by addressing the image retrieval application
in Section IV.
The rest of the paper is organized as follows. In Section II,

we firstly introduce the related work about latent feature
learning, and then present a unified framework of latent feature
learning in social media. Targeting at solving the social media
link analysis tasks, following the proposed framework, we
describe the novel RGDBN model in Section III. Likewise,
targeting at solving social image retrieval tasks, in Section IV,
a novel multi-modal deep learning to lambda rank model is
developed. In Section V, we give a brief review of the related
work about link analysis in social media network and image
retrieval methods. We conclude the paper with an outlook on
future work and challenges to be tackled in Section VI.

II. FRAMEWORK OF LATENT FEATURE LEARNING

A. Review of Feature Learning

In this section, we give a brief review of the related work
about feature learning methods.
Feature learning is a classical problem in machine learning,

with extensive efforts devoted to it. Besides the deep learning
research line on which our proposed latent feature learning
framework is based, we review several other feature learning
algorithms.
One kind of latent feature learning methods aims to find a

low-rank approximation for the raw features, including sparse
coding [20], PCA [21], ICA [22], etc. Theymap the raw data to a
lower-dimensional representation based on the assumption that
the data lie (approximately) in an underlying low-dimensional
linear subspace.
Another kind of feature learning methods is based on the

single-layer network, e.g., RBM, auto-encoder, and -means
clustering. [23] shows that large numbers of hidden nodes and
dense feature extraction are critical to achieving high perfor-
mance for these methods.



1626 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 6, OCTOBER 2014

Fig. 3. Framework of latent feature learning-based social media analysis and
application.

In addition, topic model [24] can also be regarded as a solu-
tion of latent feature learning, which aims to discover the ab-
stract “topics” that occur in a collection of raw data and takes
the “topics” distributions as the semantic representation of the
raw data.
From the perspective of model architecture depth, above

methods are shallow models. Shallow models are recognized
as encountering the curse of dimensionality, and having limited
capability in learning the distributed representation in complex
situations [14]. Some related work [25][26] has shown that the
shallow models failed to model the diverse data. Also, due to
the gap between data in different modalities, shallow models
are limited in handling the heterogeneous data [27], and it is
hard to get the unified modality-free representation.

B. Deep Learning-based Framework of Latent Feature
Learning.

Regarding the characteristics of social media data and the
limitations of shallow models, in this section, we describe a
novel unified framework of latent feature learning in social
media network. By integrating the collective prior into the
deep learning architectures, we learn the latent representations
of media in social media network to handle the challenges in
social media analysis tasks described in Section I.
Our basic premise is that, if wemodel the collective effect and

learn a unified feature representation for various social media
data, later tasks of social media analysis and application can be
solved with off-the-shelf machine learning algorithms. The idea
is illustrated in Fig. 3. The latent features which can be consid-
ered as a kind of latent representation for media in social media
network are learned by 1) composing and decomposing struc-
ture-specified low-level features; and 2) integrating the collec-
tive effect from interconnected social media data. Higher-level
social media tasks, e.g., link analysis, cross-media retrieval, are
performed based on the derived latent feature space. Positioned
in the middle-level, the latent feature representation involves

Fig. 4. Deep learning-based latent feature learning framework in social media.

with feature fusion from low-level features and captures the de-
pendency between interconnected data. Moreover, since the la-
tent feature is data-driven and learned automatically rather than
pre-defined, the robustness is guaranteed.
To realize the framework mentioned above and handle the

challenges described in Section I, we propose a deep learning-
based framework of latent feature learning which is shown in
Fig. 4.
Towards the challenges of diversity and heterogeneity, we

build our latent feature learning framework on the deep architec-
ture, where the low-level feature illustrated in Fig. 3 is set as the
lowest layer , and the latent feature layer is positioned above
the top level deep nets. Deep learning framework, which models
the learning task using deep architecture composed of multi-
layer nonlinear modules, provides a powerful tool for automatic
feature learning. The ability of deep learning in high-level ab-
straction and distributed representation has been validated in
both classical machine learning problems [28][29] and social
media related problems [27][30]. The reason that we utilize the
deep learning framework for feature learning is two-fold: 1) The
mechanism of bottom-up greedy unsupervised pre-training and
fine-tuning fits well to the characteristics of diversity and hetero-
geneity of social media data. The final feature representation is
learned via a feature hierarchy, where higher-level features are
formed by composition and decomposition of the lower-level
features. Following this layer-wise learning structure, the de-
rived features are expected to capture the dependency and in-
teraction in the raw features and explain more abstract and ro-
bust semantics; 2) Deep learning can be explained from mul-
tiple related machine learning perspectives, such as neural net-
work, probabilistic graphical model, etc. This theoretical flex-
ibility makes it possible to solve the feature learning of social
media data and final social media applications under a unified
framework.
Towards the challenge that social media data are intercon-

