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What Are the Differences Between Bayesian
Classifiers and Mutual-Information Classifiers?

Bao-Gang Hu, Senior Member, IEEE

Abstract— In this paper, both Bayesian and mutual-
information classifiers are examined for binary classifications
with or without a reject option. The general decision rules
are derived for Bayesian classifiers with distinctions on error
types and reject types. A formal analysis is conducted to
reveal the parameter redundancy of cost terms when abstaining
classifications are enforced. The redundancy implies an intrinsic
problem of nonconsistency for interpreting cost terms. If no data
are given to the cost terms, we demonstrate the weakness of
Bayesian classifiers in class-imbalanced classifications. On the
contrary, mutual-information classifiers are able to provide an
objective solution from the given data, which shows a reasonable
balance among error types and reject types. Numerical examples
of using two types of classifiers are given for confirming the dif-
ferences, including the extremely class-imbalanced cases. Finally,
we briefly summarize the Bayesian and mutual-information clas-
sifiers in terms of their application advantages and disadvantages,
respectively.

Index Terms— Abstaining classifier, Bayes, cost-sensitive
learning, entropy, error types, mutual information, reject types.

I. INTRODUCTION

BAYESIAN principle provides a powerful and formal
means of dealing with statistical inference in data

processing, such as classifications [1], [2]. If the classifiers
are designed based on this principle, they are called Bayesian
classifiers in this paper. In recent years, cost-sensitive learning
and class-imbalanced learning have received much attention
in classifications [3]–[6]. Within the imbalanced, or skewed,
data sets, “the ratio of the small to the large classes can be
drastic such as 1–100, 1–1000, or 1–10 000 (and sometimes
even more)” [7]. In fact, the related subjects are not a new
challenge but a more crucial concern than before for increasing
the needs of searching useful information in big data process-
ing. Binary classifications will be a basic problem in such
application background. Classifications based on cost terms
for the tradeoff of error types are a conventional subject in
medical diagnosis. Misclassification from type I error (or false
positive) or from type II error (or false negative) is significantly
different in the context of medical practices. Therefore, cost
terms play a key role in class-imbalanced learning [6], [8].
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It was recognized that Chow [9] was “among the earliest
to use Bayesian decision theory for pattern recognition” [2].
In [10], Chow first derived the error-reject tradeoff formu-
las, but assumed no distinctions among errors and rejects.
The more general settings for distinguishing error types and
reject types were reported in [11]–[15], but they gener-
ally require cost terms. To overcome the problems of pre-
setting cost terms manually, Pietraszek [14] proposed two
learning models, such as bounded-abstention and bounded-
improvement, which are usually related to the performance
constraints [16]. If constraints are given by total amount of
either errors or rejects, they may result in no distinctions
among error or reject types.

In addition to a kind of ambiguity reject studied in
[10], the other kind of distance reject was also con-
sidered in [17]. Ambiguity reject is made to a pattern
located in an ambiguous region between/among classes.
Distance reject represents a pattern, which is conventionally
called an outlier in statistics [2]. Ha [18] proposed another
important kind of reject, called class-selective reject, which
defines a subset of classes. This scheme is more suitable
to multiple-class classifications. For example, in three-class
problems, Ha’s classifiers will output the predictions including
ambiguity reject between Classes 1 and 2, ambiguity reject
among Classes 1, 2, and 3, and the other rejects from class
combinations. Multiple rejects with such distinctions will be
more informative than a single ambiguity reject. Among all
these investigations, the Bayesian principle is applied again
for their design guideline of classifiers.

While the Bayesian inference principle is widely applied in
classifications [1], [2], [19], [20], another principle based on
the mutual-information concept is rarely adopted for design-
ing classifiers. Mutual information is one of the important
definitions in entropy theory [21]. Entropy is considered
as a measure of uncertainty within random variables, and
mutual information describes the relative entropy between two
random variables [19]. If classifiers seek to maximize the
relative entropy for their learning target, we refer them to
mutual-information classifiers. It seems that Quinlan [22] was
among the earliest to apply the concept of mutual information
(but called information gain in his famous iterative
dichotomiser 3 algorithm) in constructing the decision tree.
Kvålseth [23] introduced the definition of normalized mutual
information (NI) for assessing a contingency table, which
laid down the foundation on the relationship between a
confusion matrix and mutual information. Being pioneers in
using an information-based criterion for classifier evaluations,
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Kononenko and Bratko [24] suggested the term information
score, which was equivalent to the definition of mutual
information. A research team led by Principe [25], [26]
proposed a general framework, called information-theoretic
learning, for designing various learning machines, in which
he suggested that mutual information, or other information-
theoretic criteria, can be set as an objective function in
classifier learning. Mackay [19] suggested to apply mutual
information for ranking classification results. Wang and Hu
[27] derived the nonlinear relations between mutual infor-
mation and the conventional performance measures, such
as accuracy, precision, recall, and F1 measure for binary
classifications. In [28] and [29], information-theoretic mea-
sures were studied on classification evaluations for binary
and multiple-class problems with/without a reject option.
The advantages and limitations of mutual-information mea-
sures were discussed in [28]. No systematic investigation
is, however, reported for a theoretical comparison between
Bayesian and mutual-information classifiers in the literature.

For comparing with Bayesian classifiers, this paper derives
much from and therefore extends to Chow’s work [10]
by distinguishing error types and reject types. To achieve
analytical tractability without losing the generality, a strat-
egy of adopting the simplest yet most meaningful assump-
tions to classification problems is pursued for investigations.
The following assumptions are given in the same way as
those in the closed-form studies of Bayesian classifiers in [10]
and [2].

A1. Classifications are made for two categories (or classes)
over the feature variables.

A2. All probability distributions of feature variables are
exactly known.

We may argue that the assumptions above are extremely
restricted to offer practical generality in solving real-world
problems. In fact, the power of Bayesian classifiers does not
stay within their exact solutions to the theoretical problems,
but appear from their generic inference principle in guiding
real applications, even in the extreme approximations to the
theory. We fully recognize that the assumption of complete
knowledge on the relevant probability distributions is never the
case in real-world problems [30]. The closed-form solutions
of Bayesian classifiers on binary classifications in [2] and
[10] have demonstrated the useful design guidelines that are
applicable to multiple classes [18]. The author believes that
the analysis based on the above-mentioned assumptions will
provide sufficient information for revealing the basic differ-
ences between Bayesian and mutual-information classifiers,
while the intended simplifications will benefit readers to reach
a better, or deeper, understanding to the advantages and
limitations of each type of classifiers.

This paper proposes mutual-information classifiers and
investigates the differences between these classifiers and
Bayesian classifiers, especially for the settings with a reject
option. This paper mainly contributes in the following
aspects.

1) Theoretical basis of Bayesian classifiers is further
explored. Three novel theorems are derived in the

following for binary classifications: a) general Bayesian
rules for distinguishing error types and reject types;
b) parameter redundancy to cost terms for abstaining
classifications; and c) the Bayesian error behavior and
bound in class imbalanced problems.

2) The unique features of mutual-information classifiers are
discovered, for which Bayesian classifiers do not possess.
The former type of classifiers does not require the cost
terms as input data in class imbalanced learning, is
capable of automatically balancing error types and reject
types from a given data set, and provides an interpretation
to the learning rule of less costs more in classifications.

The rest of this paper is organized as follows. Section II
presents a general decision rule of Bayesian classifiers with or
without a reject option. Section III provides the basic formulas
for mutual-information classifiers. Section IV conducts the
comparisons between two types of classifiers, and numerical
examples are given to highlight the distinct features in their
applications. The question presented in the title of this paper
is concluded by a simple answer in Section V.

