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Abstract
Objectives We aimed to develop a radiomics-based model derived from gadoxetic acid–enhanced MR images to preoperatively
identify cytokeratin (CK) 19 status of hepatocellular carcinoma (HCC).
Methods A cohort of 227 patients with single HCC was classified into a training set (n = 159) and a time-independent validated
set (n = 68). A total of 647 radiomic features were extracted from multi-sequence MR images. The least absolute shrinkage and
selection operator regression and decision tree methods were utilized for feature selection and radiomics signature construction.
A multivariable logistic regression model incorporating clinico-radiological features and the fusion radiomics signature was built
for prediction of CK19 status by evaluating area under curve (AUC).
Results In the whole cohort, 57 patients were CK19 positive and 170 patients were CK19 negative. By combining 11 and 6
radiomic features extracted in arterial phase and hepatobiliary phase images, respectively, a fusion radiomics signature achieved
AUCs of 0.951 and 0.822 in training and validation datasets. The final combined model integrated a-fetoprotein levels, arterial
rim enhancement pattern, irregular tumor margin, and the fusion radiomics signature, with a sensitivity of 0.818 and specificity of
0.974 in the training cohort and that of 0.769 and 0.818 in the validated cohort. The nomogram based on the combined model
showed satisfactory prediction performance in training (C-index 0.959) and validation (C-index 0.846) dataset.
Conclusions The combined model based on a fusion radiomics signature derived from arterial and hepatobiliary phase images of
gadoxetic acid–enhanced MRI can be a reliable biomarker for CK19 status of HCC.
Key Points
• Arterial rim enhancement pattern and irregular tumor margin on hepatobiliary phase on gadoxetic acid–enhancedMRI can be
useful for evaluating CK19 status of HCC.

• A radiomics-based model performed better than the clinico-radiological model both in training and validation datasets for
predicting CK19 status of HCC.

• The nomogram based on the fusion radiomics signature can be easily used for CK19 stratification of HCC.
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Abbreviations
ADC Apparent diffusion coefficient
AUC Area under curve
CK Cytokeratin
DWI Diffusion-weighted imaging
FOV Field of view
HBP Hepatobiliary phase
HCC Hepatocellular carcinoma
HPC Hepatic progenitor cell
ICC Inter-correlation coefficient
LASSO Least absolute shrinkage and selection operator
MRI Magnetic resonance imaging
MS Milliseconds
NRI Net reclassification improvement
PVP Portal venous phase
TE Echo time
TR Repetition time

Introduction

Hepatocellular carcinoma (HCC) is the most common
liver cancer with a high incidence of cancer-related
death worldwide [1–3]. Barcelona Clinic Liver Cancer
(BCLC) staging system is recommended for outcome
estimation and treatment proposals [4]. In practice,
HCC patients within the same clinical classification
have a distinct variable outcome even after curative
treatment. Molecular profiling is expected to be incor-
porated in the staging system because HCC is a hetero-
geneous entity of various molecular phenotypes with an
origin of hepatocytes and/or hepatic progenitor cells [5].
Molecular classification can help understand the biolog-
ical behavior of tumor and optimize therapy [4–6].

Cytokeratins (CKs) are intermediate filament proteins
expressed in epithelial cells [7]. In adult liver, hepato-
cytes express CK8 and CK18, whereas cholangiocytes
additionally present CK7 and CK19 [8, 9]. There is
growing evidence that HCC expressing biliary-specific
markers (CK7 and CK19) is a subtype of hepatic pro-
genitor cell (HPCs) origin. Especially, CK19-positive
HCC was associated with clinical aggressiveness due to
more tumor invasion [10], higher rate of lymph node
metastasis [11, 12], and poorer prognosis after resection
and liver transplantation [9, 13, 14]. This molecular sub-
type was suggested as a novel separate entity of HCCs
and should be differentiated from other intermediate tu-
mors showing HPC features such as cholangiolocellular
carcinoma and combined HCC-cholangiocarcinoma [5,
10]. Therefore, identification of CK19 status of HCC

holds promises for a better understanding of tumor biol-
ogy and outcome estimation [15, 16].