nected, where the collective effect captures the dependency
among the media and plays an important role in data generation
and relationship understanding, we place the collective effect
and deep architecture within the Bayesian framework. With the
collective effect illustrated in Fig. 3 modeled as prior for the
latent feature, the observed data can be viewed as generated
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from the latent feature through a deep architecture. The collec-
tive effect defines the prior distribution of latent feature
, and the deep generative process determines , the
distribution over observed low-level feature conditioned on the
latent feature. According to the Bayesian theory, the posterior
distribution of latent feature is

(1)

In our proposed unified latent feature learning framework, we
use a modified Deep Belief Nets [31] to model the deep gener-
ative process with multiple non-linear transactions to learn the
high-level representation. In the conventional DBN, the top two
layers constitute a Restricted Boltzmann Machine (RBM) [32],
and the remaining hidden layers form a directed acyclic graph
that convert the representations in the associative memory into
observable variables. Different from the conventional DBN, our
deep generative multi-layer network is composed of multiple
layers and the data are generated in a
top-down way directly. The generative process for is repre-
sented as follows:

(2)

The units in each layer are independent given the values of the
units in the layer above and the parameterization of these con-
ditional distributions is

(3)
where is the binary activation of hidden unit in layer ,

is the vector , denotes the logistic
function, and and denote the bias and weight be-
tween unit in layer and unit in layer , respectively. The
transaction way from to is the same as Equation (3).
In most of the social media analysis tasks, the input feature

is continuous rather than binary. Therefore, the Gaussian RBM
[33] is used to model the generative process in the lowest layer

(4)

where denotes the variance of the unit . We encourage the
model to give high probability to generate the training data.
As the deep architecture re-uses and extracts the features in a

layer-wise way during the learning process, when the learning
process is completed, the “invariant” and “abstract” features are
learned and lie in the higher layers of architecture which pre-
serve the latent feature representation for the media content.
Combining the collective prior and deep generative learning

process under the Bayesian framework, the collective effect and
media content information are integrated into the unified latent
features .

Similar to most deep architecture models, the whole learning
processes include layer-wise pre-training and a following fine-
tuning stages. The greedy layer-wise pre-training is the phase
of constructing the deep architecture based on Restricted Boltz-
mann Machine (RBM) [32] which is an undirected graphical
model with a hidden layer and another visible layer. The multi-
layer deep network is built in a bottom-up fashion, where each
pair of two adjacent layers can be regarded as a RBM by taking
the lower layer as visible layer and the upper layer as hidden
layer.
After having greedily pre-trained the deep multiple layers,

the parameters are adjusted in the fine-tuning stage. Different
from conventional deep models, both Bayesian sampling and
discriminative supervised learning can be applied in our frame-
work. The choice of inference methods for latent feature de-
pends on the strategy of defining the collective effect prior,
which is necessarily task-specific. For the social media data
with strong interactivity, we explicitly define its prior distribu-
tion. In Section III, we combine the non-parametric Bayesian
method (i.e., Indian Buffet Process, IBP) and Bayesian sam-
pling method to infer the latent feature in link prediction tasks.
However, for the tasks where the collective effects are weak,
and the data are with weak interactivity, it is better to use the
discriminative loss feedback to learn the latent feature. Our ap-
plication of image retrieval in Section IV falls into this case.
The proposed deep learning-based latent feature learning

