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Abstract—A big problem in triangular remeshing is to generate meshes when the triangle size approaches the feature size in the

mesh. The main obstacle for Centroidal Voronoi Tessellation (CVT)-based remeshing is to compute a suitable Voronoi diagram. In this

paper, we introduce the localized restricted Voronoi diagram (LRVD) on mesh surfaces. The LRVD is an extension of the restricted

Voronoi diagram (RVD), but it addresses the problem that the RVD can contain Voronoi regions that consist of multiple disjoint surface

patches. Our definition ensures that each Voronoi cell in the LRVD is a single connected region. We show that the LRVD is a useful

extension to improve several existing mesh-processing techniques, most importantly surface remeshing with a low number of vertices.

While the LRVD and RVD are identical in most simple configurations, the LRVD is essential when sampling a mesh with a small

number of points and for sampling surface areas that are in close proximity to other surface areas, e.g., nearby sheets. To compute the

LRVD, we combine local discrete clustering with a global exact computation.

Index Terms—Localized restricted Voronoi diagram, centroidal Voronoi tessellation, Poisson-disk sampling, remeshing

Ç

1 INTRODUCTION

THE Voronoi diagram is a fundamental geometric struc-
ture that has numerous applications in areas such as

mesh generation, physical simulation, visualization, image
processing, biology, chemistry, geography and architectural
design.

The Voronoi diagram on surfaces is very useful in mesh
processing algorithms that distribute sample points on a
surface, e.g., algorithms for sampling, remeshing, and ren-
dering. A typical example is remeshing algorithms based on
the Centroidal Voronoi Tessellation (CVT) [1] because they
require computing the Voronoi diagram on the input sur-
face during each iteration.

There are multiple ways to define a Voronoi diagram on
surfaces. We analyze possible choices with the goal of low-
resolution remeshing in mind. The most important design
choice is whether to use geodesic or Euclidean distances for
the definition of the Voronoi diagram. Voronoi diagrams
using geodesic distances have multiple advantages [2], [3].
They are intuitive to understand, consist of connected
Voronoi cells, and are useful for applications such as surface
segmentation [4] and base domain construction for multi-

resolution modeling [5]. On the downside, the computation
time for exact geodesic distances is high. Therefore, several
authors propose using approximate Voronoi diagrams by
discrete clustering algorithms, e.g., [6]. This results in a low
geometric quality of the boundary approximation of the Vor-
onoi cells (see Fig. 1a). Further, even exact geodesic Voronoi
diagrams (GVD) are not that suitable for remeshing. For
low-resolution remeshing, the geodesic Voronoi diagram is
very sensitive to noise and leads to bad triangle angles. The
alternative strategy is to compute a three-dimensional (3D)
Voronoi diagram in Euclidean space and intersect it with the
surface [7], [8]. The advantages of this approach are that fast
and exact algorithms are available. A major disadvantage is
the problem that Voronoi cells can consist of disconnected
regions. This is an obstacle in remeshing of nearby sheet
structures with two closeby surface regions, because the
points on one side of the nearby sheets create disconnected
Voronoi regions on the other side (see Fig. 1b).While the suit-
ability of geodesic versus Euclidean distances for remeshing
is an ongoing research question, the current state of the art
using Euclidean distances is superior in terms of element
quality, scalability, and surface approximation. We therefore
aim at designing a Voronoi diagram that is mainly based on
Euclidean distances, but redefines the surface boundaries
using amore geodesic concept of connectivity so that discon-
nected regions cannot occur (see Fig. 1c).

In this paper, we propose a new type of Voronoi dia-
gram on surfaces, called the localized restricted Voronoi
diagram (LRVD). We provide a definition of the LRVD,
and an algorithm to compute the LRVD on mesh surfaces,
and we explain how the LRVD can be integrated in to
state-of-the-art remeshing algorithms using CVT-based iso-
tropic remeshing and remeshing using maximal Poisson-
disk sampling (MPS). In practice, this enables us to over-
come two problems: remeshing nearby sheet structures
and remeshing with a lower number of vertices. The main
contributions of this paper are:
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� The introduction of a new type of Voronoi diagram
on surfaces, the LRVD.

� An algorithm for computing the LRVD that is more
efficient than the RVD algorithm.

� The application of the LRVD concept to improving
the geometric quality and computation speed of two
state-of-the-art remeshing algorithms.

