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Abstract Most existing image classification algorithms
mainly focus on dealing with images with only “object” con-
cepts. However, in real-world cases, a great variety of images
contain “verb–object” concepts, rather than only “object”
ones. The hierarchical structure embedded in these “verb–
object” concepts can help to enhance classification. How-
ever, traditional feature representation methods cannot uti-
lize it. To tackle this problem, we present in this paper a
novel approach, called inductive hierarchical nonnegative
graph embedding. By assuming that those “verb–object”
concept images which share the same “object” part but
different “verb” part have a specific hierarchical structure,
we integrate this hierarchical structure into the nonnegative
graph embedding technique, together with the definition of
inductive matrix, to (1) conduct effective feature extraction
from hierarchical structure, (2) easily transfer each new test-
ing sample into its low-dimensional nonnegative representa-
tion, and (3) perform image classification of “verb–object”
concept images. Extensive experiments compared with the
state-of-the-art algorithms on nonnegative data factorization
demonstrate the classification power of proposed approach
on “verb–object” concept images classification.
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1 Introduction

Image understanding and classification applications have
been wildly researched for decades. Most existing image
classification methods focus on handling images with only
“object” concepts [2,4,13,14], such as “horse”, “bike” and
“tree” etc. However, in real-world, a huge number of images
contain “verb–object” concepts, such as “ride horse”, “repair
boat”, and “cut tree”, rather than only “object” concepts.
These kinds of “verb–object” concept images could repre-
sent more abundant semantic meaning while having much
smaller size comparing with videos [6,7,22]. Hence, research
on “verb–object” concept images, like image classification, is
significant and essential. However, by using traditional image
representation techniques, each “verb–object” concept could
be treated as a whole “object”. The embedded information
in it will be ignored. In such a way, the classification perfor-
mance would be discounted.

It is observed that, some concepts, like “ride horse” and
“feed horse”, “repair boat” and “row boat”, “cut tree” and
“plant tree”, are sharing the same “object” part. Figure 1
illustrates several images under a set of “verb–object” con-
cepts sharing same “object” but different “verb” parts. Intu-
itively, this kind of set of concepts very likely share a common
latent information or pattern in images, which can be help-
ful for image classification. Motivated by these observations,
we try to more effectively interpret “verb–object” concepts
images. We assume that those “verb–object” concept images
which share the same “object” but different “verb” part have
a specific hierarchical structure, which can be utilized for
image classification. By applying this hierarchical structure,

123



1648 C. Sun et al.

Fig. 1 An illustration of a set of “verb–object” concept images

one “verb–object” concept can be used not only to separate
a set of concepts from other concepts which have different
“object” parts, but also to discriminated itself from concepts
in this set by the different “verb” parts. For example, images
of “carry bike” can help to discriminate images of “repair
bike” from images of “feed horse”, while itself should be
classified from images of “repair bike”. We regard this struc-
ture as hierarchical structure and utilize it in classification.

Our previous work, hierarchical nonnegative graph embed-
ding (HNGE) [19], has utilized hierarchical structure together
with nonnegative graph embedding algorithm to preform
“verb–object” concept image classification, and has achieved
a remarkable classification accuracy. In that work, we recon-
structed the testing sample with the training samples and
then used the derived reconstruction coefficients to combine
the encoding coefficient vectors of training samples. How-
ever, in its subsequent work, we found that it suffered from
an out-of-sample extension problem, that is, how to easily
and accurately transform each new testing sample into its
low-dimensional nonnegative representation. This problem
could also be described as how to obtain the encoding coeffi-
cient vector for the feature vectors of testing samples, without
increasing computational cost or violating the basic nonneg-
ative assumption.

To tackle this out-of-sample extension problem, in this
paper, we reformulate the problem, extend the HNGE, and
propose a new algorithm, named inductive hierarchical non-
negative graph embedding (IHNGE). This approach could
not only combine hierarchical structure with nonnegative
graph embedding to preform effective “verb–object” con-
cept image classification, but also propose a conventional and
effective way for out-of-sample extension in classification.
We conduct experiments on a web image corpus composed

of 9000 images on 45 “verb–object” concepts. The experi-
mental results demonstrate the effectiveness of our approach.

The contributions of our work can be summarized into
threefold:

– We utilize the hierarchical information to extend the non-
negative graph embedding, which is proved to be suitable
for image classification within hierarchical structure.

– Based on the HNGE, we propose the IHNGE, which brings
in the inductive matrix to deal with the problems of high
computational cost and nonnegative assumption satisfac-
tion within the testing procedure in image classification.

– We use the IHNGE to tackle the classification of “verb–
object” concept images, and have obtained a remarkable
classification accuracy.

The rest of the paper is organized as follows: in Sect. 2,
we introduce the related work. We elaborate our IHNGE and
its formulation in Sect. 3. Experimental results are reported
in Sect. 4. Finally, we give conclusions in Sect. 5.

2 Related work

Nonnegative and sparse representation techniques have been
well researched in recent decades to find nonnegative basis of
data features with few nonzero elements [9]. A pioneer work
for such a purpose is nonnegative matrix factorization (NMF)
[12]. It decomposes the data features matrix as the arithmeti-
cal product of two matrices which possess only nonnegative
elements. Generally, NMF belongs to the techniques of fea-
ture extraction and dimensionality reduction, as it results in
a dimension-reduced representation of the primal data fea-
tures [16]. In recent years, NMF [8] and its variants, localized
NMF (LNMF) [15], convex NMF (CNMF) [3], and Fisher
NMF [23], have been proved effective in many applications.
Some work extended and applied NMF in many different
fields, such as face and object recognition [18,27], biomed-
ical applications [5,10], color science [17], and so on.

