
DOI 10.1007/s11042-012-1335-2

Perception-motivated multiresolution
rendering on sole-cube maps

Bin Sheng ·Weiliang Meng ·Hanqiu Sun ·
Wen Wu ·Enhua Wu

© Springer Science+Business Media New York 2013

Abstract This paper presents a novel GPU-based multiresolution rendering on sole-
cube maps (SCMs), which is a variant of geometry images built upon spherical
parameterization. Given spherical parametrization of a manifold mesh, the sphere
domain is gnomonically projected to a closed cube, which constitutes the 6-chart sole-
cube maps. A quadtree structure of SCMs and normal map atlas are then constructed
by using the regular re-sampling. Then, by packing the quadtree nodes into the SCMs
texture atlas, a new parallel multiresolution rendering is processed on the latest GPU
in two rendering passes: the multiresolution node selection in fragment shader; the
triangulation in vertex shader followed by the node culling operation in geometry
shader. The proposed approach generates adaptive mesh surfaces dynamically, and

B. Sheng (B)
Department of Computer Sci. & Eng., Shanghai Jiao Tong University, Shanghai, China
e-mail: shengbin@cs.sjtu.edu.cn

B. Sheng
State Key Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China

W. Meng
LIAMA-NLPR, Institute of Automation,
Chinese Academy of Sciences, Beijing, China

H. Sun
The Chinese University of Hong Kong, Hong Kong, China

W. Wu · E. Wu
University of Macau, Macao, China

E. Wu
Institute of Software, Chinese Academy of Sciences, Beijing, China

Multimed Tools Appl (201) 72:231–2524

Published online: 19 January 2013

can be fully implemented in GPU parallelization. The proposed scheme alleviates
the computing load of multiresolution mesh refinement on CPU, and our GPU-
based multiresolution rendering is demonstrated with a variety of examples. Our
user study confirmed that the visual quality of the SCMs multiresolution rendering,
in comparison with the meshes/geometry images rendering, is also highly efficient
especially for complex models in large-scale virtual environment.

Keywords Multiresolution rendering ·Sole-cube maps ·GPU processing ·
Mesh refinement

1 Introduction

Recently, demands to represent multiresolution 3D models are advancing rapidly
in graphics applications. Even though the CPU performance, the main memory
capacity, and the geometry processing performance are progressing dramatically,
the main trend to maximize or fully utilize the GPU parallelization for level-of-
details processing and rendering has been gaining momentum. However, due to the
fact that the geometric models are usually represented by irregular triangle meshes,
GPU-based multiresolution rendering is still a challenging task in graphics research.
On the other hand, significant progress was made in decomposing meshes into a
regular domain. And then geometry images [14] (GIM) can implicitly encode the
connectivity information of a regular mesh, allowing standard image processing and
compression techniques to be applied to geometrical models. Carr and Hart [6]
and Purnomo et al. [32] show how square charts can be efficiently packed into 2D
texture space in order to minimizing the memory space cost. Polycube maps [38] can
warp and project geometry onto the quadrilateral faces of a manually-constructed
cuberille exoskeleton. Ji et al. [21] proposes an adaptive mesh refinement based
on polycube maps, which requires intensive user interaction for the polycube con-
struction. Hernández and Rudomín [17] directly uses single-chart geometry image
for rendering. Wang et al. [43] proposes the concept of polycube splines, which are
built naturally upon the polycube maps.

Since the charts are constructed manually in the approach of polycube maps,
even those small and intricate features in the charts can seriously challenge polycube
construction. Our approach therefore aims at achieving the automatic construction
of seamless geometry images, so as to facilitate multiresolution rendering on GPU
by generating the quadtree-based texture atlas. Inspired by the harmonic parame-
trization of manifold splines [43], a new seamless geometry image structure based
on spherical parametrization, namely the sole-cube maps (SCMs), is automatically
generated. Since SCMs is the regular and seamless representation of 3D surfaces, it
can be used to construct a hierarchical quadtree structure. Then all the nodes in the
quadtree are packed into a mipmap-like texture atlas, and the processing pipeline
is shown in Fig. 1. By taking advantage of SCMs, we can generate adaptive meshes
dynamically via GPU processing, and render multiresolution surfaces.