II. BAYESIAN CLASSIFIERS WITH A REJECT OPTION

A. General Decision Rule for Bayesian Classifiers

Let x be a random pattern satisfying x ∈ X ⊂ Rd , which
is in a d-dimensional feature space and will be classified.
The true (or target) state t of x is within the finite set of
two classes, t ∈ T = {t1, t2}, and the possible decision output
y = f (x) is within three classes, y ∈ Y = {y1, y2, y3}, where
f is a function for classifications and y3 is a reject class.
Let p(ti ) be the prior probability of class ti and p(x|ti ) be
the conditional probability density function of x given that
it belongs to class ti . The posterior probability p(ti |x) is
calculated through the Bayes formula [2]

p(ti |x) = p(x|ti )p(ti )

p(x)
(1)

where p(x) is the mixture density for normalizing the proba-
bility. With the posterior probability, the Bayesian rule assigns
a pattern x into the class that has the highest posterior
probability. Chow [10] investigated rejects under the Bayesian
principle for the first time. The purpose of the reject rule is to
minimize the total risk (or cost) in classifications. Suppose λi j

is a cost term for the true class of a pattern to be ti , but decided
as y j . Then, the conditional risk for classifying a particular x
into y j is defined as follows:

Risk(y j |x) =
2∑

i=1

λi j p(ti |x) =
2∑

i=1

λi j
p(x|ti )p(ti )

p(x)

j = 1, 2, 3. (2)

Note that the definition of λi j in this paper is a bit different
from that in [2], so that λi j will form a 2×3 cost matrix. Chow
[10] assumed the initial constraints on λi j from the intuition
in classifications

λik > λi3 > λii ≥ 0, i �= k, i = 1, 2, k = 1, 2. (3)

The constraints imply that, within the same class, a misclassifi-
cation will suffer a higher cost than a rejection, and a rejection
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will cost more than a correct classification. The total risk for
the decision output y will be [2]

Risk(y) =
∫

V

3∑

j=1

2∑

i=1

λi j p(ti |x)p(x)dx (4)

with integration over the entire observation space V .
Definition 1 (Bayesian Classifier): Given (2), if a classifier

is formed from the minimization of its risk over all patterns

y∗ = arg min
y

Risk(y) (5a)

or on a given pattern x

Decide y j if Risk(y j |x) = min
i

Risk(yi |x) (5b)

this classifier is called Bayesian classifier, or Chow’s abstain-
ing classifier [13]. The term of Risk(y∗) is usually called
Bayesian risk, or Bayesian error in the cases that zero–one
cost terms (λ11 = λ22 = 0, λ12 = λ21 = 1) are used for no
rejection classifications [2].

In [10], a single threshold for a reject option was investi-
gated. This setting was obtained from the assumption that cost
terms are applied without distinction among the errors and
rejects. Following Chow’s approach [10] but with extension
to the general cases in cost terms, we can derive the general
decision rule on the rejection for Bayesian classifiers.

Theorem 1: The general decision rule for Bayesian classi-
fiers are as follows:

Decide y1 if
p(x|t1)p(t1)

p(x|t2)p(t2)
> δ1

No rejection: δ1 = λ21 − λ22

λ12 − λ11

Rejection: δ1 = λ21 − λ23

λ13 − λ11
(6a)

Decide y2 if
p(x|t1)p(t1)

p(x|t2)p(t2)
≤ δ2

No rejection: δ2 = λ21 − λ22

λ12 − λ11

Rejection: δ2 = λ23 − λ22

λ12 − λ13
(6b)

Decide y3 if
Tr2

1 − Tr2
= λ23 − λ22

λ12 − λ13

<
p(x|t1)p(t1)

p(x|t2)p(t2)
≤ λ21 − λ23

λ13 − λ11
= 1 − Tr1

Tr1
(6c)

Subject to 0 <
λ23 − λ22

λ12 − λ13
<
λ21 − λ22

λ12 − λ11

<
λ21 − λ23

λ13 − λ11
(6d)

No rejection: Tr1 = Tr2 = 0.5

Rejection: 0 < Tr1 + Tr2 ≤ 1. (6e)

Equation (6c) applies the definition of two thresholds (called
rejection thresholds in [10]), Tr1 and Tr2.

Proof: See Appendix A.
Note that (6d) suggests general constraints over λi j .

The necessity for having such constraints is explained in
Appendix A. A graphical interpretation to the two thresholds
is shown in Fig. 1. With (6c), the thresholds can be calculated
from the following formulas:

Tr1 = λ13 − λ11

λ13 − λ11 + λ21 − λ23

Tr2 = λ23 − λ22

λ12 − λ13 + λ23 − λ22
.

(7)

Equation (7) describes general relations between thresholds
and cost terms in binary classifications, which enable the
classifiers to make the distinctions among errors and rejects.
The special settings of Chow’s rules [10], Tr = λ13 = λ23
for λ11 = λ22 = 0, λ12 = λ21 = 1, can be derived from (7).
The studies in [11], [14], and [15] generalized Chow’s rules
[10] by distinguishing error and reject types for the relations
of cost terms. Their constraint relations of missing the terms
λ11 and λ22 are not theoretically general, yet sufficient for
applications. Up to now, it seems no one has reported the
general constraints, (6d), in the literature.

By applying (1) and the constraint p(t1|x) + p(t2|x) = 1,
we can achieve the decision rules from (6) with respect to the
posterior probabilities and thresholds in a simple and better
form for abstaining classifiers

Decide y1, if p(t1|x) > 1 − Tr1

Decide y2, if p(t2|x) ≥ 1 − Tr2

Decide y3, otherwise

Subject to 0 < Tr1 + Tr2 ≤ 1. (8)

In comparison with the decision rules of (6), which are
expressed in terms of the likelihood ratio, (8) together with
Fig. 1 shows a better view for users to understand abstaining
Bayesian classifiers. A plot of posterior probabilities shows
advantages over a plot of the likelihood ratio (Fig. 2.3, in [2])
for determining rejection thresholds. Note that in Fig. 1, the
plots are depicted on a 1-D variable for Gaussian distributions
of X . The simplification supports the suggestions by
Duda et al. that we “should not obscure the central
points illustrated in our simple example” [2]. Two sets of
geometric points are shown for the plots. One set is called
crossover points, denoted by xci , which are formed from
two curves of p(t1|x) and p(t2|x). In addition, the other is
termed as boundary points, denoted by xbj . The boundary
points partition classification regions in 1-D problems.
In a no-rejection case, the boundary points are controlled
by the ratio of (λ21 − λ22)/(λ12 − λ11). In abstaining
classifications, those points are determined from two
thresholds, respectively. If a multiple-dimensional problem
is considered, the analysis with a reject option will become
significantly tedious. For example, six types of boundaries
are formed even for classifications in two dimensions
(Fig. 2.14, in [2]).
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Fig. 1. Rejection scenarios from the plots of p(ti |x) for univariate Gaussian distributions. xci are the crossover points. xbj are the boundary points. R1–R3
are the classification regions of Class 1, Class 2, and the reject class, respectively. Tr1 and Tr2 are the rejection thresholds of Classes 1 and 2, respectively.

With the exact knowledge of p(ti ), p(x|ti ), and λi j , we can
calculate Bayesian risk from the following equation:

Risk(y∗) = λ11CR1 + λ12 E1 + λ13Rej1 + λ22C R2

+λ21 E2 + λ23Rej2

= λ11

∫

R1

p(t1)p(x|t1)dx + λ12

∫

R2

p(t1)p(x|t1)dx

+λ13

∫

R3

p(t1)p(x|t1)dx + λ21

∫

R1

p(t2)p(x|t2)dx

+λ22

∫

R2

p(t2)p(x|t2)dx + λ23

∫

R3

p(t2)p(x|t2)dx

(9)

where CRi , Ei , and Reji are the probabilities of correct
recognition, error, and rejection for the i th class in the
classifications, respectively, and R1–R3 are the classification
regions of Class 1, Class 2, and the reject class, respectively.
The general relations among C Ri , Ei , and Reji for binary
classifications are given by [10]

C R1+C R2+E1+E2+Rej1+Rej2 = C R+E +Rej = 1

and A = C R

C R + E
(10)

where C R, E , and Rej are the total correct recognition, total
error, and total reject rates, respectively, and A is the accuracy
rate of classifications.

B. Parameter Redundancy Analysis of Cost Terms

Bayesian classifiers present one of the general tools for cost-
sensitive learning. From this perspective, there exists a need

for a systematic investigation into a parameter redundancy
analysis of cost terms for Bayesian classifiers, which appears
missing for a reject option. This section will attempt to develop
a theoretical analysis of parameter redundancy for cost terms.