1.1 Related Work

We briefly review the literature of Voronoi diagrams on sur-
faces and their applications. For more details, we refer read-
ers to recent surveys [4], [9] and textbooks [10], [11].

The most natural way to define the Voronoi diagram on
surfaces uses the geodesic metric, resulting in the geodesic
Voronoi diagram. Kunze et al. [2] propose a method for
computing the GVD on parametric surfaces by tracing iso-
value curves in the parameter domain. Peyr�e and Cohen
[12] propose an approximated approach to computing the
GVD using the fast marching algorithm. Liu et al. [3] pres-
ent an exact algorithm to compute isocontours, bisectors
and GVDs on mesh surfaces. Although the exact GVD has
many nice properties, the computational cost is too expen-
sive. Additionally, for remeshing applications, the geodesic
distance is not the best choice since the remeshing quality is
still measured in the Euclidean space.

An alternative way to approximate the GVD is to replace
the geodesic metric with the Euclidean metric. Edelsbrun-
ner and Shah [13] define the restricted Voronoi diagram
(RVD) on surfaces as the intersection of the 3D Voronoi dia-
gram and the surface. Du et al. [14] show that when the
sampling set is dense enough, the Euclidean distance is a
good approximation of the geodesic distance. Later, several
approximation algorithms were proposed for computation
of the RVD. Alliez et al. first sample the input surface with
enough quadrature samples, and then apply k-means clus-
tering with quadratures to approximate the RVD on the sur-
face [15]. Valette and Chassery, [6], [16] propose the use of
mesh triangles as the basic primitive for clustering. The
result of the discrete clustering is then used to approximate
the RVD. The advantages of the approximated RVD include
simple implementation and fast computation. However, the

subsequent mesh-processing algorithms can suffer due to
inexact computation.

Yan et al. [7] propose an efficient implementation for the
exact computation of the RVD that first builds a kd-tree
from the samples, and then finds the nearest sample point
for each mesh triangle. The incident Voronoi cells of a trian-
gle can be efficiently identified by traversing the neighbor-
ing cells of the current cell. The algorithm complexity is
OðmlogðnÞÞ. The RVD computation technique has been
used in multiple algorithms, such as isotropic remeshing
[7], anisotropic/quad remeshing [8], quadrilateral surface
fitting [17], minimal surface modeling [18], blue noise sam-
pling on surfaces [19], and function approximation on surfa-
ces [20]. Yan and Wonka [21], [22] generalize the restricted
Voronoi diagram to the restricted power diagram (RPD) on
surfaces. Sun et al. [23] apply a hexagonal metric to compute
an approximate anisotropic RVD on surfaces.

On the theoretical side, Leibon and Letscher [24] first show
that a valid intrinsic Delaunay triangulation on a manifold
can be ensured by the sampling density only. The recent work
of Boissonnat et al. [25] shows that the result of [24] is incor-
rect, because the topology of the intrinsic Delaunay triangula-
tion on a manifold can also be invalid if the vertices lie too
close to a degenerate or a “quasi-cospherical” configuration.

2 DEFINITIONS

In this section, we first review the definitions of the
restricted Voronoi diagram and its dual, the restricted
Delaunay triangulation (RDT). Then, we introduce our gen-
eralization to the localized restricted Voronoi diagram and
the localized restricted Delaunay triangulation (LRDT).

2.1 Restricted Voronoi Diagram

Given a smooth two-manifold surface S 2 R3 and a set of
finite samples X ¼ fxigni¼1 on S, the restricted Voronoi dia-
gram is defined as the intersection of the 3D Voronoi dia-
gram V ¼ fVigni¼1 of X and the surface S [13] (see Fig. 2a for
a two-dimensional (2D) illustration of the RVD):

VjS ¼ V \ S ¼ fVi \ Sgni¼1;
where

Vi ¼ fx 2 R3; dðx; xiÞ � dðx; xjÞ; 8xj 2 X; j 6¼ ig:
Then, a restricted Voronoi cell (RVC) is defined as:

VijS ¼ fx 2 S; dðx; xiÞ � dðx; xjÞ; 8xj 2 X; j 6¼ ig:
In the above formula, dðx; yÞ ¼ kx� yk is the Euclidean dis-
tance between two points.