Radiogenomics is a promising field for relating imaging
traits to molecular portraits of HCC, by decoding gene expres-
sion [17, 18]. With a hypothesis of inferring gene-protein sig-
natures from imaging features, radiomics is linked with the
concept of radiogenomics [19]. Radiomics can comprehen-
sively incorporate multiple biomarkers and facilitate a valu-
able predictive and validated model to guide clinical decision-
making for HCC [20, 21]. Recently, several studies [22, 23]
reported that CK19-positive HCC has characteristic imaging
features on gadoxetic acid–enhanced magnetic resonance im-
aging (MRI) and one of them [22] reported a predictive model
combining four criteria with very high specificity but unac-
ceptable sensitivity. In addition, a proposed multiparametric
MRI heterogeneity analysis of HCC showed significant cor-
relations with gene expression level of CK19 [24]. To our
knowledge, few study proposed a noninvasive and compre-
hensive model for CK19 status of HCC with satisfactory pre-
diction performance.

In the present study, we aimed to preoperatively develop
and validate a combinedmodel integrating clinicopathological
factors and radiomics signatures for better predicting CK19
status of HCC.

Material and methods

Patient population

The retrospective study was approved by our Institutional
Review Board (approval number B2018-236) and the require-
ment for informed consent was waived. The study cohort was
collected from our institutional radiology and pathology database
between March 2012 and December 2017. A cohort of 589
consecutive patients with suspected HCCs underwent preopera-
tive gadoxetic acid–enhanced MR imaging and subsequent he-
patic resection. Only patients pathologically confirmed of having
single primaryHCCwere included in our analysis. The exclusion
criteria were as follows: patients receiving prior anticancer ther-
apy such as chemoembolization, radiofrequency ablation, or
transcatheter arterial chemoembolization (n = 169); with more
than single HCC according to pathologic reports (n = 45); having
cancerous thrombus in the portal vein, hepatic vein, or bile duct
(n = 27), or having extrahepatic metastasis (n = 43); histological-
ly diagnosed of high-grade dysplastic nodule (n = 9) or cholan-
giocarcinoma (n = 45); unrecorded pathologic findings of CK19
(n = 17); and time interval between MRI examination and sur-
gery > 2 weeks (n = 7). Each patient was then categorized into
the CK19-positive or CK19-negative expression group.
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All enrolled patients received the curative resection. The
tumor specimens were taken from the tumor and the surround-
ing liver tissues in a ratio of 1:1, at the 12, 3, 6, and 9 o’clock
reference positions [25], with suitable formalin-fixed and par-
affin-embedded. Pathological characteristics including tu-
mor size and number, the presence of cirrhosis, microvas-
cular invasion, and Edmondson-Steiner grade were
assessed. The routine immunochemical staining for
CK19 was assessed in consensus by two experienced pa-
thologists in a team of pathologists, using a two-step pro-
tocol (Novolink Polymer Detection System) as previously
described [26, 27]. A multihead microscope was used
when the two pathologists had discrepancies. Monoclonal
antibodies against human CK19 (DakoCytomation) were used at
a dilution of 1:50. CK19-positive expression was defined as
membranous or cytoplasmic immunoreactivity presented in
≥ 5% of tumor cells [8].

MRI data

The gadoxetic acid–enhanced MR images were obtained in a
1.5-T scanner (Magnetom Aera; Siemens Healthineers).
Baseline sequences included diffusion-weighted imaging
(DWI), T2-weighted phase, pre-contrast T1-weighted phase,
dynamic T1-weighted arterial phase, portal venous phase, de-
layed phase, and hepatobiliary phase (HBP). A prototype
single-shot spin echo echo-planar free-breathing DWI se-
quence using repetition time (TR), 5100 milliseconds (ms);
echo time (TE), 55 ms; field of view (FOV), 285 × 380 mm;
matrix size, 192 × 154; and slice thickness, 5.5 mm was ac-
quired before the dynamic examination. A corresponding ap-
parent diffusion coefficient (ADC) map was automatically
calculated with two b values of 0 and 500 s/mm2. For dynamic
T1-weighted examination, we used the parameters TR, 3.47
ms; TE, 1.36 ms; flip angle, 10°; FOV, 308 × 380 mm; matrix
size, 320 × 240; and slice thickness, 3 mm. After an intrave-
nous injection of 0.025 mmol/kg of gadoxetic acid (Primovist,
Bayer) at a speed of 2 mL/s, we obtained images of arterial
phase, portal venous phase (PVP), delayed phase, and HBP in
20–30 s, 60–70 s, 180 s, and 20 min, respectively. T2-
weighted images (TR, 4918 ms; TE, 106 ms; FOV, 285 ×
380 mm; matrix size, 384 × 273; slice thickness, 5.5 mm)
were obtained during the interval between delayed phase
and hepatobiliary phase.