framework is flexible, which can be instantiated into many
concrete models to solve the corresponding social media appli-
cations. In this paper, we instantiate two examples to validate
the effectiveness of the proposed framework to solve different
social media problems. Firstly, we instantiate the framework
into a relational generative deep learning model towards
solving social media link analysis problems in Section III. In
the proposed RGDBN model, we assume that the observed
links between data are generated from the interactions of latent
features. By integrating a flexible non-parametric Bayesian
model of IBP into the modified Deep Belief Nets [31], we
learn the optimal latent features that best embed both the
media content and the explicit collective effects. The model is
capable of analyzing the links between heterogeneous as well
as homogeneous data, with effectiveness validated from social
media applications in social image annotation and user recom-
mendation. Secondly, we instantiate the proposed framework
into a multimodal deep learning to lambda rank model towards
solving the unified multimodal feature learning tasks with the
application of image retrieval in Section IV. In the proposed
model, visual image raw feature and textual query feature
are fused through the deep learning architecture, and unified
multimodal features are learned. During the learning process,
discriminative pairwise lambda loss [34] is used to adjust the
parameters in global fine-tuning stage.
The two instantiations have intrinsic relation and correspond

to two kinds of typical applications in social multimedia. Their
relations are featured in two-fold. On one hand, they illustrate
how different applications are converted into the unified latent
feature framework, and solved from the latent feature learning
perspective. On the other hand, their models are different in the
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Fig. 5. The framework of relational generative deep belief nets.

training way, especially in the fine-tuning stage, which illustrate
the two kinds of learning ways for latent features.

III. LATENT FEATURE LEARNING FOR LINK ANALYSIS

In this section, we address the important link analysis
problems in social media network so as to illustrate the latent
feature learning methods for social media analysis. Due to the
heterogeneity characteristic and collective effect discussed in
the introduction section, link analysis is a challenging problem.
Within the latent feature learning framework, we propose a
novel Relational Generative Deep Belief Nets (RGDBN) model
to handle this problem. In the RGDBN model, the link between
items is generated from the interactions of their latent features.
By integrating the Indian buffet process into the modified Deep
Belief Nets, we learn the latent feature that best embeds both
the media content and observed media relationships. The model
is able to analyze the links between heterogeneous as well as
homogeneous data.

A. Relational Generative Deep Belief Nets

Assumewe observe the two kinds of set of items “ ” and “ ”
with the raw feature matrices , , where each row
and denote the raw feature vector of the th and th
item respectively, and their link relationship matrix between
them , where, if we observe a link be-
tween the item and , and if we observe that there is
no link. Unobserved links are unfilled, where and denote
the number of items in category “ ” and “ ” respectively. Our
goal is to learn a model to predict unfilled values based on the
raw features of items and their observed links. Note that “ ”
and “ ” may be heterogeneous or homogeneous in our model.
In our RGDBN model which is shown in Fig. 5, we assume

that each of the two kinds of items is represented by a set of
latent features. Let and be the binary matrices to rep-
resent the latent features of the two kinds of items, where each
row correspondents to an item and each column correspondents
to a feature such that if the th item has the feature
and otherwise. Let and denote the feature vec-
tors corresponding to the th item in “ ” item and th item in
the “ ” item. For simplicity, we use and to represent them.

In the proposed generative model, the prior distribution over
the latent features and specify the number of fea-
tures and their probabilistic distributions, while the distributions
over observed low-level features conditioned on those latent
features , and relationships
determine how these latent features generate the observed raw
features and their relationships.
On one hand, the latent features will generate the relation

links in the proposed generative model, and the probability of
having a link from item to is entirely determined by the
combined effect of all pairwise latent feature interactions. Let
be a real-valued weight matrix where is the weight that

affects the probability of there being a link from item to item
if item has feature and item has feature . We assume

that links are independent conditioned on , and
, and only the features of item and influence the probability

of a link between those items. This defines the likelihood

(5)

where the product ranges over all pairs of items. Given the fea-
ture matrix , and weight matrix , the probability that
there is a link from item to item is

(6)

where denotes the logistic function, and we give a
prior on with for each entry independently.
On the other hand, motivated by that there should be strong

relationship for items with similar content features and the con-
tent information plays an important role in link analysis be-
tween items, the latent features also generate the observed raw
low-level content features and . The generative process is
as Equation (2) within the latent feature framework introduced
in Section II.
In our model, the latent features are the key factor that de-