Recently, beyond the original nonnegative data factoriza-
tion, Yan et al. [24] proposed a graph embedding frame-
work which provided a unified formulation for dimension-
ality reduction, and possessed the algorithmic properties in
convergency, sparsity, and classification power. Yang et al.
[25] extended this work and proposed an approach, named
nonnegative graph embedding (NGE), to obtain customized
nonnegative data factorization by simultaneously realizing
the specific purpose characterized by the intrinsic and penalty
graphs. This work was further refined by Wang et al. [20]
with the efficient multiplicative updating rule, namely mul-
tiplicative nonnegative graph embedding (MNGE). MNGE
achieved a satisfactory performance, however, it lacked the
direct way to obtain the encoding coefficient vector for the
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Inductive hierarchical nonnegative graph 1649

new testing sample. Our previous work [19] HNGE also suf-
fered from this out-of-sample extension problem, which is
solved by IHNGE in this paper.

A similar work was proposed by Zhang et al. [28], which
tried to simultaneously learn a set of classifiers for “verb–
object” concepts in the same group. However, in this paper,
we do not focus on designing classifiers, but focus on feature
extraction and representation, which refer to nonnegative and
sparse representation techniques.

Besides, our work seems to be similar to human action
recognition, like [26], as “verb–object” concepts look like
actions. However, the main difference between our work
and human action recognition is that human action recog-
nition treats every action as unrelated to each others while
our IHNGE considers “verb–object” concepts having hier-
archical structure to explore a new layer of linkage among
actions. Moreover, in human action recognition, an action
does not always have an object, while IHNGE focuses on
handling images containing both “verb” and “object”.

3 Inductive hierarchical nonnegative graph embedding

In this section, we elaborate IHNGE and formulate the prob-
lem within the framework of nonnegative data decomposi-
tion.

Before introducing the inductive nonnegative graph embed-
ding, we first list the notations used in this paper here. Let
X = [x1, x2, . . . , xN ] denote the data sample set, in which
xi ∈ R

k denotes the feature descriptor of the i th sample and
N is number of total samples. Here we assume that the matrix
X is nonnegative. Let m be the dimension of the desired
dimension-reduced feature space, the task of our data factor-
ization is to derive a nonnegative basis matrix W ∈ R

k×m

and a nonnegative encoding coefficient matrix H ∈ R
m×N ,

while the data matrix X can be approximated as the product
of matrices W and H . In this paper, we utilize the following
rule to facilitate presentation: for any matrix A, Ai denotes
the i th row vector of A, its corresponding lowercase ver-

sion ai denotes the i th column vector of A. Ai j denotes the
element of A at the i th row and j th column, and Ap×q means
that A has p rows and q columns.

3.1 Motivation

Practically, we believe that the “verb–object” concept images
contain hierarchical structure. Figure 3 illustrates the hierar-
chical structure in “verb–object” concept images. As shown,
we divide whole “verb–object” concepts into two levels. On
the first level, those “verb–object” concepts containing the
same “object” are treated as a class, here “class” is as the
same meaning as “group” or “set” mentioned above. On the
second level, those “verb–object” concepts in the same class
on the first level are divided into sub-classes, according to
the different “verb” parts they have. Although the final aim
of our classification is to discriminate all the sub-classes on
the second level, we do not directly perform classification on
only second level. Instead, as shown in Fig. 2, on one hand,
we enlarge interclass distance for classes on the first level.
On the other hand, we reduce intraclass distance and enlarge
interclass distance for sub-classes on the second level. These
two steps are performed simultaneously while the one on the
first level will compensate the one on the seconde level and
improve the performance on the final “verb–object” concept
classification.

Figure 2 shows an illustration of this procedure. Suppose
“repair car”, “drive car”, “wash face” and “make up face” are
four illustrative sub-classes on the second level in our dataset,
while “repair car” and “drive car” belong to the same class
“car” on the first level and “wash face” and “make up face”
belong to another same class “face” on the first level. Our
goal is to classify four sub-classes “repair car”, “drive car”,
“wash face” and “make up face”. However, classification in
our IHNGE is not directly conducted by only treating these
four as different classes. As Fig. 2 shown, for an illustrative
sample in sub-class “repair car”, on one hand, we treat it as
a sample in class “car” on the first level and tend to separate
it from all samples in class “face” by enlarging the inter-

Fig. 2 Intraclass distance and interclass distance on two levels
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Fig. 3 An illustration of hierarchical structure

class distance on first level. In this step, all samples in anther
sub-class “drive car” but same class “car” will contribute to
classify this illustrative sample. On the other hand, we tend to
separate it from those samples in same class “car” but differ-
ent sub-class “drive car”, by reducing the intraclass distance
on second level and enlarging interclass distance on second
level. Specifically, these two steps are integrated into the our
IHNGE model and performed simultaneously in hierarchical
graph embedding process.

To achieve our goal, we make use of inductive nonnega-
tive data decomposition together with HNGE. The target of
inductive nonnegative data decomposition and the purpose
of HNGE coexist harmoniously and do not mutually com-
promise, while satisfying those distance requirements in two
levels. We elaborate each part as well as the unified one in
the following.