Morphologic features of MR images

The morphologic features were evaluated on a picture archiv-
ing and communication system (Centricity RA1000, General
Electric) by two dedicated radiologists (S.X.R. and Y.D., with
20 and 15 years of experience, respectively) in consensus and
they were both blinded to the histopathologic results. Any
disagreement would be discussed until a final consensus was

generated. The interobserver agreements of morphologic MR
features were provided in Supplemental Table 1. Qualitative
imaging parameters of each HCC were evaluated as follows:
(a) presence of smooth or irregular tumor margin. Irregular
tumor margin was defined as extranodular budding portion
on transverse HBP images; (b) dynamic enhancement pattern,
categorized as arterial enhancement with washout (visually
arterial phase hyperenhancement combined with subsequent
hypointensity on PVP), persistent enhancement, progressive
enhancement, and no or minimal enhancement; (c) arterial rim
enhancement, defined as central hypointense areas with
peripheric ring-like enhancement on arterial phase; (d) pres-
ence of radiological capsule; (e) fat deposition.

MR image segmentation

The whole tumor segmentation was performed in ITK-SNAP
software (http://www.radiantviewer.com) by a radiologist
with 8 years of experience, and then validated by an
experienced radiologist with 25 years of experience. Regions
of interests (ROIs) were manually outlined along the edge of
tumor on the T2-weighted images, b values of 500 s/mm2 DW
images, ADCmaps, pre-contrast T1-weighted phase, dynamic
arterial phase, portal venous phase, delayed phase, and
hepatobiliary phase images, respectively. To test the reproduc-
ibility of signature mining by a test-retest procedure, we ran-
domly selected a cohort of 20 HCCs to perform repeat
segmentation.

Clinical and morphologic risk features

Univariable analysis was used to assess the association be-
tween clinical, morphologic features and CK19 status of
HCC. The backward stepwise selection using the stopping
rule Akaike’s information criterion with all variables was per-
formed bymultivariable logistic regression analysis. Variables
with a p value < 0.05 in the multivariate analysis were identi-
fied as potential clinical and morphologic risk factors and the
clinical model based on these factors was constructed at the
same time.

Radiomic feature analysis

The procedure of radiomic feature analysis includes feature
extraction and feature selection.

Firstly, MR images of all the eight sequences were
imported into the open-source software platform
“Pyradiomics 1.3.0” (http://www.radiomics.io/pyradiomics.
html), which can extract quantitative features with a series of
feature extraction algorithms for medical images [28]. A total
of 647 features were extracted for further analysis.

Secondly, the reproducibility of all the radiomic features in
intra- and inter-observer was assessed by intra- and inter-
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correlation coefficient (ICC) [29]. Features with ICC greater
than 0.8 were considered reproducible and included in the
following feature selection. Next, the least absolute shrinkage
and selection operator (LASSO) regression model was uti-
lized for feature selection. This method is a regularization
for multivariable logistic model, which can obtain the best
feature set with optimal cross-validation performance [30].

Model building

Decision tree was adopted for further radiomics signature build-
ing with the radiomic features that chosen by LASSO. By con-
structing a decision tree with a series of branches and leaves, the
decision tree learning algorithm could go from observations to
the predicted target value [31]. Leave-one-out cross-validation
was employed for the best parameter selection in our training
dataset; parameters with the optimal mean area under curve
(AUC) was chosen for the radiomics signature building. For
every single phase, the mean AUC of leave-one-out cross-
validation in training cohort was obtained, and those phases
with AUC greater than 0.700 were considered significant and
thus included for the fusion radiomics signature building.

To test whether the radiomics signature and clinical
factors were complementary for the prediction of CK19
status, we created a combined model integrating all the
potential factors together to a multivariable logistic re-
gression model. Clinical factors with significant associ-
ation with CK19 were entered into the multivariable
combined model along with radiomics signature. AUCs
were used to quantify the discriminative ability for clas-
sifier model and the performances of the three models
were compared using the Delong test. Hosmer-
Lemeshow test was performed to identify the agreement
between predicted probability of the combined model
and the observed status of CK19. Net reclassification
improvement (NRI) analysis was used to assess the in-
creased value of the radiomics signature and combined
model compared with the clinical model separately. The
nomogram based on the predictive combined model was
established for the easy use to generate a probability of
CK19 status.

Flowchart of tumor segmentation, feature extraction, and
model building was shown in Fig. 1.

Statistical analysis

The statistical differences of variables were analyzed in the
training and validation datasets using t test or Mann-
Whitney U test for continuous variable and chi-square test
for qualitative variable. The statistical analyses were conduct-
edwith the software of IBMSPSS Statistics 20 and R software
(version 3.4.1). All the statistical tests were two-side. P values
less than 0.05 were regarded as statistically significant.