termines the link relationship. However, on one hand, the ex-
istence of collective effect leads to that the social media data
do not exist independently but influence with each other, which
means that what latent features an item has are not only influ-
enced by the content of the item itself, but also the features the
other items possess. For example, an item should possess some
“popular” features that most of items have with high probabil-
ities though these features are not reflected from its content in-
formation. Therefore, the collective effect should be considered
into the latent features for each items. On the other hand, from
the model expressivity angle, if the number of the latent fea-
tures is fixed in advance, the model is less flexible. Based on
the above ideas, we want to seek a prior for the latent feature to
allow us to simultaneously infer the number of features at the
same time we learn which items have each feature. The Indian
buffet process (IBP) is such a prior, and it offers hopes to inte-
grate the collective effect into the unified latent features for our
model.
IBP [35] is a stochastic process defining a probability distri-

bution on binary matrices with a finite number of rows and an
unbounded number of columns. A feature matrix drawn from it
for a finite number of items will only have a finite number of
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non-zero features. The generative process to sample matrices
from the IBP can be described through a culinary metaphor.
Each row of corresponds to a diner at an Indian buffet and
each column corresponds to a dish at the infinitely long buffet.
If a customer takes a particular dish, then the entry that corre-
sponds to the customer’s row and the dish’s column is 1 and
the entry is 0 otherwise. The culinary metaphor describes how
people choose the dishes. In the IBP, the first customer chooses a

number of dishes to sample, where is a parameter
of the IBP. The th customer tries each previously sampled dish
with probability proportional to the number of people that have
already tried the dish and then samples a number
of new dishes.
We use the IBP prior on and respectively by regarding

the items corresponding to the customers, and latent features
corresponding to the dishes. If some features are possessed by a
number of items, then the current item also has the features with
probability proportional to the number of items. We describe
this prior as

(7)

(8)

where and control the growth rate of the new features.
Combining the IBP prior and deep generative learning

process under the Bayesian framework, the collective effect
and media content information are integrated into the unified
latent features and which are just what we emphasize
in this paper for social media network analysis.
Exact inference for our model is intractable. For simplicity’s

sake, we firstly learn the high-level representation (in layer
) from the content feature for each item, and then do the

posterior inference on , and using the approximate
Markov Chain Monte Carlo [36] algorithm.
The learning of the high-level representation from content

feature is mainly to learn the parameters (including weights
between adjacent layers and biases). Similar to the DBN, the
whole unsupervised learning processes include layer-wise
pre-training described in Section II and a following fine-tuning
stage. In the fine-tuning stage, we use the “wake-sleep” algo-
rithm [37] to adjust the parameters of all the layers globally in
the fine-tuning stage. In this training process, the “recognition”
weights that are used for inference are untied from the “gener-
ative” weights that define the model.
For the posterior inference on , and , we illustrate the

process by taking the for example, and the process for is
also in a similar way. Given , and the parameters (weights
and biases) between layer and , we sample the by
starting with an arbitrary binary matrix, and then iterate through
the rows of the matrix. For non-zero columns and row ,

(9)

where denotes the number of non-zero columns en-
tries in column excluding row , and is the set of
assignments of other items, not including , for feature .
Note that Equation (9) indicates the three parts we try to
model: captures the collective effect, while

makes the latent more likely to
generate the relationship, and the part to generate
the raw content feature along the deep architecture. Similarly
the number of new features associated with item should be
drawn from a distribution. Given the and

to sample , we simply use the method in [38] to use a
Metropolis-Hastings step for each weight in which we propose
a new weight from a normal distribution centered around the
older one. Given , we update values of in the same way as
in contrastive divergence [39] algorithm.
Based on the results of posterior inference, it is easy to pre-

dict the missing data values given the observed link. We collect
samples , and estimate the predic-

tive distribution of a unfilled link values as the average of the
predictive distributions for each of the collected samples. As-
suming that we want to predict the missing link between
items and , the approximate predictive distribution will be as
follows:

(10)

In conclusion, the proposed Relational Generative Deep Belief
Nets model is summarized in Algorithm 1.

Algorithm 1: Relational Generative Deep Belief Nets

Input: Initial relation matrix ; low level features matrix
of “ ” items ; low level features matrix of “ ” items
; Number of deep network layers L; Random initial bias

parameters for units in layer ; Random
initial weight parameters ;
Random initial latent feature matrix ; Random initial latent
feature matrix .