3.2 Objective for inductive nonnegative data decomposition

Nonnegative matrix factorization (NMF) factorizes the data
matrix X into one lower-rank nonnegative basis matrix W
and one nonnegative coefficient matrix H . Its usual objec-
tive function is shown as follows, which was also be utilized
in [19]:

min
W,H
‖X −W H‖2F , s.t. W, H ≥ 0, (1)

The most important improvement of IHNGE different
from HNGE [19] is that, IHNGE imposes the extra constraint
that the coefficient of each data point lies within the subspace
spanned by the column vectors of an inductive matrix. The-
oretically, based on the coefficient matrix H , we assume that
the coefficient vector hi can be derived by linear transfor-
mation from the feature descriptor of sample xi , shown as
follows:

hi = Cxi (2)

or:

H = C X (3)

where C ∈ R
m×k indicates the inductive matrix which

transforms the k-dimensional feature vector into the m-
dimensional feature vector. Then the objective function of
NMF in (1) can be refined as:

min
W,C
‖X −WC X‖2F , s.t. W,C ≥ 0, (4)

Based on this assumption, we can easily obtain the encod-
ing coefficient vector hy for a new testing sample y. After
getting the inductive matrix C , we have:

hy = Cy (5)

The inductive matrix C can ensure the nonnegative ability
of vector hy required by NMF, while avoiding increasing
computational cost when testing new samples.

3.3 Objective for hierarchical nonnegative graph
embedding

As proposed by Yan et al. [24], most dimensionality reduc-
tion algorithms can be explained within a unified frame-
work, called graph embedding [24]. The purpose of graph
embedding-based algorithm is characterized by the so-called
intrinsic and penalty graphs. In this paper, we formulate our
IHNGE within the general graph embedding framework [24].

Specifically, to serves for graph embedding, we first divide
the coefficient matrix H into two parts, namely,1

H =
[

H1

H2

]
(6)

where H1 = [h1
1, h1

2, . . . , h1
N ] ∈ R

d×N , d < N , denotes
the desired low-dimensional representations for the train-
ing data on parent classes, and H2 = [h2

1, h2
2, . . . , h2

N ] ∈
R
(m−d)×N .
As existing hierarchical structure, we then divide the

matrix H1 into two parts, namely,

H1 =
[

H11

H12

]
(7)

where H11 = [h11
1 , h11

2 , . . . , h11
N ] ∈ R

r×N , r < d, denotes
the desired low-dimensional representations for the training
data on child classes, and H12 = [h12

1 , h12
2 , . . . , h12

N ] ∈
R
(d−r)×N .
Therefore, to clearly reveal the structure, we rewrite

matrix H as:

H =
⎡
⎣

[
H11

H12

]

H2

⎤
⎦ (8)

1 Superscript numbers of matrices, 1, 2, 11, 12, etc., are symbols, not
the power in math.
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Meanwhile, to facilitate presentation, we define matrix H̄2

as the combination of H12 and H2:

H̄2 =
[

H12

H2

]
(9)

where H̄2 = [H̄2
1 , H̄2

2 , . . . , H̄2
N ] ∈ R

(m−r)×N .
Correspondingly, the basis matrix W is also divided as:

W = [
W 1 W 2

]
(10)

and:

W 1 = [
W 11 W 12

]
(11)

where W 1 ∈ R
k×d , W 2 ∈ R

k×(m−d), W 11 ∈ R
k×r and

W 12 ∈ R
k×(d−r).

The combination of W 12 and W 2 is:

W̄ 2 = [
W 12 W 2

]
(12)

where W̄ 2 ∈ R
k×(m−r).

As H = C X , inductive matrix C is also divided as:

C =
[

C1

C2

]
(13)

and

C1 =
[

C11

C12

]
(14)

where C1 ∈ R
d×k , C2 ∈ R

(m−d)×k , C11 ∈ R
r×k and

C12 ∈ R
(d−r)×k .

The combination of C12 and C2 is denoted as:

C̄2 =
[

C12

C2

]
(15)

where C̄2 ∈ R
(m−r)×k .

Let G = {X, S} be an undirected weighted graph with
vertex set X and similarity matrix S ∈ R

N×N . Each element
of the real symmetric matrix S measures similarity between a
pair of vertices. The Laplacian matrix L and diagonal matrix
D of a graph G are defined as:

L = D − S, Dii =
∑
j �=i

Si j , ∀i (16)

Graph embedding generally involves an intrinsic graph G,
which characterizes the favorite relationship among the data
samples, and a penalty graph Gu = {X, Su}, which charac-
terizes the unfavorable relationship among the data samples.
Correspondingly, penalty graph Gu also has its Laplacian
matrix Lu and diagonal matrix Du . In our work, we assume
that the sample data set has two levels. Therefore, there are
an intrinsic graph and a penalty graph on the first level, and
an intrinsic graph and a penalty graph on the second level,
respectively.

Let G = {X, S} be the intrinsic graph on the first level,
Gu = {X, Su} be the penalty graph on the first level,

G̃ = {X, S̃} be the intrinsic graph on the second level, and
G̃u = {X, S̃u} be the penalty graph on the second level. Their
Laplacian matrices and diagonal matrices are L , D, Lu , Du ,
L̃ , D̃, L̃u , and D̃u , respectively.

According to graph embedding, the target of graph pre-
serving on the first level is:

max
H1

∑
i �= j

‖h1
i − h1

j‖2Su
i j (17)

As (W 2, H2) are considered as the complementary space of
(W 1, H1). From the complementary property between H1

and H2, the objective is transformed into:

min
H2

∑
i �= j

‖h2
i − h2

j‖2Su
i j (18)

On the second level, our two targets of graph preserving
are given as:
{

minH11
∑

i �= j ‖h11
i − h11

j ‖2 S̃i j

maxH11
∑

i �= j ‖h11
i − h11

j ‖2 S̃u
i j

(19)

As (W̄ 2, H̄2) are considered as the complementary space
of (W 11, H11). From the complementary property between
H11 and H̄2, the second objective above is transformed into:

min
H̄2

∑
i �= j

‖h̄2
i − h̄2

j‖2 S̃u
i j (20)

3.4 Unified formulation

To achieve the objectives in Eqs. (4), (18), (19), and (20)
which are required for HNGE, we have the unified objective
function as:

min
W,C

∑
i �= j

‖h2
i − h2

j‖2Su
i j +

∑
i �= j

‖h11
i − h11

j ‖2 S̃i j

+
∑
i �= j

‖h̄2
i − h̄2

j‖2 S̃u
i j + λ‖X −WC X‖2F ,

s.t. W,C ≥ 0 (21)

where λ is a positive parameter to balance the two parts for
graph embedding and data reconstruction, and is always set
as 1 empirically.