2.2 Restricted Delaunay Triangulation

The dual of the RVD is a subcomplex of the 3D Delaunay tri-
angulation, called the restricted Delaunay triangulation. If
the �-sampling property [26] and the topological ball prop-
erty [13] are met, each restricted Voronoi cell is a single con-
nected component and the RDT is topologically equivalent
to the underlying surface S.

The RVD and the RDT work well for general smooth sur-
faces when certain properties are met. However, if the sur-
face has nearby sheets, or if different parts of the surface are
too close to each other (e.g., self-intersecting surfaces), the

Fig. 1. (a) An approximate Voronoi Diagram on a surface computed
using discrete clustering. The approximation results in jagged bound-
aries. (b) An exact RVD computed by intersecting a 3D Voronoi diagram
and the input mesh. Note how a point on the backside of the model gen-
erates a disconnected Voronoi region (highlighted by the white circle).
(c) The proposed LRVD has no disconnected regions and high-quality
geometric boundaries.
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RVD and RDT might not be valid any more. In such a case, a
cell of the RVD might have multiple connected components,
which makes the topology of the dual RDT inconsistent
with the surface S. A 2D example of this problem is illus-
trated in Fig. 2b.

2.3 The Localized Restricted Voronoi Diagram

To address the topological inconsistency problem caused by
the RVD, we introduce the concept of the localized
restricted Voronoi diagram. The LRVD is defined in an
intrinsic manner by using the Euclidean metric instead of
using the geodesic metric.

Given an input surface S and a set of points fxigni¼1 sam-

pled on S, the LRVD V0
jS is defined as a tuple of localized

restricted Voronoi cells (LRVCs) fV0
ijSgni¼1, such that the fol-

lowing properties are fulfilled:

� The generating point xi is inside V
0
ijS for each V0

ijS .
� Each fV0

ijSg is connected.
� At the boundary of a pair of neighboring cells V0

ijS
and V0

jjS , the Euclidean distance between the gener-

ating points xi and xj to any boundary point has to
be identical.

� Two cells can intersect only at their boundaries.
� The union of the cells covers the input surface, i.e.,S

i¼1::nV
0
ijS ¼ S.

In simple cases, the LRVD is equal to the RVD (if there are no

disconnected cells in the RVD). Otherwise, the LRVD can be

unique (if there is only one way to redistribute parts of the dis-

connected cells from the RVD to its neighboring cells). In

complex cases, multiple LRVDs may exist, e.g., if the number

of samples is too small for a surface with a complicated geome-

try, each sample might generate multiple disconnected RVCs.

In such cases, there are multiple ways to reassign the discon-

nected cells. However, in the next section, we present a practi-

cal algorithm for computing a unique LRVD that fulfills the

above properties.

The dual of the LRVD is called the localized restricted
Delaunay triangulation. A 2D example of the LRVD/LRDT
is illustrated in Figs. 2c and 2d. We refer readers to [11] and
[25] for a theoretical analysis of the topological validity of
the intrinsic Delaunay triangulation on a manifold. Note
that the word “localized” has also been used in [27] for
other purposes.

2.4 Extension to the Power Diagram

If we change the Euclidean distance with the power dis-
tance dP ðx;wx ; y;wyÞ ¼ kx� yk2 � wx � wy (where wx;wy are
the weights of points x; y, respectively), then the concepts of
the RVD and the RDT can be generalized to the restricted
power diagram and the restricted regular triangulation
(RRT), respectively [21]. Similarly, the LRVD and LRDT can
also be generalized to the localized restricted power dia-
gram (LRPD) and the localized restricted regular triangula-
tion (LRRT), respectively. In the following, we describe the
computation of the LRVD, because the algorithm for the
LRPD is just a simple variation.

3 LRVD COMPUTATION

In this section, we introduce an algorithm for computing the
LRVD. The inputs of our algorithm are a surface S and a set
of sample points X ¼ fxigni¼1 on the surface. S is assumed to
be a two-manifold triangular mesh, with or without bound-
aries, that consists of a set of triangles T ¼ ftjgmj¼1. The out-

put of the LRVD computation is a collection of LRVCs

fV0
ijSgni¼1. Each LRVC V0

ijS is a collection of connected poly-

gons. Each polygon is either a triangle of the input mesh or
part of a triangle that is clipped by bisecting planes between
xi and the neighboring samples of xi that are incident to the
triangle. In order to simplify the algorithm description, we
assume that the number of triangles is much larger than the
number of samples, i.e., m � n, and that each triangle con-
tains at most one sample point. Later, we describe why the
proposed algorithm works well for general cases in practice.