Output: Unfilled link values of

1 for each layer from do

2 Greedy layer-wise pre-training by learning a RBM at
a time;

3 wake-sleep algorithm for fine-tuning the parameters of
deep nets;

4 for a number of iterations do

5 for each row i in do

6 sample ;

7 for each row j in do

8 sample ;

9 sample ;

10 sample ;



1630 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 6, OCTOBER 2014

11 for each test entriy do

12 for collection number do

13 collect ;

14 collect ;

15 Return test unfilled link values

B. Experiments

In order to evaluate the effectiveness of our proposed
RGDBN model, we conduct a series of experiments on both
self-developed dataset from Flickr for homogeneous user-user
relationship and public MIRFlickr-25000 dataset [40] for
heterogeneous image-tag relationship.
For both experiments of link prediction, we treat it as pos-

itive sample if we observe in the dataset, and neg-
ative sample if . The prediction results are ranked in
increasing sequences according to the prediction probabilities.
AUC, the area under the ROC (Receiver Operating Character-
istic) curve, serves as the performance metric, which is calcu-
lated by the following equation:

(11)

where and are the number of positive and negative sam-
ples respectively, and , where is the
rank position of the th positive example in the ranked list. The
more positive examples are ranked higher (with higher prob-
ability of being a positive example), the higher the term .
Therefore, AUC measures the quality of ranking, which is a
more elegant metric in our problem than accuracy.
1) Link Analysis Between Homogeneous Items: We first con-

duct the experiment for link prediction between homogeneous
items: user recommendation task. In our experiment, we crawl
3,500 users’ data from Flickr, and the data information includes
user’s name, contact list, tag list in his/her profile, uploaded and
“like” photos and related tags for each photo. For the data, we
initially select about ten users with more than 30 friends, and
crawl all the friends of them and the associated information, and
then the friends of the friends, and goes on. Finally, we select
the top 3,500 users with noticeable number of friends. The con-
tact number distribution for users is shown in Fig. 6, from which
we can see that most users’ contact numbers are less than 100.
In our experiment, the 1,000 most frequent tags construct the
vocabulary, and each user is represented by the tags in user’s
profile and that associated his/her uploaded and “like” photos.
We use TF-IDF to construct the low level feature for each user.
In the contact list of user , if user is in it, we set ; if
the user is not in it, and meanwhile, there is no common tag
for them, we set . The remaining entries of matrix are
left as unfilled. Note that, the matrix is not symmetric, which
indicates that the fact user is in the contact list of user , does
not guarantee user is in the contact list of user . We hold out

Fig. 6. Histogram of contact number for users.

Fig. 7. AUC results for link prediction between user-user relationship.

20% of the data during training and report the AUC results for
the held-out data.
In the proposed RGDBN model, we set the hyper-parameter

both and as 1. There are 4 layers in the deep architecture,
and the number of units for layer , , , is 1,000,
800, 500, 300 respectively.
We then compare our model against logistic regression (LR)

and matrix factorization (MF). In logistic regression, we regard
the link problem as supervised binary classification problem,
and each data point corresponding to a pair of users. Similar
to the related work [41], the features include the number of
common tags, sum of tags, Jaccard’s coefficient, shortest dis-
tance, and Katz, etc. In matrix factorization, we take the rela-
tionship matrix as input, and non-negative matrix factorization
is used. For RGDBN, we conduct the experiments with different
values 0.3, 0.5, 0.7, 1 for the prior on , and the AUC results

are illustrated in Fig. 7.
We observe that the proposed RGDBN model outperforms

both the matrix factorization method and classification-based
method using the topographical features and proximity fea-
tures. From the view of features used in these models, we think
that the features in classification-based method are raw features
extracted from the graph topology and attribute, and those in
matrix factorization method could be considered as a shallow
learned feature based on the low-rank approximation, while the
latent features learned in RGDBN model are deep learned and
more representative.
2) Link Analysis BetweenHeterogeneous Items: We also con-

duct the experiment for link analysis applied in social image an-
notation between heterogeneous items for image-tag relation-
ship on public collection dataset [40]. The data set consist of
25,000 annotated images which are collected from Flickr along
with their tags. The average number of tags per image is 8.94.
It includes 24 labeled categories and each image may belong to
multiple categories. Fig. 8 shows some sample images from the
dataset.
In our experiment, we consider analyzing the image-tag re-

lationship. For image , if it is associated with the ground truth
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Fig. 8. Sample images from MIRFLICKR-25000 dataset.