From the definitions of Laplacian matrix and diagonal
matrix, together with definition in Eq. (3), we have:

∑
i �= j

‖h2
i − h2

j‖2Su
i j = T r(H2Lu H2T

)

= T r(C2 X Lu X T C2T
) (22)∑

i �= j

‖h11
i − h11

j ‖2 S̃i j = T r(H11 L̃ H11T
)

= T r(C11 X L̃ X T C11T
) (23)
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∑
i �= j

‖h̄2
i − h̄2

j‖2 S̃u
i j = T r(H̄2 L̃u H̄2T

)

= T r(C̄2 X L̃u X T C̄2T
) (24)

Furthermore, as W is the basis matrix, it is natural to
require that each column vector of W is normalized, that
is ‖Wi‖ = 1,∀i . But this constraint makes the optimization
problem much more complicated. Hence, we compensate the
norms of the bases into the coefficient matrix and rewrite (22),
(23), and (24) as:

T r(C2 X Lu X T C2T
)⇒T r(E2C2 X Lu X T C2T

ET
2 ) (25)

T r(C11 X L̃ X T C11T
)⇒ T r(E11C11 X L̃ X T C11T

ET
11)

(26)

T r(C̄2 X L̃u X T C̄2T
)⇒T r(Ē2C̄2 X L̃u X T C̄2T

ĒT
2 ) (27)

where the matrix E2 = diag{‖w2
1‖, ‖w2

2‖, . . . , ‖w2
m−d‖},

E11 = diag{‖w11
1 ‖, ‖w11

2 ‖, . . . , ‖w11
r ‖}, and Ē2 = diag

{‖w̄2
1‖, ‖w̄2

2‖, . . . , ‖w̄2
m−d‖}, where wk

i denotes the i th col-
umn vector of matrix W k, k = 1, 2, 11, 22.

By combining equations above, the final objective func-
tion is then reformulated as:

min
W,C

T r(E2C2 X Lu X T C2T
ET

2 )

+T r(E11C11 X L̃ X T C11T
ET

11)

+T r(Ē2C̄2 X L̃u X T C̄2T
ĒT

2 )+ λ‖X −WC X‖2F ,
s.t. W,C ≥ 0 (28)

3.5 Convergent iterative procedure

As the final objective function is biquadratic and generally
there does not exist closed-form solution, we use an iterative
procedure to get the nonnegative solution.

Most iterative procedures for solving high-order optimiza-
tion problems transform the original intractable problem into
a set of tractable sub-problems, and finally obtain the conver-
gence to a local optimum. Our proposed iterative procedure
also follows this philosophy and optimizes W and C alter-
nately.

3.5.1 Optimize W for given C

For a fixed matrix C , the objective function in (28) with
respect to basis matrix W can be rewritten as:

F(W ) = T r(W Q1W T )+ T r(W Q2W T )+ T r(W Q3W T )

+λ‖X −WC X‖2F (29)

where:

Q1 =
[

0 0

0 C2 X Lu X T C2T

]
◦ I,

Q2 =
[

C11 X L̃ X T C11T
0

0 0

]
◦ I,

Q3 =
[

0 0

0 C̄2 X L̃u X T C̄2T

]
◦ I

and Q1, Q2, Q3 ∈ R
m×m , operator ◦ indicates the element-

wise matrix multiplication, I indicates the identity matrix.
We integrate the nonnegative constraints into the objec-

tive function with respect to W , and set ψi, j as the Lagrange
multiplier for constraint Wi, j ≥ 0. Set Matrix �, where
�i, j = ψi, j . Then the Lagrange L(W ) is defined as:

L(W ) = T r(W Q1W T )+ T r(W Q2W T )+ T r(W Q3W T )

+λ‖X −WC X‖2F + T r(�W T ) (30)

By setting the partial derivation of L(W ) with respect to
W as zero,

∂L(W )

∂W
= W (2Q1 + 2Q2 + 2Q3)+ 2λWC X X T CT

−2λX X T CT +� (31)

Along with the Karush–Kuhn–Tucker (KKT) condition [11]
of ψi, j Wi, j = 0, we obtain the following equation:

(W Q1 +W Q2 +W Q3)i, j Wi, j

+ (λWC X X T CT )i, j Wi, j−(λX X T CT )i, j Wi, j =0 (32)

Then we set:

Q1 = Q1+ − Q1−, Q2 = Q2+ − Q2−, Q3 = Q3+ − Q3−
where:

Q1+ =
[

0 0

0 C2 X Du X T C2T

]
◦ I,

Q2+ =
[

C11 X D̃X T C11T
0

0 0

]
◦ I,

Q3+ =
[

0 0

0 C̄2 X D̃u X T C̄2T

]
◦ I

and:

Q1− =
[

0 0

0 C2 X Su X T C2T

]
◦ I,

Q2− =
[

C11 X S̃X T C11T
0

0 0

]
◦ I,

Q3− =
[

0 0

0 C̄2 X S̃u X T C̄2T

]
◦ I
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Equation (32) can be rewritten as:

(W Q1+ +W Q2+ +W Q3+)i, j Wi, j

+(λWC X X T CT )i, j Wi, j

−(W Q1− +W Q2− +W Q3−)i, j Wi, j

−(λX X T CT )i, j Wi, j = 0 (33)

which leads to the following update rule for W :

Wi j ← Wi j
[λX X T CT +W Q1− +W Q2− +W Q3−]i j

[λWC X X T CT +W Q1+ +W Q2+ +W Q3+]i j

(34)

3.5.2 Optimize C for given W

After updating the matrix W , we normalize the column vec-
tors of it and consequently convey the norm to the coefficient
matrix C , namely,

Ci j ← Ci j × ‖wi‖ ∀i, j (35)

wi ← wi/‖wi‖ ∀i (36)

Note that the updating of C and W here will not change
the value of the objective function in (28).

Then based on the normalized W , the objective function
in (28) with respect to C is then rewritten as:

F(C) = T r(C2 X Lu X T C2T
)+ T r(C11 X L̃ X T C11T

)

+T r(C̄2 X L̄u X T C̄2T
)+ λ‖X −WC X‖2 (37)

Let R1 = [0(m−d)×d , I(m−d)×(m−d)], R2 = [Ir×r , 0r ×
(m − r)], R3 = [0(m−r)×r , I(m−r)×(m−r)]

F(C) can be rewritten as:

F(C) = T r(R1C X Lu X T CT R1T
)

+T r(R2C X L̃ X T CT R2T
)

+T r(R3C X L̃u X TCTR3T
)+λ‖X−WC X‖2 (38)

We integrate the nonnegative constraints into the objec-
tive function with respect to C , and set φi, j as the Lagrange
multiplier for constraint Ci, j ≥ 0. Set Matrix �, where
�i, j = φi, j . Then the Lagrange L(C) is defined as:

L(C) = T r(R1C X Lu X T CT R1T
)

+T r(R2C X L̃ X T CT R2T
)

+T r(R3C X L̃u X T CT R3T
)+ λ‖X −WC X‖2

+T r(�CT ) (39)

Then the partial derivation of L(C) with respect to C is:

∂L(C)

∂C
= 2R1T

R1C X Lu X T + 2R2T
R2C X L̃ X T

+2R3T
R3C X L̃u X T − 2λW T X X T

+2λW T WC X X T +� (40)

Algorithm 1
1: Input: Image representation matrix X , graphs G,Gu , G̃, G̃u

2: Initialization: Randomly choose W 0,C0 as nonnegative matrices.
3: For t = 0, 1, 2, . . . , Tmax , Do

1) For given C = Ct , update matrix W as:

Wi j ← Wi j
[λX X T CT+W Q1−+W Q2−+W Q3−]i j

[λWC X X T CT+W Q1++W Q2++W Q3+]i j

∀i, j
2) Normalize the column vectors of W t+1

Ci j ← Ci j × ‖wt+1
i ‖ ∀i, j

wt+1
i ← wt+1

i /‖wt+1
i ‖ ∀i

3) For given W = W t+1, update the matrix C as:

Ci j ← Ci j · [λW T X X T + R1T
R1C X Su X T

+R2T
R2C X S̃X T + R3T

R3C X S̃u X T ]i j

/ [λW T WC X X T + R1T
R1C X Du X T

+R2T
R2C X D̃X T + R3T

R3C X D̃u X T ]i j

∀i, j
4) If ‖W t+1−W t‖ < ε and ‖Ct+1−Ct‖ < ε (ε is a small positive
number), then break.

4: Output W = W t and C = Ct

Along with the KKT condition [11] of φi, j Ci, j = 0, we
obtain the following equation:

(R1T
R1C X Lu X T )i, j Ci, j + (R2T

R2C X L̃ X T )i, j Ci, j

+(R3T
R3C X L̃u X T )i, j Ci, j − (λW T X X T )i, j Ci, j

+(λW T WC X X T )i, j Ci, j = 0 (41)

As Lu = Du − Su , L̃ = D̃ − S̃, and L̃u = D̃u − S̃u , we
the rewrote Eq. (41) as:

(R1T
R1C X Du X T )i, j Ci, j + (R2T

R2C X D̃X T )i, j Ci, j

+(R3T
R3C X D̃u X T )i, j Ci, j + (λW T WC X X T )i, j Ci, j

−(R1T
R1C X Su X T )i, j Ci, j − (R2T

R2C X S̃X T )i, j Ci, j

−(R3T
R3C X S̃u X T )i, j Ci, j − (λW T X X T )i, j Ci, j

= 0 (42)

which leads to the following update rule for C :

Ci j ← Ci j · [λW T X X T + R1T
R1C X Su X T

+R2T
R2C X S̃X T + R3T

R3C X S̃u X T ]i j

/ [λW T WC X X T + R1T
R1C X Du X T

+R2T
R2C X D̃X T+R3T

R3C X D̃u X T ]i j ∀i, j (43)

The aim of training part for the IHNGE is to obtain the
matrices W and C from training samples. Its entire procedure
is described in Algorithm 1.
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Table 1 “Verb–object”
concepts Concept names

answer phone play phone feed horse ride horse build boat

repair boat row boat buy car drive car repair car

buy vegetable cook vegetable cut vegetable carry bike ride bike

repair bike carry water drink water pour water clap hands

wave hand comb hair cut hair wash hair cut tree

plant tree prune tree iron clothes wash clothes use computer

fix computer put on shoes fix shoe feed dog walk dog

sit on chair repair chair water flowers arrange flower make up face

wash face lie on bed sit on bed read book write on book

3.6 Classification

After obtaining the inductive matrix C from training samples
according to algorithm 1, we can easily conduct the testing
procedure of classification.