Results

Clinicopathologic and morphologic features

Comparisons of demographic, laboratory, andmorphological im-
aging features between training and validated patients were
shown in Table 1. The final cohort of 227 patients (198 men
and 29 women) with single HCC was classified into a training
set (n = 159, 40 for CK19 positive, 119 for CK19 negative; 136
men and 23 women; March 2012–March 2017) and a time-
independent validated set (n = 68, 17 for CK19 positive, 51 for
CK19 negative; 62 men and 6 women; March 2017–December
2017). In the whole cohort, 57 (25.1%) patients were positive for
CK19 and 170 (74.9%) patients were negative for CK19. There
was no significant difference of the status of CK19 between
training and validation dataset (p = 0.230). According to univar-
iate analysis, CK19-positive HCCs were more likely to have
higher serum α-fetoprotein (AFP) level (p < 0.001, OR 2.16,
95% CI 1.42–3.29), irregular margin (p = 0.004, OR 2.45,
95% CI 1.32–4.53), and arterial rim enhancement (p = 0.001,
OR = 3.28, 95% CI = 1.59–6.74). At the multivariate analysis,
serum AFP level (p = 0.001, OR 2.06, 95% CI 1.33–3.19),
irregular tumor margin (p = 0.050, OR 1.93, 95% CI 1.00–
3.70), and arterial rim enhancement (p = 0.011, OR 2.70, 95%
CI 1.25–5.82) were all independent significant variables associ-
ated with CK19 expression (Table 2). The clinical model con-
structed with these factors had an AUC of 0.714 (95%CI 0.624–
0.803) in the training dataset and 0.753 (95%CI 0.636–0.871) in
the validation dataset.

Feature selection and radiomics model construction

After feature selection by reproducibility analysis, features de-
rived from DWI and ADC maps were reduced to 0, meaning a
pretty poor robustness. The further analysis of LASSO has elim-
inated all the robust features in T2-weighted and pre-contrast T1-
weighted images. Accordingly, these 4 sequences of MR images
were removed in our model construction. The feature numbers
for each phase during the procedure of feature selection are
shown in Table 3. Furthermore, all of the prediction perfor-
mances for the four phases are presented in Table 4. In the end,
as the cross-validation mean AUC for hepatobiliary phase, arte-
rial phase, venous phase, and delay phase were, respectively,
0.893, 0.854, 0.512, and 0.478, we chose the radiomics signature
of hepatobiliary phase and arterial phase (> 0.700) to be further
analyzed. The distributions of radiomic features in both arterial
phase and hepatobiliary phase images are shown in
Supplementary Figure 1. Using the robust features, 11 and 6
features were considered the optimal feature set after LASSO
modeling for the prediction of CK19 in the two phases, respec-
tively. Next, a classifier model of decision tree was performed
using the selected features. In arterial phase, the selected features
included Coif1_glrlm_SRLGLE, Coif1_glrlm_energy,
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Co i f 1 _ g l s zm_HGLZE , Co i f 1 _ g l s zm_LGLZE ,
C o i f 2 _ g l s z m _ L Z L G E , C o i f 3 _ g l s z m _ Z S V,
Coif5_glcm_variance, Coif5_glszm_ZSV, Coif7_glszm_ZSV,
Coif8_glszm_ZSV, ori_fos_minimum. In hepatobiliary phase,
the selected features comprised Coif1_glrlm_SRLGLE,
Coif2_glszm_ZSNU, Coif4_glcm_cluster_tendency,
C o i f 4 _ g l s z m _ Z S V, C o i f 8 _ g l s z m _ Z S N U ,
ori_Surface_to_volume_ratio. Detailed feature information is
presented in Supplementary Table 2.

In the arterial phase, the radiomics signature yielded an
AUC of 0.847 (95% CI 0.779–0.915) in the training dataset
and 0.764 (95% CI 0.636–0.893) in the validation dataset.
Similarly, the radiomics signature of hepatobiliary phase
yielded an AUC of 0.892 (95% CI 0.847–0.937) and 0.730
(95% CI 0.578–0.882) in training and validation set separate-
ly. In addition, to make the full potential value of both the
radiomics signature in different sequences, we built a fusion
radiomics signature, which integrates the radiomics signatures
in the two phases with the multivariable logistic regression
model. The fusion radiomics signature expectedly achieved
a satisfying performance with an AUC of 0.951 (95% CI
0.917–0.985) and 0.822 (95% CI 0.716–0.928) in training
and validation datasets. The Delong test manifested signifi-
cant difference when the fusion radiomics signature was com-
pared with clinical model in the training dataset (p < 0.001);
however, in the validation dataset, the p value is 0.168. There
were significant differences of the distribution of the fusion
radiomics signatures between CK19-positive and CK19-
negative groups in both training (p < 0.001) and validation
(p < 0.001) datasets (Fig. 2).