Fig. 9. AUC results for link prediction between image-tag relationship.

label or tag , we set , otherwise . Only the 800
most frequent tags are considered. For the hold-out data, we se-
lect 20% of training data associated with the labels.
In our proposed RGDBN model, we set the hyper-parameter

and respectively. There are 4 layers for the
image deep architecture, and the number of units is 1,024, 500,
200, 50 respectively, while for the tag deep architecture, we only
use 3 layers with the number of units 800, 200, 50 respectively.
The reasons are two-fold. First, we think that the tag and the
low-level visual feature are not in the same semantic level. Tag
is closer to the learned latent feature level with respect to vi-
sual feature. Second, in the experimental dataset, the number of
tag training samples is less than that of images. Reducing the
number of layers leads to less number of parameters to train.
We use HOG as raw feature for images, while for the tags, we
consider the co-occurrence patterns among the tags and take the
normalized co-occurrence counts of tags as features.
For comparison, other than classic matrix factorization (MF)

method, we regard the image-tag link prediction as an image
classification problemwhere we take each image as a data point.
If image is classified into tag , we regard there is a link be-
tween image and tag . The logistic regression model is used.
As in the experiment in the link analysis between homogeneous
items, we also compare our model with the only latent fea-
ture-based method and conduct the experiments with different
values 0.3, 0.5, 0.7, 1 for the prior on , and the AUC results

are shown in Fig. 9.
We can see that though our RGDBN outperforms the other

methods, the whole performance is worse than that in the ex-
periment with homogeneous items. In our opinion, other than

the reason of heterogeneity, the link sparsity is also an impor-
tant factor. The fact that the average number of tags per image
is less than 10 indicates that most of the entries in are zero.
Since we expect the model to produce high probability in gen-
erating the observed relationship, the derived low probability
in Equation (6) results in a small number of latent features to
be learned in the posterior sample process. Under such circum-
stance, the advantage of the latent feature is limited.

IV. LATENT FEATURE LEARNING FOR IMAGE RETRIEVAL

In this section, from the perspective of unified multimodal
feature learning, we design a Multimodal Deep Learning to
Lambda Rank (MDLLR) model by instantiating the latent
feature learning framework to address the image retrieval task.
In the MDLLR model, latent features are learned from the
multimodal media content and discriminative lambda loss is
used for supervised parameters learning.

A. Multimodal Deep Learning to Lambda Rank

Text-based image retrieval has found growing importance
due to its popularity through Web image search engines. In the
task, the input is a text query and the retrieval system outputs a
ranking set of images in which the images relevant to the query
should appear above the others. Assume that we observe a set
of queries and images , and their low-level raw features are

and respectively. When the is as query for
image retrieval, the image is clicked by times. The
task is that for another query , we need to predict the image
ranking list for the corresponding query .
In the information retrieval system, ranking is the core

factor, for the IR evaluation is directly based on the ranking.
Learning to rank is a kind of classical machine learning method
for ranking, and they integrate the query features into the
document features, which is available in the text retrieval task.
However, in the image retrieval task, the different statistical
properties of different modal data make it a difficult task.
The proposed latent feature learning framework provides a
way to learn the multimodal unified representation for query
and image. Combining the deep multimodal architecture and
lambda ranking, we design a Multimodal Deep Learning to
Lambda Rank (MDLLR) model to solve the image retrieval
task.
In our designed MDLLR model which is shown in Fig. 10,

separate networks are firstly utilized to learn the latent represen-
tations of image and query respectively, and then their joint rep-
resentation is learned through a combined deep network. By the
multimodal deep network, the latent features are learned from
multimodal heterogeneous raw features through the multimodal
deep network. Due to its ability of feature fusion, the unified la-
tent representation integrates the information of both the image
and query.
In the feature fusion layers, there is a multimodal RBM,

where high level image feature and query feature are
fused by treating and as visible layer together and
treating as hidden layer. Assume that the dimensions of
layers , , are , , respectively, then the joint
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Fig. 10. Multimodal deep learning to lambda rank model.

energy configuration of the multimodal RBM is defined as
follows:

(12)

Exact inference likelihood learning in this model is intractable.
An analogous Contrastive Divergence approximation algorithm
[39] is applied.
Since the latent features are linear with the click scores

, the linear regression method is used in our model.
The training includes pre-training and fine-tuning two stages.