Suppose y is the raw feature vector of a new testing sample
extracted from an image, where y ∈ R

k . Then its correspond-
ing encoding coefficient vector hy is calculated by hy = Cy,
where hy ∈ R

m .
After that, we get the first r rows of hy , and form them

into a new vector h∗y , where h∗y ∈ R
r . The h∗y is the desired

dimension-reduced feature vector of the sample.
To prove the dimension reduction power of our IHNGE,

we then use some common classifiers, like 1NN and SVMs,
to perform classification on those dimension-reduced feature
vectors of samples.

4 Experiments

In this section, we evaluate the effectiveness of our proposed
IHNGE compared with other subspace algorithms including
linear discriminant analysis (LDA) [1], marginal fisher analy-
sis (MFA) [24], and other nonnegative basis pursuit algorithm
nonnegative matrix factorization (NMF) [12], multiplicative
nonnegative graph embedding (MNGE) [20], and hierarchi-
cal nonnegative graph embedding (HNGE) in our previous
work [19].

4.1 Database

The most existing image databases do not satisfy the require-
ment of containing “verb–object” concepts with hierarchical
structure. Hence we setup a “verb–object” concept image
database and conduct experiments on it. We predefined
45 “verb–object” concepts including 19 different “object“,
while each “object” containing 2–3 “verb–object” concepts.
Table 1 lists all the “verb–object” concepts in our database.

Then a total number of 9000 images were collected from
Google Image2 and Flickr3, with 200 images on each “verb–
object” concept, while every image was labeled manually.
Each image should have two labels, one indicates class cat-
egory on the first level, the other indicates class category
on the second level. Figure 4 illustrates some “verb–object“
concepts and their corresponding image samples.

4.2 Parameters

To describe the image content, each image was resized to
256 × 256 pixels. Followed [21], we divided each image
by three-level spatial pyramid. The subregions are 1 × 1,
2 × 2 and 4 × 4 and the bases of codebook are 1024. A set
of 21504-dimensional ((12 + 22 + 42) × 1024 = 21504)
Locality-constrained Linear Coding (LLC) features [21]
were extracted from each image. We randomly choose 60 %
images from each “verb–object” concept and combine them
as training data. The rest 40 % images are then used as testing
data.

As LDA, MFA, NMF, and MNGE algorithms can not han-
dle hierarchical structure, to serve these algorithms, we just
treat each “verb–object” concept in the second level as a class
by ignoring the first level when performing experiments using
these algorithms. For MFA, NMF and MNGE algorithms, the
intrinsic graph and penalty graph are set as the same, and each
dimension of the desired dimension-reduced feature space,
m, is set as 1000. For HNGE, parameter m is also set as 1000,
parameter d is set as 0.8×m, parameter r is set as 0.8×d. In
our IHNGE, those parameters are set as same as in HNGE.

For those NMF-based algorithms (MFA, MNGE, HNGE),
after obtaining matrices W and H by training, the desired
dimension-reduced feature of a testing sample y is calculated
as hy = W⊥y, where W⊥ denotes the pseudo-inverse of

2 http://images.google.com.
3 http://www.flickr.com/.
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Fig. 4 Sampling images in our database

matrix W . For our IHNGE, we directly get hy = Cy after
obtaining inductive matrix C by training.

4.3 Results

First of all, we validate the selection of parameters m, d and r .
For m, we first set r = d = m. The hierarchical graph

embedding is then degenerated into the general NMF. m
is tuned among {500, 600, 700, . . . , 1000}. Considering the
computing complexity, m will not set above 1000 empiri-
cally. The average accuracy of classification on all image
classes with the change of m is shown in Fig. 5. We can see
that the average accuracy is highest when m is set as 1000.

For r , we first set m = 1000 and d = r . The hierarchical
graph embedding is then degenerated into the general graph
embedding and loses the hierarchical structure. We tuned r
among {0.1×m, 0.2×m, . . . , 0.9×m}. The average accu-
racy of classification on all image classes with the change
of r is shown in Fig. 6. We notice that the average accuracy
could achieve highest when r is set as 0.8 × m. Moreover,
considering the hierarchical structure of our IHNGE model,
we then empirically set d as 0.8× m and r as 0.8× d.

We implement our algorithm using MATLAB 2009a
and conduct the experiments on a computer with Inter(R)
Xeon(R) E7-4860 2.27Ghz CPU and 32GB RAM. As the

Fig. 5 Average accuracy over different parameter m for IHNGE

Fig. 6 Average accuracy over different parameter r for IHNGE

high-dimensional feature (21504-dimensional), each itera-
tion of IHNGE costs about 1000 s in average.

We conduct all experiments on our self-built database.
Comparison experimental results of different algorithms are
shown in Tables 2 and 3. Table 2 indicates the precision of
classification and Table 3 indicates the recall of classifica-
tion. For Table 2, the fist line illustrates the average of preci-
sions over all 45 “verb–object“ concepts using our proposed
IHNGE as well other baselines, and the next ten lines are the
precisions of classification on randomly selected 10 “verb–
object” concepts from 4 different “objects“. For Table 3, the
fist line illustrates the average of recalls over all 45 “verb–
object” concepts using our proposed IHNGE as well other
baselines, and the next ten lines are the recalls of classifica-
tion on the same 10 “verb–object” concepts as in Table 2.