Predictive model development

The final combined model integrating all the potential factors
including significant clinical variables (serum AFP levels, ar-
terial rim enhancement pattern, and irregular tumor margin)

and the fusion radiomics signature obtained the best perfor-
mance for CK19 prediction. The classification performance of
the combined model performed better than clinical model
alone in the training (0.959 [0.929–0.989] vs. 0.714 [0.624–
0.803]; p < 0.001) and validation (0.846 [0.730–0.963] vs.
0.753 [0.636–0.871]; p = 0.047) datasets. The radiomics sig-
nature yield value increased compared with clinical model in
the training (NRI, 1.432, p < 0.001) and validation dataset
(NRI, 0.965, p < 0.001). Additionally, integration of the
radiomics signature into the prediction model showed signif-
icant improvement of predictive performance than clinical
model in the training (NRI, 1.588, p < 0.001) and validation
dataset (NRI, 1.038, p < 0.001). Comparisons between the
combined model and each radiomics model of different phase
are shown in Supplementary Table 3. Good agreement in both
training (p = 0.65) and validation (p = 0.22) dataset were
obtained. ROC curves of all the models for predicting CK19
are presented in Fig. 3, and the performances for each model
are shown in Table 4. The nomogram (Fig. 4) showed satis-
factory prediction performance in training (C-index 0.959
[95% CI 0.928–0.989]) and validation (C-index 0.846 [95%
CI 0.733–0.959]) dataset.

Discussion

Our study established a predictive nomogram incorporating
gadoxetic acid–enhanced MRI-based radiomics signatures, se-
rumAFP level, irregular tumor margin, and arterial rim enhance-
ment pattern for preoperatively identifying CK19-positive
HCCs. The combined model demonstrated a satisfactory diag-
nostic performance for stratifying HCCs by CK19 status.

For identifying CK19-positive HCCs, the fusion radiomics
signature achieved an AUCs of 0.951 in training cohort and
0.822 in validation cohort, better than the performance of
radiomics signatures that separately extracted in arterial phase

Fig. 1 Flowchart of tumor segmentation, feature extraction, and model
building.Manual segmentationwas performed in the multi-phase images,
and the features can be divided into 4 groups, including shape, statistical,
texture, and wavelet features. Next, least absolute shrinkage and selection

operator (LASSO) was used for feature selection and model
establishment. Receiver operating characteristic (ROC) curve and the
nomogram for predicting CK19 status were then developed
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Table 1 Comparison of CK19 status and characteristics in both training and validated HCC patients

Characteristics No. Training set (n = 159) p value No. Test set (n = 68) p
value

p
value*

CK19 (+)
(n = 40)

CK19 (−)
(n = 119)

CK19 (+)
(n = 17)

CK19 (−)
(n = 51)

Median age, years (range) 159 51 (24–75) 53 (27–75) 0.057 68 53 (34–83) 54 (26–74) 0.986 0.863
Gender 0.604 1.000 0.243
Male 136 33 103 62 15 47
Female 23 7 16 6 2 4

Tumor size, cm, mean and SD
(range)

159 2.0 ± 1.0 (0.8–5.1) 2.3 ± 1.5 (0.9–8.4) 0.218 68 2.1 ± 1.1 (0.9–4.5) 1.8 ± 0.9 (0.7–5.5) 0.407 0.142

Etiology of liver disease 0.730 0.584 0.151
HBV positivea 143 36 107 65 16 49
HCV positiveb 7 1 6 1 0 1
None or other 9 3 6 2 1 1

Microvascular invasion 0.687 0.095 0.457
Presence 45 10 35 16 7 9
Absence 114 30 84 52 10 42

Edmondson-Steiner grade 0.436 0.262 0.141
I–II 108 25 83 34 6 28
III–IV 51 15 36 34 11 23

Satellite nodule 0.763 0.095 0.519
Presence 16 5 11 5 3 2
Absence 143 35 108 63 14 49

Growth type 0.013 0.213 0.080
Smooth margin 75 12 63 45 9 36
Focal extranodular growth 54 19 35 19 6 13
Multifocal nodular confluent 19 8 11 3 1 2
Infiltrative growth 11 10 1 1 1 0

Tumor capsule 0.261 1.000 0.977
Complete 126 29 97 54 14 40
Incomplete or absent 33 11 22 14 3 11