Pre-training follows the way described in Section II. In the fine-
tuning stage, the loss between the model ranking list where the
images are sorted by the model scores and groundthruth ranking
list is used to tune the parameters of the whole network globally.
Here, we use the Lambda rank method [34] to compute the pair-
wise loss. For a query , a lambda function which is the pairwise
loss between the returned image and is defined as

(13)

where is the normalization factor for the query, and
denote the model scores between query and image ,

respectively, which are the values of linear regression to the
latent features and the function of parameters in the deep net-
work. The update of these scores will lead to the update of the
parameters, in which way, the parameters are learned. and

are the position in the ranking list corresponding to image
and for query , and , denote their relevance labels.

For each pair of image and , in each round of optimization,
their scores are updated by and respectively. In

our model, we use batch learning per query-image where we
accumulate for each image summing its contributions from
all the image pairs, and then do the update, which speedup the
training time.
In conclusion, the proposed Multimodal Deep Learning to

Lambda Rank model is summarized in Algorithm 2.

Algorithm 2: Multimodal Deep Learning to Lambda Rank

Input: Number of separate deep network layers ;
Number of combine deep network layers ; Random initial
bias parameters for units in each layer; Random initial weight
parameters for each RBM; Image raw features ; Query
raw features ; Click score ;

Output: Image ranking lists for test queries;

1 for each layer from do

2 Greedy layer-wise pre-training by learning a separate
RBM at a time;

3 Train the multimodal RBM;

4 for each layer from do

5 Greedy layer-wise pre-training by learning a combine
RBM at a time;

6 Compute the Lambda loss based on the equation (13)

7 for each query in tranining data do

8 for each image in image list of the query do

9 Compute the ;

10 for each image in image list of do

11 Compute the ;

12 Compute the ;

13 Compute the ;

14 Backpropagation with loss ;

15 for each query in test data do

16 for each image ; do

17 Compute the ;

18 Sort the images according to ;

19 Return the image ranking list for query ;

B. Experiment

In order to evaluate the effectiveness of the novel instantiated
MDLLR model, we conduct several experiments on the MSR-
Bing Image Retrieval Challenge dataset. The data provided by
Microsoft includes the training set which is a sample of Bing
user click log and the development dataset which is a manually
labeled set. Each triads in the training set is a clicked image-
query component which contains image, query, and click count.
Each record in the development set includes query, image and
judgment (relevance level). There are about 23 million triads
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Fig. 11. NDCG@25 results for image retrieval.

and 1 million images in the training data. In the develop dataset,
the number of queries is 1,000, and the number of triads is
79,926. Note that the online test dataset of the challenge is not
publicly available. Hence we conduct the experiments on the
training set and development set.
In the development data, there are three relevance levels: ex-

cellent, good, and bad. NDCG(Normalized Discounted Cumu-
lative Gain)@25 is used for evaluation metric, which is com-
puted by

(14)

where is the normalization factor, is position in the ranking
list and denotes the relevance label of image in the position
. From the evaluation metric, we can see that NDCG is posi-
tion sensitive, and ranking is a very important factor for image
retrieval.
In our experiments, we train the individual models on the

training set and half of the development set is used as the test set.
The click counts between images and queries in the training set
are transformed into the ground truth for training. The HOG and
TF-IDF are used as low-level raw features of image and query
respectively. There are 2 hidden separate layers for image and
query respectively and 2 hidden combined layers in the deep
architecture.
We compare our MDLLR model against classic Matrix

Factorization (MF) [42] model, Nearest Neighbor-based
(NN) method, Image-based Score model (IbSM) and Joint
Image-Query Embedding (JIQE) method. In the Nearest
Neighbor-based (NN) method, we use the test image-query
pair to search the similar neighbors using the
image annotation set and calculate the similarity between the
test pair and neighbor pairs. We combine the text matching
method and LSH to complete the nearest neighbor search. In
the Image-based Score model (IbSM), we first use the test
image to retrieve the nearest neighbor images using the image
annotation set and then measure the text similarity between the
query and the associated tags with the t nearest neighbor set .
BM25 score is used for computing text similarity. The Joint
Image-Query Embedding method learns a mapping onto a fea-
ture space where images and text queries are both embedded.
The mapping functions for images and queries are learned
jointly to optimize the supervised loss for the image-query
ranking. This could be regarded as a latent feature learning
method based on the shallow architecture. The evaluation
results are shown in Fig. 11.