Recall that the RVD is defined as the intersection of the
3D Voronoi diagram and the mesh surface. The key prob-
lem is to identify the incident Voronoi cells for each mesh
triangle and compute their intersection. We say that a trian-
gle is incident to a Voronoi cell if a triangle is partially con-
tained in the Voronoi cell. Fig. 3 shows an example of the
RVD and the RDT on a mesh surface. There are three types
of vertices in the RVD: (a) the original mesh vertices; (b) the
intersections of a bisecting plane and a mesh edge, and (c)
the intersections of a Voronoi edge and a mesh triangle.
Each type (c) vertex of the RVD is dual to a triangle in the
RDT. The similarity between the RVD and LRVD is that the
cell boundaries are computed as intersections between
mesh triangles and bisecting planes. The difference between
RVD and LRVD is that the number of sample points that

Fig. 2. Two-dimensional illustration of RVD/RDT and LRVD/LRDT. The yellow dots are sample points on the curve. (a) The RVD has disconnected
RVCs in nearby sheet regions if the sampling density does not meet the �-sampling property (see the black arrows). (b) The dual RDT is not homeo-
morphic to the input curve. (c) LRVD of our method and (d) a valid LRDT.
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can contribute bisecting planes is limited locally to eliminate
disconnected cells. Therefore, both the RVD and LRVD
computations need to find the incident cells for each input
triangle tj and clip the triangle with respect to the bisecting
planes. However, the main difference is that we need to
compute the local validity of cells via a region-growing
approach instead of via the global intersection.

3.1 Algorithm Overview

We use the following key observations about the structure
of the LRVD in our algorithm. The outer boundary of a valid
LRVC consists of one or multiple closed loops that consist of
a set of simple connected segments. The end points of the
segments are type (b) or (c) vertices as shown in Fig. 3.

Each segment is the intersection of a bisecting plane and
a mesh triangle. The left side of Fig. 4 shows such an exam-
ple. When a boundary loop of the LRVC crosses a type (c)
vertex, it changes the underlying bisecting plane but still
lies inside the same mesh triangle. When a boundary loop
crosses a type (b) vertex, it changes the containing mesh tri-
angles but keeps the same bisection plane. This case helps
us to design a simple test of the local correctness of the
LRVD. If two triangles share a type (b) vertex on a common

edge, then these two neighboring triangles are incident to
the same two Voronoi cells. Note that an RVC can be
bounded by multiple loops (see Fig. 13 for examples).

Based on the observations above, we propose a three-
step algorithm for the LRVD computation. In the first step,
we initialize the cells by assigning a cell label to each mesh
vertex. In the second step, we assign a list of cell labels to
each triangle. The triangles with more than one label
assigned are set as active. In the third step, the active trian-
gles are clipped by the incident bisecting planes. Then, the
local boundary configuration is tested. If found invalid, the
boundary is propagated to neighboring triangles. The third
step is repeated until there remains no active triangle (as
shown in Fig. 6). We detail these steps next.

3.2 Initial Cell-to-Vertex Assignment

The goal of this step is to construct approximate Voronoi
cells by assigning an initial Voronoi cell label to each mesh
vertex. This assignment is approximate. We follow the
assignment algorithm from Cohen-Steiner et al. [28] by
replacing the L2;1 metric with the L2 metric, which pre-
serves the connectivity of each Voronoi cell. Figs. 5a and 5b
illustrate this algorithm step.

A priority queue Q is used for this assignment step. Q is
initialized by an initial set of vertex-cell pairs ðvj ; xiÞ. The
Euclidean distance kvj ; xik is used as the priority of the
queue elements. Smaller distances have higher priority.
Additionally, each vertex has a flag assigned (initialized
with false) that indicates if the assignment is finished.

We first traverse the input triangles that contain a sample
point xi. For each such triangle, we create three vertex-cell
pairs for its vertices and push them into Q. For this assign-
ment, the cell induced by xi is used, even though that might
not be the closest sample point to a vertex. After initializa-
tion, the highest priority vertex-cell pair from Q is processed

Fig. 4. Illustration of the structure of RVCs. The boundary segments con-
sist of intersections of bisecting planes and mesh triangles.