Background liver tissue 0.274 0.275 0.183
Liver cirrhosis 100 26 74 49 11 38
Chronic hepatitis 50 10 40 16 4 12
Normal 9 4 5 3 2 1

Serum AFP 0.001 0.023 0.790
< 20 ng/mL 88 13 75 35 4 31
20–400 ng/mL 51 17 34 25 10 15
> 400 ng/mL 20 10 10 8 3 5

Total bilirubin 1.000 0.669 0.393
≤ 20.4 μmol/L 146 37 109 60 16 44
> 20.4 μmol/L 13 3 10 8 1 7

Morphologic MR features
Irregular margin on HBP 0.011 0.239 0.280
Absence 80 13 67 45 9 36
Presence 79 27 52 23 8 15

Enhancement pattern 0.007 0.130 0.582
Arterial enhancement with
washout

127 28 99 56 11 45

No or minimal enhancement 14 8 6 5 2 3
Persistent enhancement 15 2 13 4 2 2
Progressive enhancement 3 2 1 3 2 1

Arterial rim enhancement < 0.001 0.020 0.157
Presence 31 16 15 8 5 3
Absence 128 24 104 60 12 48

Fat deposition 0.310 1.000 0.051
Presence 42 8 34 8 2 6
Absence 117 32 85 60 15 45

a Represents positivity for hepatitis B serum antigen
b Represents positivity for serum HCVantibody

*Represents the comparisons of characteristics between training and validation cohorts.

No. represents number of training or validated patients

AFP, α-fetoprotein; SD, standard deviation; HBP, hepatobiliary phase
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or hepatobiliary phase. In training cohort, the diagnostic ac-
curacy of fusion radiomics signature reached 0.843; however,
it decreased to 0.706 in validated cohort. After incorporating
clinical and imaging biomarkers, the combined model
achieved the highest diagnostic accuracy of 0.931 in training
cohort and good accuracy of 0.809 in validation cohort. In the
previous study [22], the authors combined the four imaging
features related with CK19-positive HCCs to demonstrate a
very high diagnostic specificity of 0.995 but also a low

sensitivity of 0.211. Our final combined model demonstrated
high diagnostic sensitivity and specificity in both cohorts.

Qualitative and quantitative analysis based on gadoxetic
acid–enhanced MR imaging can be helpful for characterizing
CK19-positive HCCs because the gene signatures of this sub-
type HCC are positively related to certain imaging traits [22,
23, 32]. Although a multi-sequence MRI protocol was avail-
able, only 11 and 6 radiomic features in arterial phase and
HBP images were extracted for the best diagnostic perfor-

Table 2 Univariate and
multivariate analyses of factors
related with CK19 status

No. Univariate Multivariate

p value OR (95% CI) p value OR (95% CI)

Age 227 0.116 0.98 (0.95–1.01)

Gender of male 198

Tumor size 227 0.435 0.91 (0.71–1.16)

Etiology of liver disease

HBV positive 209 0.786 1.16 (0.39–3.41)

Growth type

Smooth nodular 120 1

Focal extranodular growth 73 0.496 2.08 (0.25–17.13)

Multifocal nodular confluent 22 0.116 5.44 (0.66–44.94)

Infiltrative growth 12 0.071 7.69 (0.84–70.46)

Microvascular invasion 61 0.562 1.22 (0.63–2.36)

Edmondson-Steiner grade (III–IV) 85 0.361 1.30 (0.74–2.30)

Presence of liver cirrhosis 149 0.894 0.96 (0.51–1.79)

Serum AFP level 227 < 0.001 2.16 (1.42–3.29) 0.001 2.06 (1.33–3.19)

Total bilirubin > 20.4 μmol/L 21 0.503 0.68 (0.22–2.11)

Irregular tumor margin 102 0.004 2.45 (1.32–4.53) 0.050 1.93 (1.00–3.70)

Enhancement pattern

Arterial enhancement with washout 183 0.685 1.18 (0.54–2.56)

No or minimal enhancement 19 0.335 0.54 (0.15–1.91)

Persistent enhancement 19 0.899 1.07 (0.37–3.12)

Progressive enhancement 6 0.640 1.51 (0.27–8.47)

Tumor capsule 180 0.407 0.74 (0.36–1.51)

Arterial rim enhancement 39 0.001 3.28 (1.59–6.74) 0.011 2.70 (1.25–5.82)

Fat deposition 50 0.347 0.69 (0.32–1.49)