In Bayesian classifiers, when all cost terms are given along
with the other relevant knowledge about classes, a unique set
of solutions will be obtained. This phenomenon, however, does
not show that all cost terms will be independent for determin-
ing the final results of Bayesian classifiers. In the following,
a parameter redundancy analysis is conducted because it sug-
gests a theoretical basis for a better understanding of relations
among the cost terms and the outputs of Bayesian classifiers.
Different from the functions to be known in the analysis [31],
[32], we derive a theorem from the functionals in (4) and (5)
so that it holds generality for any distributions of features. Let
a parameter vector be defined as θ = {θ1, θ2, . . . , θp} ∈ S,
where p is the total number of parameters in a model f (x, θ)
and S is the parameter space.

Definition 2 (Parameter Redundancy [31]): A model
f (x, θ) is considered to be parameter redundant if it
can be expressed in terms of a smaller parameter vector
β = {β1, β2, . . . , βq} ∈ S, where q < p.

Definition 3 (Independent Parameters): A model f (x, θ) is
said to be governed by independent parameters if it can be
expressed in terms of the smallest size of parameter vector β =
{β1, β2, . . . , βm} ∈ S, where m ≤ p. Let NI P (θ) denote the
total number of independent parameters for the model f (x, θ),
which is equal to m.

Definition 4 (Parameter Function, Input Parameters, and
Intermediate Parameters): Suppose two sets of parameter
vectors are denoted by θ = {θ1, θ2, . . . , θp} ∈ S1, and
γ = {γ1, γ2, . . . , γq} ∈ S2. If for a model there exists
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f (x, θ) = f (x, ψ(θ)) for ψ(θ) = γ : S1 → S2, we call ψ
a parameter function, θi are the input parameters and γ j are
the intermediate parameters.

Lemma 1: Suppose a model holds the relation f (x, θ) =
f (x, ψ(θ)) from Definition 4. The total number of indepen-
dent parameters of θ , denoted as NI P ( f, θ) for the model f
will be given in a form of

NIP( f, θ) ≤ min(p, q) (11)

where the symbol min denotes a minimum operation.
Proof: Suppose f (x, θ = {θ1, θ2, . . . , θp}) without a

parameter function, we can prove that NI P ( f, θ) ≤ min(p).
According to Definition 2, any increase of its size of θ
over p will produce a parameter redundancy in the model.
Definition 3 shows that the vector size p will be an upper
bound (UB) for NI P ( f, θ) in this situation. In the same
principle, given f (x, θ) = f (x, ψ(θ)) and γ = ψ(θ), the
lowest parameter size within θ and γ , will be the UB of
f (x, θ).

For Bayesian classifiers defined by (5a) and (6), we can
rewrite it in the following form:

y∗ = arg min Risk(y, {θλ, θC}) (12)

where θλ = (λ11, λ12, λ13, λ21, λ22, λ23) and θC =
(p(t1), p(t2), p(x|t1), p(x|t2)) in binary classifications. Two
disjoint sets of parameters, θλ ∩ θC = ∅, are given so
that one is able to conduct an individual analysis of θλ.
Similarly, from (8), the abstaining Bayesian classifiers will be
expressed by

y∗ = arg min Risk(y, {θTr, θC}) (13)

where θTr = (Tr1, Tr2). Their total error and reject will be
unchanged using either set of parameters

E(y∗, {θλ, θC}) = E(y∗, {θTr, θC})
Rej(y∗, {θλ, θC}) = Rej(y∗, {θTr, θC}) (14)

where θλ are usually input parameters, but θTr can serve as
either intermediate parameters in (6) or input ones in (8).

Theorem 2: In abstaining binary classifications, the total
number of independent parameters within the cost terms for
defining Bayesian classifiers should be at most two, that
is, NI P ( f, θλ) ≤ 2. Therefore, applications of cost terms
of θλ = (λ11, λ12, λ13, λ21, λ22, λ23) in the traditional cost-
sensitive learning will exhibit a parameter redundancy for
calculating Bayesian E(y∗) and Rej(y∗) even after assuming
λ11 = λ22 = 0, and λ12 = 1 as the conventional way in
classifications [8], [13].

Proof: For the given θC, a decision function f is deter-
mined by θTr. Equation (7) describes a parameter function
between two sets of parameters so that a relation of θTr =
ψ(θλ) holds in abstaining classifications. According to Lemma
1, we can have NI P ( f, θλ) ≤ min(p = 6, q = 2) = 2, where
p and q are the parameter sizes of θλ and θTr, respectively.
However, when imposing three constraints on λ11 = λ22 = 0,
and λ12 = 1, θλ will provide three free parameters in the cost

matrix in the following form:

λ21 = λ21

λ13 = Tr1(Tr2 ∗ λ21 + Tr2 − λ21)

Tr1 + Tr2 − 1

λ23 = Tr2(Tr1 ∗ λ21 + Tr1 − 1)

Tr1 + Tr2 − 1
(15)

which implies a parameter redundancy for calculating
Bayesian E(y∗) and Rej(y∗).

Remark 1: Theorem 2 describes that Bayesian classifiers
with a reject option will suffer a difficulty of uniquely inter-
preting cost terms. For example, we can even enforce the
following two settings:

{
λ11 = 0, λ12 = 1, 0 ≤ λ13 ≤ 1
λ21 = 1, λ22 = 0, 0 ≤ λ23 ≤ 1

or {
λ11 = 0, 1 ≤ λ12, λ13 = 1
1 ≤ λ21, λ22 = 0, λ23 = 1

for achieving the same Bayesian classifier, as well as their
E(y∗) and Rej(y∗). The two sets of settings, however, entail
different meanings to error and reject types. Hence, a con-
fusion may be introduced when attempting to understand the
behaviors of error and reject rates with respect to different
sets of cost terms. For this reason, cost terms may present an
intrinsic problem for defining a generic form of settings in
cost-sensitive learning if a reject option is enforced.

Remark 2: It is better to apply independent parameters
in the design and cost analysis of Bayesian classifiers. If
no rejection, Elkan [8] proved on NI P ( f, θλ) = 1, and
suggested a single independent parameter by a cost ratio
�r = (λ21 − λ22)/(λ12 − λ11). Following this principle, we
suggest θλ = (λ11 = λ22 = 0, λ12 = 1, λ21 > 0) in the cost or
error sensitivity analysis. A single independent cost parameter,
λ12, is capable of governing complete behaviors of error rate.
For a reject option, we suggest θTr to be the parameters in the
cost, error, or reject sensitivity analysis, which will lead to a
unique interpretation to the analysis.

Remark 3: From (14) and Lemma 1, we can extend the
analysis to multiple-class problems. Suppose there are m
classes in classifications, its associated cost matrix, either in
size of m2 or m(m + 1), will have at most m independent
parameters, which corresponds to the size of θTr . If no
distinction is made among error types, a single independent
parameter (Tri = Tr , i = 1, . . . ,m) will be obtained. A single
independent parameter, however, does not necessarily imply an
indifference among error and/or reject types (say, Tri = Tr ,
i = 1, . . . ,m − 1, Trm = 2Tr ).

Because the study of imbalanced data learning received
increasing attention recently [4], [5], [7], one related theorem
of Bayesian classifiers is derived in the following for eluci-
dating their important features.

Theorem 3: In a binary classification without rejection,
Bayesian classifiers with a zero–one cost function will satisfy
the following rule:

if pmin = min(p(t1), p(t2)) → 0, and

λ11 = λ22 = 0, λ12 = λ21 = 1

then E → Emax = pmin (16)
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which shows that the classifiers have a tendency of reaching
the UB of Bayesian error, Emax, by misclassifying all rare-
class patterns in imbalanced data learning.

Proof: Suppose that Class 2 represents a rare class. We
set p(t1) = 1−ε and p(t2) = ε for ε to be an arbitrarily small
positive quantity. Substituting them and λ11 = λ22 = 0, λ12 =
λ21 = 1 into (6a) for a no-rejection case shows that a relation
below

p(x|t1)(1 − ε)

p(x|t2)ε
∣∣∣∣
ε→0

> 1 (17)

will always hold, so that y1 is decided for any given pattern x.
This decision suggests that Bayesian classifiers tend to assign
all patterns into the majority class in classifications when p(t2)
approaches to zero. In other words, its error draws close to an
UB of Bayesian error, that is, Emax = pmin.