Our multiresolution rendering approach includes two rendering passes, both
performed on GPU. In the first pass, all multiresolution node data are sent to
fragment shader in the form of SCMs atlas textures for the multiresolution node
selection. In the second pass, the selection result is applied to the rendering vertices

Multimed Tools Appl (201) 72:231–2524232

Fig. 1 GPU-based multiresolution rendering on sole-cube maps

in the vertex shader and geometry shader, to triangulate the selected nodes and cull
the inactive nodes respectively. In this way, we can use SCM to generate adaptive
watertight meshes dynamically.

The main contribution of this paper is the new multiresolution rendering ap-
proach, which can perform the parallel GPU rendering based on sole-cube maps.
Given the regular mesh obtained from the sphere parametrization, our approach
can handle the manifold mesh with flexible patterns, rather than limited subdivision
refinement patterns [4, 5] of the vertex-vertex connections. Since the GPU shaders
operate in parallel, our approach can significantly accelerate the computation, hence
reducing the workload of CPU. We demonstrate the SCMs rendering approach on
several manifold models with up to millions of vertices. We also show the advantages
of increased flexibility of our multi-grained hierarchy, as well as the performance of
our current system.

2 Related work

We briefly review the related work on spherical parameterization and sampling,
geometry images and GPU rendering.

Spherical parametrization and sampling Surface parameterization has been an
active topic in computer graphics. However, a detailed surface parameterization
technique survey is beyond the scope of this paper. A nice survey of parameterization
methods can be found in [11] or refer to the literature. Parametrization of a closed
manifold mesh with genus 0 should be processed on its natural domain: the unit
sphere S2. Previous work addressed the problems in generating spherical parame-
terizations [1, 12, 43]. The earlier work [15, 24] attempted to generalize barycentric
coordinates for planar parameterization of 3D meshes [10, 39]. Meanwhile, another
problem in spherical parameterizations is the spherical map and its sampling [35],
where a lot of spherical map projections [42] have been developed by researchers
in astronomy. The spherical maps are widely used in computer graphics, including
longitude-latitude map [2], equal-area cylindrical map [37], cubemap [13], dual
paraboloid map [16], and octahedron [9] and icosahedron-based spherical maps [34].

Multimed Tools Appl (201) 72:231–2524 233

However, most parameterizations have adopted the six-face cubemap, due to its
computational simplicity and memory-friendly rectilinear structure.

Geometry images Recent work has demonstrated the feasibility and utility of
decomposing meshes into a regular domain. Geometry images (GIM), initially
presented by Gu et al. [14], can create the near-regular meshes. Sander et al. [33]
extended GIM to multi-chart patterns. Although multi-chart GIM can reduce dis-
tortions during the parameterization, it also produces undesirable seams due to the
irregular boundary of each chart. Recently, the rectangular MCGIM [7] (RMCGIM)
was used to exploit rectangular patches onto tile surfaces, guaranteeing a one-to-one
pixel correspondence across chart boundaries [27, 31] avoided the seams problem
on meshes by using the sphere GIM or other homeomorphic geometries (e.g. cube,
octahedron). In addition, [30] attempted to improve the compression ratio of GIMs
using wavelet techniques. [26] proposes an automatic PolyCube-Maps construction
scheme based on the mesh feature detection, where the parametrization quality is
limited. [18] and [21] propose the dynamic LOD processing for geometry images on
GPU. Wang et al. [43] created the polycube splines, a systematic way to construct
polycube maps for surfaces of arbitrary topology. Recently [25] introduced the
TileTree, which is a compact data structure for texture mapping surfaces.