Table 3 Feature numbers after
feature selection in different
sequences

MR sequences Intra-
correlation
coefficient

Inter-
correlation
coefficient

Reproducibility
selectiona

LASSO
selection

T2-weighted image 0.192 ± 0.319 0.126 ± 0.215 305 0
Diffusion-weighted image 0.245 ± 0.317 0.132 ± 0.201 0 --
ADC maps image 0.532 ± 0.304 0.404 ± 0.261 0 --
Pre-contrast T1-weighted image 0.138 ± 0.296 0.066 ± 0.154 437 0
Arterial phase 0.180 ± 0.319 0.196 ± 0.305 175 11
Venous phase 0.156 ± 0.316 0.072 ± 0.163 328 4
Delayed phase 0.198 ± 0.316 0.117 ± 0.197 194 5
Hepatobiliary phase image 0.139 ± 0.294 0.083 ± 0.169 329 6

a Reproducibility selection with the inter- and intra- correlation coefficient (ICCs)

ADC, apparent diffusion coefficient
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mance. DWI was excluded during feature selection for low
reproducibility. DWI images have low spatial resolution and
are subject to motion or magnetic artifacts, affecting the ro-
bustness of radiomics model construction. The radiomics sig-
nature included shape, intensity, and texture, which can reflect
the complexity of the properties of the extracted tissue [33,
34]. For the fusion radiomics signature, two features in arterial

phase and HBP corresponded to the biological characteristics
of HCC with CK19-positive. “Ori_fos_minimum” is the min-
imum grey value of the intensity histogram, which reflects the
signal intensity in the tumor. “Ori_Surface_to_volume_ratio”
is the ratio of tumor surface to volume, a lower value of which
indicates a more compact (sphere-like) shape. Hence, some
morphological and radiological features of CK19-positive

Table 4 Predictive efficacy of the clinical model, radiomics model and the combined model

Different models AUC (95% CI) Training dataset (n = 159) Validation dataset (n = 68)

PNP ACC SENS SPEC PPV NPV AUC (95% CI) PNP ACC SENS SPEC PPV NPV

Clinical model 0.714 (0.624–0.803) 113 0.711 0.568 0.765 0.481 0.822 0.753 (0.636–0.871) 46 0.617 0.923 0.546 0.324 0.968
Radiomics model
Arterial phase 0.847 (0.636–0.893) 117 0.736 0.841 0.696 0.514 0.920 0.764 (0.636–0.893) 49 0.726 0.692 0.727 0.375 0.909
Venous phase 0.912 (0.872–0.952) 132 0.830 0.977 0.774 0.623 0.989 0.636 (0.473–0.798) 44 0.647 0.385 0.709 0.238 0.830
Delay phase 0.847 (0.784–0.909) 123 0.774 0.773 0.774 0.567 0.899 0.683 (0.525–0.842) 39 0.574 0.692 0.545 0.265 0.882
Hepatobiliary phase 0.892 (0.847–0.937) 124 0.780 0.955 0.713 0.560 0.976 0.730 (0.578–0.882) 46 0.676 0.846 0.636 0.355 0.946
Arterial+ Hepatobiliary phase 0.951 (0.917–0.985) 134 0.843 0.955 0.800 0.646 0.979 0.822 (0.716–0.928) 48 0.706 0.846 0.673 0.379 0.949

Combined model 0.959 (0.929–0.989) 148 0.931 0.818 0.974 0.923 0.933 0.846 (0.730–0.963) 55 0.809 0.769 0.818 0.500 0.938

AUC, area under curve; PNP, predicted number of patients correctly classified; ACC, accuracy; SENS, sensitivity; SPEC, specificity; NPV, negative
predictive value; PPV, positive predictive value

Fig. 2 Gadoxetic acid–enhanced MR imaging and comparisons of a
significant radiomics feature between the three patients with single
pathologically confirmed HCC. a–d the CK19-negative HCC showed
typical enhancement pattern in a 68-year-old man. a Hyperintensity on
arterial phase. b “Washout” on PVP. c Hypointensity on hepatobiliary
phase (HBP). The radiomics signature of this patient was 0.137 and
predicted as CK19 negative. d The radiomics feature extracted on
arterial phase was “ori_fos_minimum” of 216. e–h The CK19-positive
HCC also showed typical enhancement pattern in a 53-year-old man. e
Hyperintensity on arterial phase. f “Washout” on PVP. gHypointensity on

HBP. The CK19 status was difficult to be characterized by imaging
features. However, the radiomics signature of this patient was 0.678 and
predicted as CK19 positive. h The radiomics feature “ori_fos_minimum”
of 143. i–l the CK19-positive HCC in a 75-year-old man showed arterial
rim enhancement (arrow) and radiomics features can further enhance the
prediction probability of CK19 status (the radiomics signature was 0.974
and predicted as CK19 positive). i Rim enhancement on arterial phase. j
“Washout” on PVP. k Hypointensity on HBP. l The radiomics feature
“ori_fos_minimum” of 103
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HCC can be explained in a radiomics approach. Some previ-
ous studies also reported that higher tumor-to-liver signal in-
tensity ratio on DWI and HBP images can quantitatively iden-
tify CK19-positive HCC [22, 35] while this method could be
limited in reflecting the intratumoral heterogeneity and com-
plexity of tumor morphology [35].