C. Examples of Bayesian Classifiers on Univariate
Gaussian Distributions

This section will consider abstaining Bayesian classifiers
on univariate Gaussian distributions for the reason of showing
closed-form solutions to the decision boundaries. When the
relevant knowledge of p(ti ) and p(x |ti) is given, we can depict
the plots of p(ti |x) from calculation of (1) (Fig. 1). Moreover,
when λi j is known, the classification regions of R1 to R3 in
terms of xbj will be fixed for Bayesian classifiers. After the
regions R1–R3, or xbj , are determined, Bayesian risk will be
obtained directly. We can obtain these boundaries from the
known data of δi when solving an equality equation on (6a)
or (6b)

p(x = xb|t1)p(t1)

p(x = xb|t2)p(t2)
= δi . (18)

The data of δi can be realized either from cost terms λi j , or
from threshold Tri [see (6)]. By substituting the exact data
of p(ti ) and p(x |ti) ∼ N(μi , σi ) to Gaussian distributions,
where μi and σi are the mean and standard deviation to the
i th class, and the data of δi (for δ1 = (1 − Tr1)/Tr1 from the
given Tr1) into (18), we can obtain the closed-form solutions
to the boundary points (for xb1 and xb4)

xb1,4 = μ2σ
2
1 − μ1σ

2
2

σ 2
1 − σ 2

2

∓ σ1σ2
√
α

σ 2
1 − σ 2

2

, if σ1 �= σ2 (19a)

xb1 = μ1 + μ2

2
+ σ 2

μ2 − μ1
ln

(
p(t1)

p(t2)

1

δ1

)
, if σ1 = σ2 = σ

(19b)

where α is an intermediate variable defined by

α = (μ1 − μ2)
2 − (2σ 2

1 − 2σ 2
2 ) ln

(
p(t1)σ2

p(t2)σ1

1

δ1

)
. (19c)

Equation (19) is also effective for Bayesian classifiers in the
case of no rejection. However, these four cost terms, λi j (i, j =
1, 2), will decide the data of δ1. The general solution to
abstaining classifiers has four boundary points by substituting
two thresholds Tr1 and Tr2, respectively. For the conditions
shown in Fig. 1(d) or (f), Tr1 will lead to xb1 and xb4, and Tr2
to xb2 and xb3, respectively. Equation (19a) shows a general
form for achieving two boundary points from one data point of

δ1, and (19b) is specific for reaching a single boundary point
only when the standard deviations of two classes are the same.
Substituting the other data of δ2 into (19) will yield another
pair of data xb2 and xb3, or a single one xb2, in a similar form
of (19).

Like the solution to boundary points, crossover point(s) can
also be obtained from solving (18) or (19) by substituting
δi = 1. Three specific cases will be obtained with the crossover
point(s), namely two, one, or zero crossover point(s). The
case of the two crossover points appears only when α > 0
in (19c), and two curves of p(t1|x) and p(t2|x) demonstrate
the nonmonotonicity [Fig. 1(b)] with an equality relation of
p(t1|x) = 1− p(t2|x). When the associated standard deviations
are equal in the two classes, i.e., σ1 = σ2, only one crossover
point appears, which corresponds to the monotonous curves of
p(t1|x) and p(t2|x) [Fig. 1(a)]. The case of the zero crossover
point occurs when α < 0, which corresponds to no real-
value (but complex-value) solution to (19a) and situations of
nonmonotonous curves of p(t1|x) and p(t2|x).

In the following, we will discuss the cases listed in Table I
with respect to the number of crossover points. A term is
applied to describe every case. For example, Case_k_B shows
k for the kth case, and B (or M) for Bayesian (or mutual-
information) classifiers.

Case_1_B (Rejection With Two Crossover Points): The
necessary condition of realizing this case is

λ12 − λ11

λ21 − λ22
<

p(t2)σ1

p(t1)σ2
e

μ1 − μ2

2(σ 2
1 − σ 2

2 ) . (20)

The general rejection within this case is when Tr1 < 0.5 and
1 − max(p(t2|x)) < Tr2 < 0.5, in which the reject region
R3 is divided by two ranges. When Tr1 < 0.5 and Tr2 <
1 − max(p(t2|x)) < 0.5, only one class is identified, but all
other patterns are classified into a reject class. Therefore, we
refer to this situation as Class 1 and reject-class classification.
Table I also lists the other situations of the rejections from
different settings on Tri .

Case_2_B (Rejection With One Crossover Point): As shown
in (19b), the general condition of this case is a simply setting
σ1 = σ2. The special condition of α = 0 in (19c) is neglected
for discussions. Because the monotonicity property is enabled
for the curves of p(t1|x) and p(t2|x) in this case, a single
reject region is formed [Fig. 1(e)].

Case_3_B (Rejection With Zero Crossover Point): The
general condition of realizing this case corresponds to a
violation of the criterion on (20). In this case, one class always
shows a higher value of the posterior probability distribution
over the other one in the whole domain of x . From the
definitions in the study of class imbalanced data set [6], [7],
if p(t1) > p(t2) in binary classifications, Class 1 will be
called a majority class and Class 2 a minority class. Supposing
that p(t1|x) > p(t2|x), when Tr1 > 1 − min(p(t1|x)), all
patterns will be considered as Class 1. We call these situations
a majority-taking-all classification. Because of the constraints
such as Tr1 +Tr2 ≤ 1 and p(t1|x)+ p(t2|x) = 1, one is unable
to realize a minority-taking-all classification. When Tr1 <
1 − min(p(t1|x)) and Tr2 < 1 − max(p(t2|x)), all patterns
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TABLE I

REJECTION SETTINGS OF BAYESIAN CLASSIFIERS IN UNIVARIATE GAUSSIAN DISTRIBUTIONS

(xb1 < xc < xb2 or xb1 < xc1 < xb2 < xb3 < xc2 < xb4)

will be partitioned into one of two classes, that is, majority
and rejection. We call these situations majority-class and
reject-class classifications. The situations of minority-class and
reject-class classification occur if Tr2 > 1 − max(p(t2|x)) >
0.5 and Tr1 = 0.

Case_4_B (No Rejection): In a binary classification, Chow
[10] showed that, when Tr1 = Tr2 ≥ 0.5, no rejection is gained
to classifiers. The novel constraint of Tr1 + Tr2 ≤ 1 shown
in (6e) suggests that the setting should be Tr1 = Tr2 = 0.5
when the thresholds are the input data. Users need to specify
an option of no rejection or rejection as an input. When no
rejection is selected, the conventional scheme of cost terms
from a 2 × 2 matrix will be sufficient and correct. Any usage
of a 2 × 3 matrix will introduce some confusions that will
be illustrated in the later section by Example 1. We cannot
consider λ13 = λ23 = 0 as the defaults to the cost matrix in
this case. Classification regions are determined by four cost
terms, and then δi to boundary points xbj . When δi = 1 in
(18), one can have a relation of xbj = xci .