Fig. 5. Given an input mesh and a set of samples (left), the sample points
are first assigned to a cell (middle). Grouping of triangles (right): trian-
gles with all vertices assigned to the same region are white; triangles
where the vertices are assigned to different regions are dark gray.

Fig. 6. A 2D Illustration of LRVD computation. (a) The initial active triangle list ft1; t2; t2g and the initial incident cell lists are
Lðt1Þ ¼ fi; j; kg; Lðt2Þ ¼ fj; kg; Lðt3Þ ¼ fj; kg; (b) after one step propagation, cell i is propagated from t1 to t2 and is added to the incident cell list of t2,
such that Lðt2Þ ¼ fi; j; kg; (c) after two iterations, cell i is added to t3’s incident cell list, and Lðt3Þ ¼ fi; j; kg.

Fig. 3. An example of the RVD (left), a zoom-in (middle), and the RDT
(right) on a sphere.
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until Q is empty. Processing a pair ðvj; xiÞ consists of the fol-
lowing steps: we first check whether or not vj is assigned to a
cell. If not, the vertex vj is assigned to the cell of xi and the
assignment flag is set to true. Then, we traverse the neighbor-
ing vertices fvj;kg of vj. If a neighboring vertex vj;k is not
assigned with any cell, then we push the new pair ðvj;k ; xiÞ
into Q. This process is repeated until Q is empty.

3.3 Initial Cell-to-Triangle Assignment

The goal of this step is to assign an initial set of cells to
each mesh triangle tj and to build a list of active triangles.
We maintain a list Ltj to store the indices of potentially

incident cells for each active triangle tj. We first traverse
each input triangle tj and add the cell indices of three ver-
tices of tj to the list Ltj . Note that there is a special case

that we have to consider separately: a triangle t contains a
sample point xi , but none of t’s vertices is assigned to the
ith cell. In this case, we also add i to t’s list Lt. We then set
to be active all triangles that have more than one cell
assigned to them. At the end of this step, each triangle is
assigned one to four cells that are potentially active. This is
correct if the assumption that each triangle can contain at
most one sample point holds.

3.4 Local Propagation

First, each triangle ti is split into jLti j convex polygons
fCðti; kÞg. Each polygon Cðti; kÞ is associated with the corre-
sponding LRVC of sample xk and describes the part of the
triangle that should be assigned to cell k. Since the list Lti is

only approximate, the splitting algorithm is designed to
result in empty polygons for all cells 2 Lti that are not inci-

dent to the triangle. The splitting algorithm works as fol-
lows. For each cell k 2 Lti the polygon is computed by

clipping the triangle with all bisecting planes between xk
and all xl with l 2 Lti ; l 6¼ k.

Fig. 6 (left) shows a simple example. Next, we check the
consistency of the bisecting plane between each pair of
neighboring triangles. The convex polygons are again
defined as type (a), (b), and (c) vertices as defined before.
There is a bisecting plane generating each type (b) vertex (a
vertex on an edge of the mesh triangle). We check that the
two cell indices generating each such bisecting plane are
also present in the cell list of the neighboring triangle and
mark the triangle as active. This step is repeated until no
active triangle remains. This algorithm always converges in
a finite number of steps. Fig. 7 shows the LRVD computa-
tion process on a sphere.

3.5 Extensions

Here, we briefly discuss extensions and specialized cases. If a
triangle tj contains more than one sample point, the algo-
rithm can simply be extended by adding all of these sample
points to the list Ltj in step 2 of the algorithm. To extend the

algorithm to power diagram computation, we simply change
the Euclidean distance to the power distance. The power dia-
gram requires each sample point to have a weight (equiva-
lentlywhere theweight is the square of the sampling radius).

3.6 Implementation

We use the symbolic representation for RVD vertices as pro-
vided in [8]. We use exact predicates [29] during the clip-
ping process to avoid numerical issues. This is a standard
method to ensure robustness of geometric algorithms and it
is also implemented in CGAL [30].

4 APPLICATIONS

In this section, we present two applications that can benefit
from the proposed LRVD concept, centroidal Voronoi tes-
sellation and maximal Poisson-disk sampling.