The clinicopathologic features of CK19-positive HCCs
had no significant difference in training and validated cohorts.

In line with previous studies [8, 9], serum AFP level could
serve as a predictive marker for CK19 expression. As immu-
nohistochemistry of HCC can be simultaneously positive for
CK19 and AFP [10, 36], higher serum AFP level is a feature
commonly associated with this subtype of HCCs. In clinical
practice, serum AFP level can be easily obtained and incorpo-
rated into a nomogram for individualized risk estimation. For
histology, CK19-positive HCCsweremore likely to exhibit an

Fig. 3 Comparison of receiver operating characteristics (ROC) curves for
predicting CK19 status of HCC. ROC curves of clinical factors,
radiomics signatures in hepatobiliary phase and arterial phase images,

the fusion radiomics signature, and the combined model that integrated
with the clinical factors and the fusion radiomics signature in the (a)
training and (b) validation dataset

Fig. 4 Nomogram for predicting the positive of CK19 probabilities. The
radiomics-based nomogram integrating the fusion radiomics signature
extracted from hepatobiliary phase and arterial phase images, and
clinical and morphologic risk factors including serum AFP level,
irregular margin, and arterial rim enhancement pattern. For AFP, “0”
refers to the level < 20 ng/mL, “1” refers to 20–400 ng/mL, and “2”
refers to > 400 ng/mL. For irregular margin, “0” refers to absence of
irregular margin, and “1” refers to presence of irregular margin. For

arterial rim enhancement, “0” refers to absence of rim enhancement,
and “1” refers to presence of arterial rim enhancement. “Radiomics
signature” is the prediction probability of CK19 status of the combined
model. “Total points” is the total score by adding all the single score
obtained from AFP, irregular margin, arterial rim enhancement, and
radiomics signature. The single score is obtained by draw a line straight
up from the single feature axis to the point axis
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aggressive phenotype, characterized by larger tumor size, poor
differentiation, and presence of microvascular invasion [9,
37], although it was not statistically significant in our study.

Our results also showed that irregular tumor margin was as-
sociatedwith CK19 expression. CK19-positiveHCCsweremore
likely to show perinodular extension, multinodular confluent, or
infiltrative gross types [38]. Arterial rim enhancement pattern is
frequently observed in intrahepatic cholangiocarcinomas or com-
bined hepatocellular-cholangiocarcinoma. Jeong et al [23] report-
ed that some CK19-positive HCCs showed persistent or progres-
sive dynamic enhancement pattern, another characteristic imag-
ing feature of intrahepatic cholangiocarcinoma.We hypothesized
that during multistep hepatocarcinogenesis [39], CK19-positive
HCCs may have an intermediate phenotype between biliary and
mature hepatocyte differentiation, as CK19 is an important mark-
er for hepatic progenitor cells. Interestingly, HCCs showing ir-
regularly shaped rim-like enhancement have been especially re-
ported to express higher CK19 levels with aggressive histopath-
ologic features [40].

There were some limitations in our study. First, it is
a retrospective study and may have selection bias.
Second, the sample size of CK19-positive HCCs was
relatively small. Third, CK19-positive was defined as a
cutoff 5% of tumor cells to avoid false-positive results.
The association between our predictive model and the
graded degree of CK19 immunopositivity should be fur-
ther assessed. Last, whether the predictive model can
differentiate CK19-positive HCC from cholangiocarcino-
ma should be better validated as both tumors often
demonstrate similar imaging features. However, the val-
idation was limited by the inadequate sample of cholan-
giocarcinoma with gadoxetic acid–enhanced MR imag-
ing in our institution.

In conclusion, the radiomics signatures derived from
arterial phase and hepatobiliary phase images of
gadoxetic acid–enhanced MR imaging can help predict
CK19 status of HCC. A predictive nomogram incorpo-
rating radiomics signatures, preoperative serum AFP
levels, irregular tumor margin, and arterial rim enhance-
ment pattern demonstrated a significantly improved di-
agnostic performance in CK19 stratification of HCC.
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