III. MUTUAL-INFORMATION CLASSIFIERS

WITH A REJECT OPTION

A. Mutual-Information-Based Classifiers

Definition 5 (Mutual-Information Classifier): A mutual-
information classifier is the classifier that is obtained
from the maximization of mutual information over all
patterns

y+ = argmax
y

N I (T = t; Y = y) (21)

where T and Y are the target variable and decision output
variable, t and y are their values, respectively. For simplicity,

we denote N I (T = t; Y = y) = N I (T ; Y ) as the NI in the
following form [28]:

NI(T ; Y ) = I (T ; Y )

H (T )
(22a)

where H (T ) is the entropy based on the Shannon definition
[21] to the target variable

H (T ) = −
m∑

i=1

p(ti )log2 p(ti ) (22b)

and I (T ; Y ) is the mutual information between two variables
of T and Y [21]

I (T ; Y ) =
m∑

i=1

m+1∑

j=1

p(ti , y j )log2
p(ti , y j )

p(ti )p(y j )
(22c)

where m is the total number of classes in T . In the case
without rejection, (22c) will be realized by a summation of
j over 1 to m, instead of to m + 1. p(t, y) is the joint
distribution between the two variables, and p(t) and p(y) are
the marginal distributions, which can be derived from [21]

p(t) =
∑

y

p(t, y), p(y) =
∑

t

p(t, y). (23)

Considering binary classifications with a reject option, one
will have the following formula to the joint distribution
p(t, y):

p(t, y) =⎡

⎢⎣

∫

R1

p(t1)p(x|t1)dx
∫

R2

p(t1)p(x|t1)dx
∫

R3

p(t1)p(x|t1)dx

∫

R1

p(t2)p(x|t2)dx
∫

R2

p(t2)p(x|t2)dx
∫

R3

p(t2)p(x|t2)dx

⎤

⎥⎦ .

(24)
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The marginal distribution of p(t) is in fact the given informa-
tion of prior knowledge about the classes

p(t) = (p(t1), p(t2))
T (25)

where the superscript T represents a transpose, and the mar-
ginal distribution of p(y) is as follows:

p(y) = (p(y1), p(y2), p(y3)) =
⎛

⎜⎝
∫

R1

Qdx,
∫

R2

Qdx,
∫

R3

Qdx

⎞

⎟⎠

Q = p(t1)p(x|t1)+ p(t2)p(x|t2). (26)

Substituting (24) and (25) into (21), we can describe N I in
terms of p(ti ) and p(x|ti ). A normalization scheme is applied
so that a relative comparison can be made among classifiers.
When the prior knowledge of p(ti ) is given, the entropy H (T )
in (22b) will be unchanged during classifier learning. This is
why we use this term to normalize the mutual information in
(22a).

Remark 4: When processing real-world data, both mutual-
information and Bayesian classifiers can adopt a confusion
matrix for searching their final solutions, but with different
objective functions. Mathematically, (21) expresses that y+
is an optimal classifier in terms of the maximal mutual
information, or relative entropy, between the target variable T
and decision output variable Y . The physical interpretation of
relative entropy is a measurer of probability similarity between
the two variables. In a multiple-class classification with m
classes, if an m × m confusion matrix is formed, it implies a
no rejection for both types of classifiers (i.e., only R1–Rm are
determined). If an m×(m+1) confusion matrix is given, it will
conduct a classification with a reject option (i.e., R1–Rm+1
are formed). Users make a selection of this option through
specifying the size of the confusion matrix.

Definition 6 (Augmented Confusion Matrix [28]): An aug-
mented confusion matrix will include one column for a
rejected class, which is added on a conventional confusion
matrix

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1m c1(m+1)

c21 c22 · · · c2m c2(m+1)

· · ·
cm1 cm2 · · · cmm cm(m+1)

⎤
⎥⎥⎥⎥⎥⎥⎦

(27)

where ci j is the number of the i th class that is classified as the
j th class. The row data correspond to the exact classes, and
the column data correspond to the prediction classes. The last
column represents a reject class. The relations and constraints
of an augmented confusion matrix are

Ci =
m+1∑

j=1

ci j , Ci > 0, ci j ≥ 0, i = 1, 2, . . . ,m (28)

where Ci is the total number of the i th class. The data of Ci

are known in classification problems.
In this paper, supposing that the input data of classifications

are exactly known about the prior probability p(ti ) and the
conditional probability density function p(x|ti ), one is able to

derive the joint distribution in association with the confusion
matrix

pi j = p(ti , y j ) =
∫

R j

p(ti )p(x|ti )dx ≈ ci j

N
= pe(ti , y j )

i = 1, 2, . . . ,m, j = 1, 2, . . . ,m + 1. (29)

where R j is the region in which every pattern x is identified as
the j th class, and pe(ti , y j ) is the empirical probability density
in applications where only a confusion matrix is given. In
those applications, the total number of patterns N is generally
known.

Equation (28) describes the approximation relations
between the joint distribution and confusion matrix. If the
knowledge about p(ti ) and p(x|ti ) are exactly known, we can
design a mutual-information classifier directly. If no initial
information is known about p(ti ) and p(x|ti ), the empirical
probability density of joint distribution, pe(ti , y j ), can be
estimated from the confusion matrix [28]. This treatment,
based on the frequency principle of a confusion matrix, is not
mathematically rigorous, but will offer a simple approach for
classifiers to apply the entropy principle in wider applications.

B. Examples of Mutual-Information Classifiers on
Univariate Gaussian Distributions

Mutual-information classifiers, like Bayesian classifiers,
also provide a general formulation to classifications. They
are able to process classifications with or without rejection.
This section will aim at deriving novel formulas necessary in
the design and analysis of mutual-information classifiers under
assumptions of Gaussian distributions. The input data are the
same as those of Bayesian classifiers shown in Section II,
except that cost terms of λi j are not given as the input, but will
be displayed as the output of the classifiers. In other words,
mutual-information classifiers will automatically calculate the
two thresholds that can lead to the cost terms through (7).
However, because of a redundancy among six cost terms, we
will fail to obtain the unique solution of the cost terms, which
is demonstrated in Example 1 of Section IV.

Generally, one is unable to derive a closed-form solution
to mutual-information classifiers. One of the obstacles is the
nonlinear complexity of solving error functions. Therefore,
this paper only provides semianalytical solutions to mutual-
information classifiers. When substituting p(ti ) and p(x |ti)
into (21), we will encounter the process of solving an inverse
problem on the following function:

max
y∈Y

N I (T ; Y ) = max f (x, θ = (p(ti ), p(x |ti), xbj )) (30)

for searching the boundary points xbj from error functions.
Only numerical solutions can be obtained to xbj , except for a
special case. In the following, some specific cases in Fig. 1
will be discussed on mutual-information classifiers in related
to the number of crossover points.

Case_1_M (Rejection With Two Crossover Points): This
is a general case of mutual-information classifiers in which
four boundary points, xbj , are formed [Fig. 1(d)]. When
the four points obtained numerically from solving (30), the
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p(t, y) =

⎡
⎢⎢⎣

p(t1)

2
[1 − er f (X11)] p(t1)

2
[1 − er f (X12)] p(t1)

2
[er f (X11)+ er f (X12)]

p(t2)

2
[1 − er f (X21)] p(t2)

2
[1 − er f (X22)] p(t2)

2
[er f (X21)+ er f (X22)]

⎤
⎥⎥⎦ (31a)

classification regions R1–R3 will be made. With the condition
of xb1 < xb2 < xb3 < xb4, the closed-form solution of p(t, y)
can be given in a form of (31a), as shown at the top of this
page, where erf(·) is an error function, and

Xij = μi − xbj√
2σi

, i = 1, 2, j = 1, 2. (31b)

With (31a), we can get the error rate and reject rate from

E = E1 + E2 = p(ti = 1, y j = 2)+ p(ti = 2, y j = 1)

= p(t1)

2
[1 − erf(X12)] + p(t2)

2
[1 − erf(X21)] (32a)

Rej = Rej1 + Rej2
= p(ti = 1, y j = 3)+ p(ti = 2, y j = 3)

= p(t1)

2
[erf(X11)+ erf(X12)]

+ p(t2)

2
[erf(X21)+ erf(X22)]. (32b)

The rejection thresholds are also derived from the given data
of xbj

Tr1 = 1 − p(t1|x = xb1)

= 1 − p(t1)σ2e

−(xb1 − μ1)
2

2σ 2
1

p(t1)σ2e

−(xb1 − μ1)
2

2σ 2
1 + p(t2)σ1e

−(xb1 − μ2)
2

2σ 2
2

(33a)

Tr2 = 1 − p(t2|x = xb2)

= 1 − p(t2)σ1e

−(xb2 − μ2)
2

2σ 2
2

p(t1)σ2e

−(xb2 − μ1)
2

2σ 2
1 + p(t2)σ1e

−(xb2 − μ2)
2

2σ 2
2

.