4.1 Centroidal Voronoi Tessellation of Surfaces

Centroidal Voronoi tessellation [1] builds on a special type
of Voronoi diagram that requires each generater to coincide
with the centroid of its Voronoi cell. CVT attempts to mini-
mize an energy function (Eq. 1) that describes the quantiza-
tion noise power [31]:

F ðXÞ ¼
Xn
i¼1

Z
VijS

rðxÞkx� xik2 dx; (1)

where rðxÞ is a density function defined over the surface.
The CVT algorithm starts with an initial set of points
distributed on the surface and then iteratively moves the
points according to the following two steps. 1) Compute
a Voronoi diagram of the point set on the surface. The
current state of the art uses one of the Voronoi diagram
versions described in Section 1.1 with RVD being the
current best choice for remeshing quality. 2) Move the
points on the surface in order to minimize (Eq. (1)). A
modern version of CVT uses a quasi-Newton method
[32] that was shown to have better convergence than the
original Lloyd relaxation.

The most difficult and time-consuming part in comput-
ing a CVT on a mesh surface is the computation of the RVD
in each iteration. Our improved CVT algorithm simply

Fig. 7. LRVD computation on a sphere. (a)-(d) show the effect of the
local propagation algorithm.
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replaces the RVD with the proposed LRVD. In the results
(Section 5), we show how this enables us to handle more
complicated inputs, especially models with nearby sheet
structures and remeshings with low resolution.

4.2 Maximal Poisson-Disk Sampling on Surfaces

Poisson-disk sampling is a way to generate point-sets with
many desirable properties [33]. Given a surface S, a minimal

sampling radius rmin, a density function rðxÞ, and a function
rðxÞ that maps rðxÞ to a sampling radius, a Poisson-disk
sampling algorithm randomly generates points on the sur-
face until it is fully covered by disks centered at the points.
A typical Poisson-disk set should satisfy three properties: 1)
The unbiased sampling property; 2) the minimal distance
property; and (3) the maximal sampling property. A sam-
pled point set that satisfies all three properties is called
Maximal Poisson-disk sampling.

In this paper, we build on the MPS algorithm of Yan and
Wonka [21] that proceeds in the following steps: 1) Subdivide
the bounding box of the input mesh into a regular 3D grid.
The grid size is derived from theminimal sampling radius. 2)
Build an initial point set by performing dart throwing on the
surface using the 3D grid to check for conflicts. A dart that is
conflictedwith an existing point is rejected. 3) After toomany
consecutive rejections (300 in our implementation) are
observed, the algorithm extracts uncovered regions, called
gap primitives. The restricted power diagram is used for gap
computation. The gap primitives are extracted by subtracting
each 3Ddisk ðxi; riÞ from the restricted power cellVijS . 4) Per-
form dart throwing in the extracted gap primitives. 5) Iterate
steps 3 and 4 until nomore points can be placed.

We propose three modifications to this algorithm. First,
in the initialization step 1), we additionally pre-process
the input mesh by recursively splitting its long edges. For

Fig. 8. Comparison of the RVD (left) with the LRVD (right). Thirty points
are sampled on the input mesh, and the disconnected components of the
RVD are highlighted. More results can be found in the supplemental
materials, which can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TVCG.2014.2330574.

Fig. 9. Timing comparison.

Fig. 10. Comparison of CVT-based remeshing by using RVD (top) and LRVD (bottom). The number of vertices are 3k, 1k, 500, and 300 from left to
right. The non-manifold and boundary edges are shown in red. See supplemental materials, available online, for a complete set of results.
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each mesh edge whose length is longer than rmin, the
two neighboring triangles are split into four. The split-
ting step terminates when all the edge lengths are smaller
than rmin. This ensures that each triangle can contain at
most one sample point. Second, in the dart-throwing
steps 2) and 4), we modify the conflict check by using the
triangles instead of the 3D grid. Each triangle is equipped
with a list that stores the indices of the disks that fully
cover the triangle. In the dart-throwing step, each time a
new dart ðxi; riÞ is randomly generated in triangle tj, we
first collect a set of neighboring triangles starting from tj
by region growing. Neighboring triangles are recursively
added to the set until the disk ðxi; riÞ does not intersect
with a neighboring triangle. Then, we conduct a conflict
test between the new dart and all previously sampled
disks that cover a triangle in the triangle set. Third, we
compte gaps using the LRVD instead of the RPD in step
3) of the algorithm.