From the results, we can infer that:

1. The average of precisions and recalls of LDA are lower
than other NMF-based algorithms, which demonstrates
the discriminative power of nonnegative data factoriza-
tion.

2. The average of precisions and recalls of IHNGE and
HNGE are higher than other NMF-based algorithms. This
demonstrates that the hierarchical structure in “verb–
object” could benefits the classification. By taking
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Table 2 Classification precision
(%) of different algorithms

The fist line is the average
precision over all concepts. The
next ten lines are the precisions
on randomly selected 10
concepts
Bold values in each line indicate
highest one among all methods

LDA NMF MFA MNGE HNGE IHNGE

Precision 26.51 31.96 37.15 41.58 45.28 47.32

Play phone 11.58 10.35 8.37 12.45 17.20 18.11

Answer phone 14.75 21.81 34.95 35.84 35.12 35.24

Row boat 67.81 69.98 89.25 75.38 88.34 89.45

Repair boat 27.19 26.64 27.53 29.44 35.48 38.10

Build boat 23.74 26.89 32.57 30.83 37.75 38.92

Fix computer 32.57 37.78 39.19 44.72 48.56 48.79

Use computer 15.11 29.42 21.39 25.92 35.67 36.52

Prune tree 24.28 31.78 45.67 41.47 47.82 48.00

Plant tree 21.37 39.11 57.49 50.02 55.28 56.91

Cut tree 34.28 41.38 67.41 60.83 72.45 74.71

Table 3 Classification recall
(%) of different algorithms

The fist line is the average recall
over all concepts. The next ten
lines are the recalls on randomly
selected 10 concepts (same as in
Table 2)
Bold values in each line indicate
highest one among all methods

LDA NMF MFA MNGE HNGE IHNGE

Recall 25.82 30.12 37.01 40.49 44.10 45.09

Play phone 10.00 8.75 6.25 10.00 13.75 16.25

Answer phone 13.75 17.50 32.50 33.75 30.00 37.50

Row boat 61.25 57.50 77.50 67.50 75.00 85.00

Repair boat 28.75 21.25 27.50 25.00 28.75 33.75

Build boat 18.75 25.00 28.75 28.75 32.50 33.75

Fix computer 28.75 35.00 37.50 36.25 41.25 40.00

Use computer 13.75 23.75 16.25 21.25 30.00 36.25

Prune tree 21.25 31.25 42.50 32.50 38.75 51.25

Plant tree 22.50 33.75 67.50 46.25 48.75 51.25

Cut tree 31.25 38.75 53.75 52.50 78.75 72.50

hierarchical structure into consideration and jointly opti-
mizing on both two levels, IHNGE and HNGE outperform
other algorithms.

3. The average of precisions and recalls of IHNGE are higher
than all other baselines, including HNGE. This result
demonstrates the contribution of inductive matrix. Prac-
tically, all baselines produce desired dimension-reduced
feature of a testing sample y by hy = W⊥y, where W⊥ is
the pseudo-inverse of matrix W . Obviously, process of cal-
culating the pseudo-inverse of matrix W could not guar-
antee the non-negativity of hy , which sometimes causes
the violation of the non-negativity requirement of non-
negative data factorization, and hence harms the classifi-
cation accuracy. At the same time, our IHNGE directly
get hy = Cy by avoiding to calculate the pseudo-inverse
of matrix W and hence guarantees the non-negativity of
hy .

4. On some concepts, like Answer phone, the precisions of
IHNGE are a little bit lower than baselines. We believe
that this is caused by image diversity. Specifically, a base
assumption of our hierarchical graph embedding is that,

all “verb–object” concepts should have hierarchical struc-
ture. Under this assumption, all samples in one sub-class
should have a smaller interclass distance on the second
level than the one on the first level. However, as all images
in our dataset are collected from Internet, the diversity
of images in one sub-class may sometimes be huge. This
makes the interclass distances on the second level of some
samples be higher than the interclass distances on the sec-
ond level. This huge diversity could harm the classifica-
tion in IHNGE and hence leads to the lower classification
accuracy on some concepts. However, the average of pre-
cisions and recalls over all 45 concepts of IHNGE still
outperform other baselines.

5 Conclusions

In this paper, we proposed an IHNGE algorithm for “verb–
object” concept images classification. Our IHNGE takes hier-
archical structure involved in “verb–object” concepts into
consideration, and develops the method of feature extraction
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and dimensionality reduction based on nonnegative graph
embedding. Moreover, we introduce the inductive matrix
into our formulations, which could tackle the out-of-sample
extension problem against our previous work. The entire
“verb–object” concept image classification problem is for-
mulated within the nonnegative data factorization frame-
work, and an efficient iterative procedure is proposed for
optimizing the objective function with theoretically and
practically convergency. Experiments on the self-collected
“verb–object” concept image database demonstrate the effec-
tiveness of our algorithm in “verb–object” concept images
classification.

Currently, our IHNGE is a linear projection technique.
Those non-linear techniques may improve the classification
performance. In future work, we will investigate it.
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Appendix

Here we present the convergence proof of update rule for
both matrix W and matrix C .

Preliminaries

First of all, we introduce the concept of auxiliary function and
the lemma which will be used for algorithmic derivation.

Definition 1 Function G(A, A′) is an auxiliary function for
function F(A) if the following conditions are satisfied

G(A, A′) ≥ F(A), G(A, A) = F(A) (44)

From this definition, we have the following lemma with
proof omitted [12].

Lemma 1 If G is an auxiliary function, then F is non-
increasing under the update

At+1 = arg minAG(A, A′) (45)

where t denotes the tth iteration.