(33b)

With the condition of xb1 < xb2 < xb3 < xb4 shown in
Fig. 1(d), substituting either xb1 or xb4 into (33) will give
the same value on Tr1, and a similar one to xb2 or xb3 on
Tr2. The results of Tr1 and Tr2 show that mutual-information
classifiers will automatically search the rejection thresholds
for balancing the error and reject rates from the given data of
classes. When Tr1 and Tr2 are known, a mutual-information
classifier can have its equivalent Bayesian classifiers through
the relations of (7). This specific feature will be discussed in
Section IV.

Case_2_M (Rejection With One Crossover Point): Mutual-
information classifiers are able to calculate two boundary
points xb1 and xb2, or a single reject region [Fig. 1(e)], from
the given data.

Case_3_M (Rejection With Zero Crossover Point): This
case shows a similar result to that in the case with two
crossover points.

Case_4_M (No Rejection): Mutual-information classifiers
will calculate boundary points accordingly [Fig. 1(a)–(c)].
A very special case appears in which one is able to
obtain a closed-form solution to mutual-information classifiers.
This case corresponds to the conditions of p(t1) = p(t2)
and σ1 = σ2, for no rejection. The solution shows a single
boundary point xb, coincident to the crossover point xc, for
partitioning the classification regions

xb = xc = μ1 + μ2

2
if μ1 < μ2 then R1 = (−∞, xb), R2 = [xb,∞), R3 = ∅.

(34)
This result is the same of Bayesian classifiers, which leads
to the same error rates between the two types of classifiers.
The special case describes a relation of y+ = y∗ only under
strictly limited conditions.

IV. COMPARISONS BETWEEN BAYESIAN CLASSIFIERS

AND MUTUAL-INFORMATION CLASSIFIERS

A. General Comparisons

Mutual-information classifiers provide users a new
perspective in processing classification problems, hence
enlarge the toolbox in their applications. For discovering new
features in this approach, this section will discuss general
aspects of mutual-information and Bayesian classifiers
simultaneously for a systematic comparison. The main
objective of the comparative study is to reveal their
corresponding advantages and disadvantages. Meanwhile,
their associated issues, or new challenges, are also presented
from the personal viewpoint of the author.

First, both types of classifiers share the same assumptions
of requiring the exact knowledge about class distributions and
specifying the status of the reject option (Table II). The exact
knowledge feature imposes the most weakness on the two
approaches in applications. In other words, the approaches
are considered more theoretically meaningful, rather than
directly useful in solving real-world problems. When the exact
knowledge is not available, the existing estimation approaches
to class distributions [2], [33] in Bayesian classifiers will
be feasible for implementing mutual-information classifiers.
The learning targets of Bayesian classifiers involve evaluations
of risks or errors, which are mostly compatible with
classification goals in real-life applications. However, the
concept of mutual information, or entropy-based criteria,
is not a common concern or requirement from most of the
classifier designers and users [28].

Second, Bayesian classifiers will ask (or implicitly apply)
cost terms for their designs. This requirement provides both
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TABLE II

DATA INFORMATION OF BAYESIAN AND MUTUAL-INFORMATION CLASSIFIERS IN BINARY CLASSIFICATIONS

advantages and disadvantages depending on the applications.
The main advantage is its flexibility in offering objective or
subjective designs of classifiers. When the exact knowledge
is available and reliable, inputting such data will be very
simple and meaningful for realizing objective designs.
Simultaneously, subjective designs will always be possible.
The main disadvantage may occur in objective designs if one
has incomplete information about cost terms. Generally, cost
terms are more liable to subjectivity than prior probabilities.
In this case, avoiding the introduction of subjectivity is not
an easy task for Bayesian classifiers. Mutual-information
classifiers, without requiring cost terms, will fall into an
objective approach. They carry an intrinsic feature of letting
the data speak for itself, which exhibits a significant difference
from a subjective version of Bayesian classifiers. The current
definition of mutual-information classifiers, however, needs to
be extended for carrying the flexibility of subjective designs,
which is technically feasible by introducing free parameters,
such as fuzzy entropy [34].

Third, one of the problems from the current learning targets
of Bayesian classifiers is their failure to obtain the optimal
rejection threshold in classifications. Although Chow [10] and
Ha [18] suggested formulas, respectively, in the forms of

min Risk(Tr ) = E(Tr )+ Tr Rej(Tr ) (35a)

or

min
E(Tr )

Rej(Tr )
(35b)

a minimization from both formulas will lead to a solution
of Tr = 0 for Risk = 0, which implies a rejection of all
patterns. Therefore, we are expecting to establish a learning
target of determining optimal rejection thresholds of Bayesian
classifiers. Information-based classifiers seem to be unique for
achieving the optimal rejection thresholds as the classifiers’
outcomes. The remaining issue is to study them in a systematic
way.

Fourth, Bayesian classifiers generally fail to handle the
class-imbalanced data properly if no cost terms are specified
in classifications, as described in Theorem 3. When one
class approximates a smaller (or zero) population and no
distinction is made among error types, Bayesian classifiers
have a tendency to put all patterns of the smaller class

into error, and its NI will be approximately zero, which
represents that no information is obtained from classifiers
[19]. Mutual-information classifiers display unique advantages
in these situations, including cases of abstaining classifica-
tions. They provide a solution of balancing error and reject
types without using cost terms. The challenge lies in their
theoretical derivation of response behaviors, such as UB
and lower bound (LB) of Ei/p(ti ) for mutual-information
classifiers.

Fifth, mutual-information classifiers will add extra com-
putational complexities and costs over Bayesian classifiers.
Both types of classifiers require computations of posterior
probability. When these data are obtained, Bayesian classi-
fiers will produce decision results directly. Mutual-information
classifiers will, however, need further procedures, such as to
form a confusion matrix (or a joint distribution), evaluate
N I in (22), and search boundary points from a nonconvex
space N I in (30). These procedures will introduce significantly
analytical and computational difficulties to mutual-information
classifiers, particularly in multiple-class problems with high
dimensions.

Note that the above-mentioned discussions provide a pre-
liminary answer to the question posed in the title of this
paper. In another connection, Appendix B presents the bounds
between conditional entropy and Bayesian error in binary
classifications. Further investigations are expected to search
other differences under various assumptions or backgrounds,
such as distributions of mixture models, multiple-class clas-
sifications in high-dimension variables, rejection to a subset
of classes [18], and experimental studies from real-world
data sets.

B. Comparisons on Univariate Gaussian Distributions

Gaussian distributions are not only important in theoretical
sense but also, to a large extent, appropriate for providing
critical guidelines in real applications. In classification prob-
lems, many important findings can be revealed from a study
on Gaussian distributions.

The following numerical examples are specifically designed
for demonstrating the intrinsic differences between Bayesian
and mutual-information classifiers on Gaussian distributions.
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TABLE III

RESULTS OF EXAMPLE 1 ON UNIVARIATE GAUSSIAN DISTRIBUTIONS

Example 1 (Two Crossover Points): The data for no rejec-
tion are given in the following:

No rejection:

μ1 = −1, σ1 = 2, p(t1) = 0.5, λ11 = 0, λ12 = 1

μ2 = 1, σ2 = 1, p(t2) = 0.5, λ21 = 1, λ22 = 0.

The cost terms are used in Bayesian classifiers, but not in
mutual-information classifiers. Table III lists the results of
both classifiers. We can obtain the same results when inputing
λ13 = 1 − λ23 in Bayesian classifiers. This is why a 2 × 2
matrix has to be used in the case of no rejection. Two crossover
points are formed in this example [Fig. 1(a)]. If no rejection
is selected, both classifiers will have two boundary points.
Bayesian classifiers will partition the classification regions by
having xb1 = xc1 = −0.238 and xb2 = xc2 = 3.57. Mutual-
information classifiers widen the region R2 by xb1 = −0.674
and xb2 = 4.007 so that the error of Class 2 is much reduced.
If considering zero costs for correct classifications and using
(18), we can calculate a cost ratio below as an independent
parameter to Bayesian classifiers in the case of no rejection

�r = λ21

λ12
= p(x = xb|t1)p(t1)

p(x = xb|t2)p(t2)
(36)

which is used to establish an equivalence between mutual-
information and Bayesian classifiers. Substituting the bound-
ary points of mutual-information classifier at xb1 = −0.674
and xb2 = 4.007 into p(x |ti ) and (36), respectively, we
receive a unique cost ratio value, �r = 2.002. Hence, this
mutual-information classifier has its unique equivalence to a
specific Bayesian classifier, which is exerted by the following
conditions to the cost terms:

λ11 = 0, λ12 = 1.0, λ21 = 2.002, λ22 = 0.