GPU Rendering on meshes The long history of high-performance ray tracing on
the CPU is summarized in [41]. While the GPU outperforms the CPU on streaming
kernels such as ray intersection, the latter is much more efficient at maintaining and
traversing complex data structures. State-based ray tracing on GPU runs almost
50 % faster, when the cells of the uniform grid hold a precomputed distance
transform (called “proximity cloud”) that allows the traversal kernel to skip large
empty regions of space [23]. Apart from rendering with GPU, subdivision algorithms
have been proposed to rebalance the workload between CPU and GPU, and take
advantage of parallel execution streams in programmable graphics hardwares [3, 36].
However, their recursive definition imposes a non-trivial CPU overhead, hardly can
be hidden in interactive applications. Hu et al. [19] presented the view-dependent
LOD algorithm for vertex-level mesh refinement that operates entirely on the GPU.
Boubekeur and Schlick [4, 5] used a vertex shader to do a generic mesh refinement
on GPU. The key idea is to store the possible refinement configurations of a single
triangle on the GPU. Such a mechanism, however, restricts the refinement within
a limited number of pre-computed patterns. It performs poorly on the meshes with
arbitrary topology, since these patterns only examine triangle meshes.

The proposed SCMs rendering approach handle the adaptive mesh simplification
in a parallel manner, to control view-dependent visual quality. Compared with the
polycube maps [23, 44, 45] which needs labor-intensive interactions, our SCMs
rendering builds the geometry-to-image maps with spherical parameterization. Such
a construction can be totally automatic, saving considerable user interactions. In
addition, polycube maps build the cube connectivity by user interactions, the
boundary of each texture chart usually have flexible connectivity patterns. Such
a flexibility often causes the polycube maps to construct the texture charts with
flexible adjacency, resulting in increased intricacy in the algorithm, hence hindering
the searching and indexing of neighboring nodes in adjacent charts, furthermore

Multimed Tools Appl (201) 72:231–2524234

reducing the overall-timing performance of the multiresolution rendering. This is
especially true when compared with our SCMs rendering. The SCMs rendering
delivers real-time frame rates, with temporally coherent visual quality. Our user
study has shown how our approach increases perceived quality in comparison with
the other mesh-only methods. Our SCMs multiresolution rendering runs much faster
than previous mesh-only methods, but producing the similar realism as original mesh
rendering.

3 Construction of SCMs

The construction process of SCM includes two steps: parameterizing a model to
a unit cube surface, and generating the seamless cube maps. The process of cube
parameterization is shown in Fig. 2. Here we use Praun’s method [31] to achieve
sphere parameterization of a closed genus-0 manifold model, then we gnomonically
project the sphere map onto a cube. We give the mathematical form of the projection
onto the upper cube face, denoting φ as the azimuth angle and θ as the polar angle:

μ = 1
2
+ 1

2
tan θ cos φ, υ = 1

2
+ 1

2
tan θ sin φ (1)

Now the SCMs can be generated based on the parameterized coordinates and the
topological connectivity, as shown in Fig. 3. In order to obtain the right-angled
cube arris between adjacent faces of SCM, as shown in Fig. 2, we decompose
the span triangles spanning two or three faces. Specifically, there are six types of
parameterized triangles on cube faces, as shown in the Fig. 3. Further, we can see that
type 6 is a trivial case since all the vertices belong to the same face. In Fig. 3, A, B, and
C are the triangle vertices, D, E, and F are the intersections of BC, CA and AB with
the cube arris (if exist), and P is the corner of cube which is inside the triangle ABC
(if exists). Thus, we record all these points and decompose the triangle to several
planar parts before sampling the SCMs. For example, in type 3, quadrilateral BCEF
and triangle AFE, rather than ABC, are drawn to generate SCMs; in type 4, we draw

Fig. 2 Illustration of SCMs generation: unlike polycube maps, our sole-cube maps are generated
without user interaction

Multimed Tools Appl (201) 72:231–2524 235

Fig. 3 Triangle types after cubeparameterization

APDC (P is now superposed with F) and PBD. The position and normal values of
D, E, F, are calculated by linear interpolation. Finally, we get a cube with right-angle
faces as shown in Fig. 4.

Fig. 4 Generation of right-angle faces parameterized cube

Multimed Tools Appl (201) 72:231–2524236

4 Construction of quadtree SCMs textures

After packing 6 cube faces into 6 square charts, we use the 2D grid sampling to
generate the geometry images. Our goal is to build the quadtree-based SCMs, in
square charts, which are flexible to be packed for complex models.