Convergence proof of update rule for W

Let Fi j as the part of F(W ) relevant to Wi j , we have

F ′i j (W ) = [W (2Q1 + 2Q2 + 2Q3)+ 2λWC X X T CT

−2λX X T CT ]i j (46)

F ′′i j (W ) = [2(Q1 + Q2 + Q3)+ 2λC X X T CT ] j j (47)

The auxiliary function of Fi j is then designed as

G(Wi j ,W t
i j ) = Fi j (W

t
i j )+ F ′i j (Wi j )(Wi j −W t

i j )

+[W
t (Q1++Q2++Q3+)+λW tC X X T CT ]i j

W t
i j

×(Wi j −W t
i j )

2 (48)

Lemma 2 Equation (48) is an auxiliary function for Fi j ,
which is the part of F(W ) relevant to Wi j .

Proof Obviously, G(Wi j ,Wi j ) = Fi j (Wi j ). We only need
to prove that G(Wi j ,W t

i j ) ≥ Fi j (Wi j ).
First, we have the Taylor series expansion of Fi j

Fi j (Wi j ) = Fi j (W
t
i j )+ F ′i j (W

t
i j )(Wi j −W t

i j )

+1

2
F ′′i j (W

t
i j )(Wi j −W t

i j )
2 (49)

Then, it is easy to verify that

[λW t C X X T CT ]i j ≥ W t
i j [λC X X T CT ] j j (50)

[W t (Q1+ + Q2+ + Q3+)]i j ≥ W t
i j [(Q1+ + Q2+ + Q3+)] j j

(51)

Thus we have

[W t (Q1+ + Q2+ + Q3+)+ λW t C X X T CT ]i j

W t
i j

≥ [(Q1 + Q2 + Q3)+ λC X X T CT ] j j (52)

Then, G(Wi j ,W t
i j ) ≥ Fi j (Wi j ) holds.

Lemma 3 Equation (34) could be obtained by minimizing
the auxiliary function G(Wi j ,W t

i j ).

Proof Let ∂G(Wi j ,W t
i j )/∂Wi j = 0, we have

F ′i j (W
t
i j )+2

[W t (Q1++Q2+ + Q3+)+λW t C X X T CT ]i j

W t
i j

×

(Wi j −W t
i j ) = 0 (53)

Finally we can obtain the update rule for W

W t+1
i j ← W t

i j
[λX X T CT +W t (Q1− + Q2− + Q3−)]i j

[λW t C X X T CT +W t (Q1+ + Q2+ + Q3+)]i j

(54)

and the lemma is proved.

Convergence proof of update rule for C

Let Fi j as the part of F(C) relevant to Ci j , we have

F ′i j (C) = [2R1T
R1C X Lu X T + 2R2T

R2C X L̃ X T

+2R3T
R3C X L̃u X T − 2λW T X X T

+2λW T WC X X T ]i j (55)
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F ′′i j (C) = 2[R1T
R1]i i [X Lu X T ] j j + 2[R2T

R2]i i [X L̃ X T ] j j

+2[R3T
R3]i i [X L̃u X T ] j j + 2λ[W T W ]i i [X X T ] j j

(56)

The auxiliary function of Fi j is then designed as

G(Ci j ,Ct
i j )

= Fi j (C
t
i j )+ F ′i j (Ci j )(Ci j − Ct

i j )

+[R1T
R1Ct X Du X T + R2T

R2Ct X D̃X T

+R3T
R3Ct X D̃u X T + λW T WCt X X T ]i j/Ct

i j

×(Ci j − Ct
i j )

2 (57)

Lemma 4 Equation (57) is an auxiliary function for Fi j ,
which is the part of F(C) relevant to Ci j .

Proof Obviously, G(Ci j ,Ci j ) = Fi j (Ci j ). We only need to
prove that G(Ci j ,Ct

i j ) ≥ Fi j (Ci j ).
First, we have the Taylor series expansion of Fi j

Fi j (Ci j ) = Fi j (C
t
i j )+ F ′i j (C

t
i j )(Ci j − Ct

i j )

+1

2
F ′′i j (C

t
i j )(Ci j − Ct

i j )
2 (58)

Then, it is easy to verify that

[W T WC X X T ]i j ≥ Ct
i j [W T W ]i i [X X T ] j j (59)

[R1T
R1Ct X Du X T ]i j ≥ [R1T

R1]i i Ct
i j [X Lu X T ] j j (60)

[R2T
R2Ct X D̃X T ]i j ≥ [R2T

R2]i i Ct
i j [X L̃ X T ] j j (61)

[R3T
R3C X D̃u X T ]i j ≥ [R3T

R3]i i Ct
i j [X L̃u X T ] j j (62)

Thus we have G(Ci j ,Ct
i j ) ≥ Fi j (Ci j ).

Lemma 5 Equation (43) could be obtained by minimizing
the auxiliary function G(Ci j ,Ct

i j ).

Proof Let ∂G(Ci j ,Ct
i j ) / ∂Ci j = 0, we have

F ′i j (Ci j )+ [R1T
R1Ct X Du X T + R2T

R2Ct X D̃X T

+R3T
R3Ct X D̃u X T + λW T WCt X X T ]i j/Ct

i j

·(Ci j − Ct
i j ) = 0 (63)

Finally we can obtain the update rule for C

Ct+1
i j ← Ct

i j · [λW T X X T + R1T
R1Ct X Su X T

+R2T
R2Ct X S̃X T + R3T

R3Ct X S̃u X T ]i j

/ [λW T WCt X X T + R1T
R1Ct X Du X T

+R2T
R2Ct X D̃X T + R3T

R3Ct X D̃u X T ]i j (64)

and the lemma is proved. 
�
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