5 EXPERIMENTAL RESULTS

We present experimental results of the LRVD algorithm, as
well as sampling/remeshing results based on the CVT and
the MPS framework, respectively. The results are tested on
an Intel X5680 Dual Core 3.33 GHz CPU with 4 GB memory
and a 64-bit Windows 7 operating system.

Quality. We first show several examples of the LRVD
computation on objects with nearby sheet structures in
Fig. 8. We randomly sample 30 points on each input mesh

and compute the RVD and LRVD. Our approach generates
valid RVCs even when the number of the samples is
extremely small, while the RVD generates many discon-
nected cells. We note that if the sampling density meets the
�-sampling property, then the results of the LRVD are the
same as those of the RVD.

Efficiency.We perform two tests to compare the efficiency
of the LRVD and RVD methods. In the first experiment, we
use a sphere with 20 k triangles as input, and gradually
increase the number of samples from 2 k to 100 k. The tim-
ing comparison of the two methods is shown in Fig. 9 (left).
In the second experiment, we fix the number of samples to
10k and gradually increase the resolution of the input mesh
from 500 to 140 k triangles. The timing curves are shown in
Fig. 9 (right). The new method is nearly two times faster,
including the guarantee that the cells are valid.

CVT/Remeshing.We conduct two tests for comparing the
remeshing quality. We compare our approach with previ-
ous work in terms of the triangle quality QðtÞ ¼ 6ffiffi

3
p jtj

pðtÞhðtÞ,
(where jtj is the area of t, pðtÞ is the half-perimeter of t and
hðtÞ is the longest edge length of t [34]), min/max angles
umin=umax, the percentage of the angles that are less than 30
degrees (<30o), and the Hausdorff distance (Hdist).

In the first test, we use the same decreasing number of
samples to compare with the previous CVT-based approach
using the RVD [7]. The purpose of this test is to show that the
LRVD is important for remeshing with a smaller number of
vertices. We first run RVD-based CVT optimization, with a

TABLE 1
Progressively Remeshing the Elk Model with a Decreasing

Number of Vertices

#V Alg. Qmin umin=umax <300 Hdist

4,000 RVD 0.62 31.6/101.2 0 0.42%
LRVD 0.61 32.5/100.3 0 0.42%

3,002 RVD 0.50 20.0/112.1 0.25% 0.57%
LRVD 0.53 24.3/109.3 0.22% 0.52%

2,019 RVD 0.49 20.1/111.9 1.09% 0.68%
LRVD 0.55 26.1/107.9 0.06% 0.55%

1,051 RVD 0.41 16.9/116.7 2.51% 0.71%
LRVD 0.57 26.4/103.0 0.40% 0.71%

873 RVD 0.40 16.8/114.5 3.06% 1.16%
LRVD 0.50 21.8/111.0 0.91% 0.76%

516 RVD 0.32 11.9/102.5 3.06% 1.67%
LRVD 0.41 16.7/111.9 1.65% 1.08%

All remeshings have a small number of vertices and are therefore very chal-
lenging for the current state of the art. We evaluate the meshing quality
using several metrics described in the text.

TABLE 2
Remeshing Quality Comparison with Previous Approaches.

Model Alg. #V Qmin umin=umax <300 Hdist

Ellp. RVD 619 0.34 14.6/133.1 19.3% 0.70%
ACVD 400 0.46 21.4/121.0 0.75% 1.92%
LRVD 400 0.66 37.1/96.43 0 0.45%

Elk RVD 2.3k 0.23 8.16/131.1 1.24% 0.63%
ACVD 2.0k 0.10 6.03/167.3 6.83% 0.93%
LRVD 2.0k 0.52 22.2/108.6 0.28% 0.62%

Feline RVD 4.3k 0.07 2.57/162.2 3.33% 0.44%
ACVD 4.0k 0.39 24.4/128.7 0.51% 0.66%
LRVD 4.0k 0.51 28.4/113.9 0.25% 0.54%

Knot RVD 2.2k 0.39 15.7/107.3 0.22% 0.75%
ACVD 2.0k 0.48 28.2/117.9 0.07% 1.09%
HCVT 2.0k 0.51 31.4/110.8 0 1.04%
LRVD 2.0k 0.53 34.7/99.75 0 0.87%

#V is the number of vertices in the remeshing. While the RVD method starts
out with the same number of vertices as the other methods, new vertices are
inserted during the optimization to ensure the topological correctness. The best
results are highlighted in bold font.