When two classes are well balanced, that is, p(t1) =
p(t2), both types of classifiers will produce larger errors in
association with the larger variance class. Mutual-information
classifiers, however, always add more cost weight (λ21 =
2.002) on the misclassification from a smaller variance class.
In other words, mutual-information classifiers prefer to gen-
erate a smaller error on a smaller variance class in com-
parison with Bayesian classifiers when using a zero–one
cost function (Table III). This performance behavior seems

closer to our intuitions in binary classifications under the
condition of a balanced class data set. When two classes
are significantly different from their associated variances, a
smaller variance class generally represents an interested signal
embedded within noise, which often has a larger variance.
The common practices in such classification scenarios require
a larger cost weight on the misclassification from a smaller
variance class, and vice versa from a larger variance class.

If a reject option is enforced by the following data.

Rejection:

μ1 = −1, σ1 = 2, p(t1) = 0.5

μ2 = 1, σ2 = 1, p(t2) = 0.5

λ11 = 0, λ12 = 1.2, λ13 = 0.2

λ21 = 1, λ22 = 0, λ23 = 0.6.

Four boundary points are required to determine classifi-
cation regions, as shown in Fig. 1(d). For the given cost
terms, a Bayesian classifier shows a lower error rate and a
lower reject rate in comparison with its counterpart. While
the rejects are almost equal between two classes, the errors
are significantly different. One is able to adjust the errors and
rejects by changing cost terms. From a mutual-information
classifier, a balance is automatically made among error and
reject types. The results, shown in Table III, are considered
for carrying the feature of objectivity in evaluations as no
cost terms are specified subjectively. Note that a reject option
enables both types of classifiers to reach higher values on
their N I s than those without rejection. Because no one-to-
one relations exist among the thresholds and the cost terms in
a rejection case, one will fail to acquire a unique set of the
equivalent cost terms between the Bayesian and the mutual-
information classifiers. For example, two sets of cost terms in
the following will produce the same Bayesian classifiers based
on the given solutions of the mutual-information classifier

⎧
⎨

⎩

λ11 = 0, λ12 = 1, λ13 = 0.0376

λ21 = 1, λ22 = 0, λ23 = 0.772
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TABLE IV

RESULTS OF EXAMPLE 2 ON UNIVARIATE GAUSSIAN DISTRIBUTIONS

Fig. 2. Curves of E2/p(t2) versus p(t1)/p(t2) for Example 2. Solid curve:
Bayesian classifier. Dashed curve: Mutual-information classifier.

or ⎧
⎨

⎩

λ11 = 0, λ12 = 2.247, λ13 = 1

λ21 = 7.069, λ22 = 0, λ23 = 1.

The meanings for two sets of cost terms are different. The first
set shows the same costs for errors, but the second one sug-
gests the same costs for rejects. The above-mentioned results
imply an intrinsic problem of nonconsistency for interpreting
cost terms. One needs to be cautious about this problem when
setting cost terms to Bayesian classifiers. This phenomenon
occurs only in the case that a reject option is considered, but
does not in the case without rejection. If the knowledge about
thresholds exists, abstaining classifiers are better to apply Tri

directly as the input data, instead of employing cost terms.
If no information is given about the thresholds or cost terms,
mutual-information classifiers are able to provide an objective,
or initial, reference of Tri for Bayesian classifiers in cost-
sensitive learning.

Example 2 (One Crossover Point): The given inputs in this
example are as follows.

No rejection:
μ1 = −1, σ1 = 1, λ11 = 0, λ12 = 1
μ2 = 1, σ2 = 1, λ21 = 1, λ22 = 0
p(t1) = 0.5, 2/3, 0.8, 0.9, 0.99, 0.999, 0.9999
p(t2) = 0.5, 1/3, 0.2, 0.1, 0.01, 0.001, 0.0001.

Specific attention is paid to the class imbalanced data. When
Class 2 alters from balanced, minority to rare status in the
whole data, we need to find out what behaviors both types of
classifiers will display. For this purpose, a natural scheme with
zero–one cost terms is set to Bayesian classifiers. Numerical
investigations are conducted in this example. Table IV lists
the results of classifiers on the given data. If following
the conventional term FNR for false negative rate in binary
classifications, which is defined as

FNR = E2

p(t2)
(37)

one can examine behaviors of FNR with respect to the ratio
p(t1)/p(t2). Sometimes, FNR is also called a miss rate [2].
Two types of classifiers show the same results when two
classes are exactly balanced, that is, p(t1)/p(t2) = 1. A single
boundary point [Fig. 1(b)] separates two classes at the exact
crossover point (xb = xc = 0) according to (36). When one
class, say p(t2) for Class 2, becomes smaller, the boundary
point of Bayesian classifier moves toward to the mean point
(μ2 = 1) of Class 2 [2, p. 39], and passes it finally. For
keeping the smallest error, a Bayesian classifier will sacrifice
the minority class. The results in Table IV confirm Theorem
3 numerically on the Bayesian classifiers. Fig. 2 shows such
behavior from the plot of E2/p(t2) versus p(t1)/p(t2). Note
that the plots in the range from 10−4 to 100 on the p(t1)/p(t2)
axis are also shown based on the data in Table IV. For
example, at the data point of p(t1)/p(t2) = 1/2, one can
get E2/p(t2) = 0.0594/(2/3), where 0.0594 is taken from
E1 for the data at p(t1)/p(t2) = 2. One can observe that
the complete set of Class 2 could be misclassified when it
becomes extremely rare. This finding explains another reason
for the question: Why do classifiers perform worse on the
minority class? in [39].

Mutual-information classifiers exhibit different behavior in
the given data set. The first important feature is that the
boundary point will shift toward the mean point (μ2 = 1) of
Class 2 but will never go over it. The second feature informs
that the response of E2/p(t2) approaches asymptotically to a
stable value, about 0.345 in this example, for a large ratio
of p(t1)/p(t2). This feature shows that mutual-information
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Fig. 3. Plots of Example 3 where (b) and (c) describe a signal (blue curve) embedded by wider band noise (black curve). Tr1 and Tr2 are the rejection
thresholds of Classes 1 and 2, respectively.

TABLE V

RESULTS OF EXAMPLE 3 ON UNIVARIATE GAUSSIAN DISTRIBUTIONS

classifiers will automatically increase the cost weight to a
class who becomes rare. A significant fraction of the rare
class, 65.5%, is identified correctly. Moreover, the curve
of E2/p(t2) also demonstrates a lower, yet nonzero, bound
on error rate (about 0.054) when p(t1)/p(t2) approaches
to zero.

Example 2 demonstrates different interpretations behind
learning targets. If a decision rule of less costs more is
applied in classifications, the plots from Fig. 2 will advocate
for mutual-information classifiers, rather than for Bayesian
classifiers. From a theoretical viewpoint, we still, however,
need to establish an analytical relation of the stable points for
mutual-information classifiers.

Example 3 (Zero Crossover Points): The given data of two
classes are as follows:

μ1 = 0, σ1 = 2, p(t1) = 0.8
μ2 = 0, σ2 = 1, p(t2) = 0.2.

Although no data are specified to the cost terms, it generally
implies a zero–one lost function for them [2]. From (19c),
one can see a case of zero crossover point occurs in this
example [Fig. 3(c)]. In the zero–one setting to cost terms,
the Bayesian classifier will produce a specific classification
result of majority-taking-all, that is, for all patterns identi-
fied as Class 1. The Bayesian error gives to Class 2 only,
and the relation of N I = 0 shows that no information
is obtained from the classifier. One can imagine that the
given example may describe a classification problem where
a target class, with Gaussian distribution, is fully corrupted
with wider band Gaussian noise in a frequency domain
[Fig. 3(b)]. The plots of p(ti )p(x |ti) show the overwhelming
distribution of Class 1 over that of Class 2. Hence, the plots

on the posterior probability p(ti |x) show that Class 2 has
no chance to be considered in the complete domain of x
[Fig. 3(c)].