4.1 Quadtree node construction

The hierarchical data in our multi-resolution rendering are organized in the quadtree
structure of sole-cube maps. Construction of a quadtree requires the sampling of
square charts in (2m + 1) × (2m + 1). Therefore we generate the 3 × 3 blocks over
the square chart. Figure 5 shows the the node structure in geometry space, where n is
the normal of the center vertex, and r is the radius of the node’s bounding sphere. In
order to realize the visibility culling in SCMs rendering, we also recode the normal
cone for each quadtree node. These quadtree nodes are the elementary rendering
primitive in our rendering approach. We construct the quadtree-based SCMs in a
bottom-up manner, in which the radius of the bounding sphere, the normal and the
angle of normal cone (see Fig. 5), are computed as node attributes, which are utilized
in the following processes. In our multi-resolution rendering, T-junction may appear
when resolution levels of the two neighboring squares are not the same. Considering
that when a mesh with T-junctions is rendered, it may produce some artifacts like
cracks or jags, we choose the restricted quadtree triangulation [40], to tessellate
parametric surfaces, hence avoiding the artifacts. We constrained the subdivision by
limiting the difference of the levels of adjacent quadtree nodes within one, as shown
in Fig. 7.

(d)
r

n

α

(a)

(b)

(c)

0 1

234

5

6 7 8

r

n

Fig. 5 The structure of a P-Quadtree node: a P-quadtree node array, b parameter space, c object
space and d normal cone

Multimed Tools Appl (201) 72:231–2524 237

To ensure that the quadtree is confined in our multiresolution rendering, we
construct the quadtree by pre-computing the geometry error of the nodes. The error
of a node is greater not only than that of its own children, but also than its adjacent
nephew node. For example, the error of node A must surpass that of the nodes B
and C, the 2 southern nephew nodes of A (see Fig. 7). The nephew nodes’ resolution
levels determine whether the edge vertex is activated or not. According to the
seamless sole-cube maps, the nephew of boundary nodes along the chart boundary
can be obtained from adjacent charts, which can be processed in the same way as the
interior nodes.

4.2 Quadtree stacking

In order to complete the multiresolution node selection on the fragment shader, all
the quadtree nodes are packed into the SCMs atlas. Since the SCM atlas contains
square charts, we stack all the levels of quadtree side by side. The stacked pattern is
shown in Fig. 6. A quadtree node, the 3 × 3 block of pixels in SCMs, is mapped onto
one pixel in the SCMs atlas. Suppose the SCMs atlas is in (2m + 1) × (2m + 1), the
number of the finest level nodes(level 0) is 2m−1 × 2m−1, and level 1 nodes are in a
quarter size of the level 0 nodes, and so on, the root’s size is 1. With 6 square charts
packed together, all of the quadtree nodes can be stacked in a rectangle texture with
a ratio of 1 : 2.25 (see Fig. 6). Meanwhile, all the node’s attributes for multiresolution
node selection are organized in the texture atlas. There are four textures in our
algorithm: the normal map, the geometry map, the SCMs parameter map (the node’s
error, normal cone and the radius of the bounding sphere) and the index map (to
address its parent node in the fragment program). The geometry map and the normal
map are used to store the central position and the normal of the nodes, which are
computed by the geometry image and the normal map of the vertices. These maps
are used for backface culling in our multiresolution rendering. The node’s error in
SCMs parameter map is the metric for multiresolution node selection. Each node is
processed independently in the fragment shader.

SCM

Quadtree-based SCM structure

Spherical

parameterization

Original Mesh

SCM

Quadtree-based SCM structure

Spherical

parameterization

Original Mesh

Fig. 6 Quadtree stacking of SCMs

Multimed Tools Appl (201) 72:231–2524238

5 GPU-based multiresolution rendering

Our GPU-based multiresolution rendering is composed of two rendering passes: the
first pass tests the nodes in fragment shader, and the 2nd pass applies the vertex
triangulation by vertex texturing in vertex shader, and culls the inactive nodes in
geometry shader.