From the experimental results, we can see that our latent
feature learning-based MDLLR model outperforms the other
classic methods. We think that the effectiveness mainly owes to
the learned latent feature based on the multimodal deep archi-
tecture which has strong ability of feature fusion. In the process,
each layer learns successively higher-level representations and
removes modality-specific correlations. Eventually, the latent
feature layer in the network can be seen as a modality-free latent
representation which is more representative than those learned
by shallow architectures.

V. RELATED WORK

In this section, we give a brief review of the related work
about link analysis in social media network and image retrieval
methods.

A. Link Analysis in Social Media Network

The existing link analysis techniques in social media network
can be roughly divided into graphical topology-based, low-rank
approximation-based, and Bayesian relational methods.
In the graphical topology-based methods, the proximity fea-

tures including common keywords [41] and topological features
[43]–[4] are usually extracted to represent linked pairwise items.
These features are then used in conventional models for solu-
tion. For example, [41] utilizes these features for supervised
pairwise classification.
Low-rank approximation-based methods represent the ob-

served links into graph adjacency matrices, and utilize matrix
factorization techniques to reconstruct the original matrices by
low-rank approximation [45]. This kinds of methods can be
regarded as the special case of latent feature learning, i.e., with
only one layer.
Bayesian relational models assume that there are some latent

factors to generate the observed links. The basic idea is to
set prior on these factors, with typical work including Infinite
Relational Model [46], Mixed Membership Stochastic Block-
model [47], Nonparametric Latent Feature Model [38], etc.
These models are of some flexibility for modeling the observed
links. However, in these models, the latent factors are not in the
unified semantic level, which cannot handle the complex links
in social media network, especially for the heterogeneous ones.

B. Image Retrieval

The related work for image retrieval can be divided into two
categories: text-based image retrieval and content-based image
retrieval. There are some surveys about content-based image
retrieval [48][49]. As this paper focuses on the former case, in
this section, we briefly introduce the related work about text-
based image retrieval.
In the task of text-based image retrieval, the system is given

a set of images and some query concepts. For a text query, it
outputs a list of ranked images according to the relevance to the
query. For the image retrieval system, the similarity between
the queries and images plays an important role, for it affects
the final ranking performance directly. Roughly, two types of
methods to model the query-image score have been introduced
in the literature: annotation-based methods and direct methods.
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In the annotation-based methods, there is an intermediate
image annotation step, and the relevance computing is then
based on the image annotation. Various models can be used for
annotation, such as SVM [50], k-NN [51] and so on. For the ap-
plication, the images in the test dataset are ranked according to
the relevance score outputted by the annotation corresponding
to the query concept [52].
Different from the annotation-based methods, direct methods

do not reply on the intermediate annotation task. Instead, they
model the query-image score directly. [53] uses matrix factor-
ization to model the relationship between visual content and
the text keywords, and the similarity can be measured in the
latent space. [54] joints the image and word queries discrimina-
tion to determine the relevance for image retrieval. [55] adopts
a learning criterion related to the final retrieval performance to
rank the images from text queries.

VI. CONCLUSION

The novel idea of this work is to tackle the analysis and
applications in social media with latent features automatically
learned from a specially designed deep architecture. This goes
against the current trend which advocates the use of pre-defined
features and focuses on higher-level model development. Based
on the discussions on the characteristics in social media data and
challenges in social media analysis, we justify why it is neces-
sary to bring attention to this new research line andwhat benefits
of this new research line may bring to the social media commu-
nity and the broader social media applications.
We have introduced a unified deep architecture-based latent

feature learning framework in social media. To test the idea and
the proposed framework, we design a novel RGDBN model
and apply it in the link analysis tasks. Our analysis confirmed
that the feature learning process preserves sufficient informa-
tion to capture the interactions between heterogeneous as well
as homogeneous data. We demonstrate that the learned latent
feature is more representative to embed the linked media con-
tent, and more effective to generate the observed links, which
outperforms non-feature learning methods in user recommen-
dation and image annotation tasks. Meanwhile, we design a
multimodal deep learning to lambda rank model for image re-
trieval within the latent feature learning framework, and the
experimental results validate the effectiveness of our proposed
framework.
Future work will focus, first of all, on evaluating the idea

and framework in more social media tasks and applications,
investigating in particular whether the derived latent feature is
helpful to represent the complexly interconnected social media
data. Besides, reasoning and inference are critical to a practical
probabilistic graphical model. We are working towards devel-
oping more efficient posterior inference techniques for model
learning.
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