Table V lists the results for both types of classifiers. The
Bayesian approach fails to achieve the meaningful results on
the given data. When missing input data of λ13 and λ23,
one cannot carry out the Bayesian approach in abstaining
classifications. On the contrary, without specifying any cost
term, mutual-information classifiers are able to detect the
target class with a reasonable degree of accuracy. When no
rejection is selected, less than 2 percentage error (E2 =
0.0153) happens to the target class. Although the total error
(E = 0.514) is much higher than its Bayesian counterpart
(E = 0.200,FNR = 0.0), the result about a lower miss
rate (FNR = 0.0765) to the target is really meaningful in
applications. If a reject option is engaged, the miss rate is
further reduced to FNR = 0.0410, but adds a reject rate
of Rej = 0.291 over total possible patterns. This example
confirms again the unique feature of mutual-information clas-
sifiers. The results of the cost ratio (�r = 6.475) in the case
of no rejection from mutual-information classifiers can serve
a useful reference for a cost-sensitive learning when missing
information about costs.

V. CONCLUSION

This paper explored differences between Bayesian and
mutual-information classifiers. With Chow’s pioneering work
[9], [10], the author revisited Bayesian classifiers on two
general scenarios for the reason of their increasing popularity
in classifications. The first was on a zero–one cost function
to classifications without rejection. The second was on the
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distinctions among error and reject types in abstaining clas-
sifications. In addition, this paper focused on the analytical
study of mutual-information classifiers in comparison with
Bayesian classifiers, which showed a basis for novel design
or analysis of classifiers based on the entropy principle. The
general decision rules were derived for both Bayesian and
mutual-information classifiers based on the given assumptions.
Two specific theorems were derived for revealing the intrinsic
problems of Bayesian classifiers in applications under the two
scenarios. One theorem described that Bayesian classifiers
have a tendency of overlooking the misclassification error
which is associated with a minority class. This tendency will
degenerate a binary classification into a single-class problem
with the meaningless solutions. The other theorem discovered
the parameter redundancy of cost terms in abstaining classifi-
cations. This weakness is not only on reaching an inconsistent
interpretation to cost terms. The pivotal difficulty will be on
holding the objectivity of cost terms. In real applications,
information about cost terms is rarely available. This is partic-
ularly true for reject types. In comparison, mutual-information
classifiers do not suffer such difficulties. Their advantages
without requiring cost terms will enable the current decision
systems to process abstaining classifications in an objective
means. Several numerical examples in this paper supported
the unique benefits of using mutual-information classifiers in
special cases.

The comparative study in this paper was not meant to
replace Bayesian classifiers by mutual-information classifiers.
Both types of classifiers can form complementary solutions,
such as cost-free learning [40], [41] in difference from cost-
sensitive learning [42] for real-world problems. This paper was
intended to highlight their differences. More detailed discus-
sions to the differences between the two types of classifiers
were given in Section IV. As a final conclusion, a simple
answer to the question title is summarized below.

Bayesian and mutual-information classifiers are different
essentially from their learning targets applied. From the appli-
cation viewpoints, Bayesian classifiers are more suitable to the
cases when cost terms are exactly known for tradeoff of error
and reject types. Mutual-information classifiers are capable
of objectively balancing error and reject types automatically
without employing cost terms, even in the cases of extremely
class-imbalanced data sets, which may describe a theoretical
interpretation why humans are more concerned about the
accuracy of rare classes in classifications.

APPENDIX I
PROOF OF THEOREM 1

Proof: The decision rule of Bayesian classifiers in the no-
rejection case is well known in [2]. Then, only the rule of the
rejection case is studied in this present proof. Considering (6a)
first from (5a), a pattern x is decided by a Bayesian classifier to
be y1 if risk(y1|x) < risk(y2|x) and risk(y1|x) < risk(y3|x).
Substituting (1) and (2) into these inequality equations will

result to

Decide y1 if
p(x|t1)p(t1)

p(x|t2)p(t2)
>
λ21 − λ22

λ12 − λ11

and
p(x|t1)p(t1)

p(x|t2)p(t2)
>
λ21 − λ23

λ13 − λ11
. (A1)

Similarly, one can obtain

Decide y2 if
p(x|t1)p(t1)

p(x|t2)p(t2)
≤ λ21 − λ22

λ12 − λ11

and
p(x|t1)p(t1)

p(x|t2)p(t2)
≤ λ23 − λ22

λ12 − λ13
(A2)

and (6c), respectively. (A1) describes that a single UB within
two boundaries will control a pattern x to be y1. Similarly,
(A2) describes an LB for a pattern x to be y2. From the
constraints in (3), one cannot determine which boundaries will
be UB or LB. However, one can determine them from the
following two hints in classifications.

1) (6c) describes a single lower boundary and a single
upper boundary for a pattern x to be y3.

2) The UB in (A1) and the LB in (A2) should be coincident
with one of the boundaries in (6c), respectively, so that
the classification regions from R1 to R3 will cover a
complete domain of the pattern x [Fig. 1(d)–(f)].

The above-mentioned hints suggest the novel constraints
of λi j , as shown in (6d). Any violation of the constraints
will introduce a new classification region R4, which is not
correct for the present classification background. The con-
straints of thresholds in (6e) can be derived directly from (6c)
and (6d).

APPENDIX II
BOUNDS BETWEEN CONDITIONAL ENTROPY AND

BAYESIAN ERROR IN BINARY CLASSIFICATIONS

In the study of relations between mutual information (I )
and Bayesian error (E), two important studies are reported on
the LB by Fano [35] and the UB by Kovalevskij [36] in the
forms of

LB: E ≥ H (T )− I (T ; Y )− H (E)

log2(m − 1)
= H (T |Y )− H (E)

log2(m − 1)
(B1)

UB: E ≤ H (T )− I (T ; Y )

2
= H (T |Y )

2
(B2)

where m is the total number of classes in T , H (E) is the binary
Shannon entropy, and H (T |Y ) is called conditional entropy,
which can be derived from a general relation [2]

I (T ; Y ) = I (Y ; T ) = H (T )− H (T |Y ) = H (Y )− H (Y |T ).
(B3)

In binary classifications (m = 2), a tighter Fano’s bound in
[37] and [38] is adopted. With the rationals of Bayesian error,
we suggest the tighter UB and LB in the following:

Modified LB: H (E) ≥ H (T |Y ), and 0 ≤ E (B4)

Modified UB: E ≤ min

(
p(t1), p(t2),

H (T |Y )
2

)
. (B5)
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Fig. B.1. Bounds between conditional entropy H (T |Y ) and Bayesian error in
binary classifications. Triangles and circles: the data in Table V from Bayesian
and mutual-information classifiers, respectively. An UB of the Bayesian error
exists, say, Emax = 0.2 for the filled triangle.

Fig. B.1 shows the bounds in binary classifications, which
is different from an E versus I (T ; Y ) plot in [38]. From an
equivalent relation in classifications [26]

max I (T ; Y ) ↔ min H (T |Y ) (B6)

the variable of H (T |Y ) is selected, because the two bounds
are described directly by it. Triangles and circles shown in
Fig. B.1 represent the paired data in Table IV from Bayesian
and mutual-information classifiers, respectively. They clearly
demonstrate the specific forms in their positions within the
same pairs. The circle position is either coincident or up and/or
left to its counterpart. These forms are attributed to different
directions of driving force from two types of classifiers. One
is for min E and the other for min H (T |Y ).

Numerical results present that the Fano’s LB is effective
for all classifiers, including mutual-information classifiers.
The UBs, however, become invalid for mutual information
classifiers. An UB of Emax (= pmin) exists according to
Theorem 3, which can improve Kovalevskij’s one [36] with
tightness in some range of H (T |Y ). When Emax decreases as
shown in Table IV, the UB of the Bayesian error will become
closer to its associated data.
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