5.1 Multiresolution node selection on GPU

The SCMs atlas flow to the fragment shader, whose pixels are 1-to-1 mapped to the
texels. The error threshold for multiresolution node selection is computed from the
viewpoint on CPU, and is delivered to a parameter register. A fragment program is
used in the multiresolution node selection. The testing result is stored in float-point
for vertex texturing. At each fragment testing, we discard the null texels by killing
the corresponding fragment.The null texels, whose indices are set at (0, 0), are tested
from the parent’s index. For the valid nodes, their error threshold for multiresolution
selection test is read from the parameter register. If its error exceeds the threshold,
the node is discarded; otherwise the test is passed.

The multiresolution selection can be seen as an execution of a LOD cut through
the quadtree, by the criterion that each root-to-leaf path contains precisely one node–
the first one to have passed the selection. There is a problem of redundant nodes in
the selection test: if the parent node pass the selection test, as the finer level quadtree

Algorithm 1 Multiresolution node selection (fragment shader)
1: Read the threshold and the viewpoint parameters from registers;
2: Fetch the parent node’s address → p;
3: if p is (0, 0) then
4: Kill the fragment; {NULL Texel}
5: end if
6: Lookup the parent’s position error to Error;
7: if Error≤ the threshold then
8: Kill the fragment; {The parent node is possibly selected}
9: end if

10: Fetch the current node’s error → Error;
11: if Error>threshold then
12: Kill the fragment; {The current node fails the selection test}
13: end if
14: Fetch the angle of normal cone to α;
15: Fetch the radius of the bounding box;
16: Fetch the current node’s position and the normal;
17: Estimate the angle of view cone to β;
18: Estimate the angle between view vector and normal to θ ;
19: if α + β + θ < π/2 then
20: Kill the fragment;{Backface culling}
21: end if
22: Output to the buffer;{All tests are passed}

Multimed Tools Appl (201) 72:231–2524 239

node, the children nodes will definitely satisfy the selection criteria. However, for
the rendering’s purpose, these children nodes must never be rendered. In order to
prevent the redundant nodes, two selection tests are conducted for each node: one for
its parent, and the other for itself. If the parent of a node passes the test, the current
node is redundant and therefore dropped. We use a index map to address the parent
node in the fragment program. If a node passes the multiresolution node selection,
visibility culling is performed using the normal and the normal cone (see Fig. 9). The
backfaces are determined by the criterion in [28]. Specifically, the pseudocode of our
multiresolution node selection is given in Algorithm 1.

5.2 SCM triangulation

After the multiresolution node selection, the output selection buffer is applied to the
quadtree nodes in the second rendering pass, to triangulate the quadtree nodes and
discard redundant nodes in the vertex shader and the geometry shader respectively.

In this pass, the nodes are drawn as triangle fans. The multiresolution selection
buffer should be accessible for the nodes to ensure that the selection result can be
applied on the nodes. However, reading the buffer back into the host memory and
sending the result back to the graphics card would be unacceptably expensive. In
order to cost-effectively generate selection results of the quadtree nodes, we map the
buffer to vertices of the nodes by using vertex texturing. The vertex shader process
each vertex independently, imposing triangulation on each node according to its local
information. The quadtree triangulation in our approach is restricted by limiting the
difference of the levels of adjacent quadtree nodes within one (Fig. 7). Only the 4
edge vertices (1, 3, 5 and 7 in Fig. 5), located in the middle of the node’s edge, need to
be checked, while the other vertices can be spared this test. Since deleting or adding

×

Bad LOD Cut

Level n-2

Level n-1

Level n

Nephew of A

A

×
Bad LOD Cut

Level n-2

Level n-1

Level n

Nephew of A

A

×
LOD Cut

Level n-2

Level n-1

Level n

Nephew of A

A

…….

LOD Cut

Level n-2

Level n-1

Level n

Nephew of A

A

…….