Fig. 11. Maximal Poisson-disk sampling on a self-intersecting surface. (a) Uniform sampling/remeshing of [21]. The red vertices are non-manifold
near self-intersection regions. (b) Uniform sampling/remeshing with LRVD. (c) Adaptive sampling/remeshing with LRVD, and right: zoom-in view.
The non-manifold vertices are shown in blue and the non-manifold and boundary edges are shown in red.
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Fig. 12. Comparison of CVT-based remeshing. From top to bottom are flat ellipsoid, Elk, Feline and Knot models. The top three rows show the results
of ACVD, RVD and LRVD. The last row shows the cut-view of results generated by ACVD, HCVT, RVD and our result. The quality comparison of
these results is given in Table 2.
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decreasing number of sampled points from 4 k to 300. Once
the RVD-based CVT optimization converges, we check the
disconnected RVCs and insert a new vertex for each con-
nected RVC component as suggested by [8]. Next, we run
LRVD-based CVT optimization with the same number of
vertices as the output of RVD-based CVT. The Elk model is
used for this test. Selected results of both methods are shown
in Fig. 10. Results show that the RVD-based approach gener-
ates non-manifold geometry in regions containing nearby
sheets for all models except for the remeshing with 4 k verti-
ces, while our LRVD-based approach always generates valid
results, even for themodel with 516 vertices. The comparison
of the remeshing quality is given in Table 1. When the RVD-
based CVT has enough samples, bothmethods generate sim-
ilar results (e.g., 4 k points). However, our meshing quality is
clearly better for low-resolutionmodels.

In the second test, we compare several low-resolution
remeshing results with three other competing methods. We
again compare to Yan et al. [7], but this time we use the
original number of vertices that the algorithm started with.
This results in Yan et al. [7] having a higher number of verti-
ces than the other methods have. We also compare our
approach with the discrete clustering-based method, called
approximated centroidal Voronoi diagram (ACVD) [6] and a
recent parameterization-based approach hyperbolid centroidal
Voronoi tessellation (HCVT) [35]. This approach can generate
a remeshing with a correct topology without inserting new
vertices. However, the Hausdorff distance is larger than the
others because of the distortion introduced by the parameter-
ization. Fig. 12 shows the comparisons with other methods.
The comparisons are listed in Table 2. More comparisons are
provided in the supplemental materials, available online.

MPS/remeshing. The MPS algorithm presented in this
paper has three advantages compared with the previous
approach [21]. First, we do not use a 3D voxel grid and there-
fore the memory consumption is dramatically reduced. Sec-
ond, we use the LRPD instead of the restricted power
diagram for gap detection and gap filling, which enables us

to sample input surfaces with fold-overs or even self-inter-
sections. Fig. 11 shows the results of MPS on a self-intersect-
ing surface. Our algorithm can generate correct results.
Third, the computation time is reduced as shown in the fol-
lowing comparisons.We compare the timing of ourmodified
MPS algorithm with [21]. First, we use a sampling radius
r ¼ 0:005 for uniform sampling (the input models are nor-
malized into the unit cube before sampling). The timings
include the initialization, initial dart-throwing and gap-fill-
ing for both methods. The comparison shows that the dart-
throwing stage of the newmethod is slower for uniform sam-
pling but faster for adaptive sampling. The overall speed is
around two times faster for uniform sampling and three to
four times faster for adaptive sampling. The timing compari-
son is given in Table 3.

Limitation. One limitation of the LRVD is that the connec-
tivity information of the input mesh is required. We cannot
handle triangle soups or noisy data with missing geometry
or cracks.

Although the proposed LRVD technique works well for a
wide range of inputs, we do not have a theoretical guaran-
tee of the validity of the remeshing. For example, we cannot
obtain a valid remeshing if the input contains tubular struc-
tures when the number of samples is small. In such a case,
more samples are required to satisfy the �-sample property.
Fig. 13 shows examples of failed remeshing.

6 CONCLUSIONS

We have presented a simple yet efficient approach for com-
puting the localized restricted Voronoi/power diagrams on
mesh surfaces. The new approach generates Voronoi cells
on surfaces with connected components, which is very use-
ful for CVT-based or MPS-based remeshing. We believe
that many other applications can also benefit from this sim-
ple technique. In the future, we would like to develop a
GPU-implementation to further improve the efficiency .
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