A

B C

Fig. 7 Restricted quadtree triangulation

Multimed Tools Appl (201) 72:231–2524240

Fig. 8 The 6 triangulation patterns of the P-Quadtree Node

a vertex in a 3 × 3 quadtree node impedes the simple triangulation, we respond by
moving some vertices, and sending all the 9 vertices of the node to GPU by drawing
a triangles fan. However, the 4 edge vertices have two different position attributes:
one for itself, and the other for its neighboring corner vertex. If an edge vertex is
not activated, it is moved to the position of that corner, giving the appearance that
the vertex has disappeared. That corner’s position can be sent to the vertex shader
by a generic attribute input register. Hence, the six triangulation patterns are formed
for SCMs quadtree nodes, as shown in Fig. 8. We check the state of an edge vertex’s
adjacent nephew nodes adjacent (see Section 4.1) to see whether it is activated. Using
the restricted quadtree (only 1 level below the current level), only two adjacent nodes

Algorithm 2 Triangulation and node culling (vertex shader & geometry shader)
1: {Vertex Shader: Triangulation}
2: Fetch the multiresolution selection result → state
3: if state is selected then
4: Read the neighboring children’s address → a0;
5: Fetch the selection result of the neighboring child1 → state1;
6: Fetch the selection result of the neighboring child2 → state2;
7: if state1 is notselected AND state2 is notselected then
8: Read the corner’s position;
9: Move the vertex to the corner;

10: end if
11: end if
12: {Geometry Shader: Node Culling}
13: Fetch the multiresolution selection result → state3;
14: if state3 is notselected then
15: Cull the vertex; {discard the current vertex}
16: end if

Multimed Tools Appl (201) 72:231–2524 241

φ

α

β

β

View Cone

Normal Cone

Fig. 9 Backface culling

will need to be tested. The states can be read from the output buffer, and determined
by two sets of coordinates for the edge vertex.

By now, nodes culling can be performed in the geometry shader (see Algorithm 2).
All vertices of the node are mapped to the same pixel in the buffer, for the selection
result. Each vertex is tested by the pixel’s (or texel’s) value. Those who have passed
the test are active quadtree nodes, those who failed should be discarded. If a node
is culled, all its vertices are culled. The result of the geometry shader is then output
to the rasterization. The lighting is computed in the fragment shader, and the final
image of the model is generated (Fig. 9).

6 Results and discussion

The proposed SCMs approach is developed on 2.6GHz Intel Core(TM) CPU, to-
gether with nVidia GeForce 8800 GPU and 2G RAM. The GPU program described
above has adopted a NVIDIA Cg program. Unlike polycube parametrization, our
approach involves the automatic construction of texture charts on meshes.

6.1 User study

In order to assess the perceptual quality of our SCMs multiresolution rendering of
complex models, we have performed validation study with two goals:

– investigate if there would show the perceptual difference between the original
mesh rendering and our SCMs model rendering on GPU;

– quantify rendering quality of the SCMs approach with other view-dependent
mesh rendering techniques from different simplified levels.

Guided by our goals, we have tested three approaches for multiresolution rendering
of complex models: the mesh simplification [20, 29]; direct resampling of geometry
images [14]; our SCMs multiresolution rendering. The inputs were the moving
views in reference to the testing objects. We adopted user studies to evaluate the
perception efficiency and visual quality. We invited 25 computer users who have little
VR/graphics-related experience, to score the experimental results of our system. The
statistics were made on the collected data to eliminate the individual instability.
Our perceptual tests were performed on the common PC system, and scenes were

Multimed Tools Appl (201) 72:231–2524242

rendered at 500 × 500 pixels. The model sequences were presented on a black
background of a CRT monitor using the pixel resolution 1024 × 768 at 75Hz, and
the rendering conditions (lighting/background) are the same for all the tests.

Rather than using a rating task in which participants are first shown a sequence
of moving model and then asked to rate them, we used a more systematic ap-
proach. For the four complex models (bunny, laurana, venus, armadillo) and three
multiresolution algorithms (in AB and the inverse BA orders), we have tested
4 × 3 × 2 (24) trials in total. For the first analysis, we checked the similarity score
of the multiresolution rendering algorithms, by counting how many times it was
(incorrectly) chosen as the ground truth, when compared to the original mesh model.
The similarity scores are shown in Fig. 10 for the comparisons. The testing results
have shown that the participants found significantly harder to identify the visual
difference with ground truth, using SCMs multiresolution rendering than using direct
resampling in geometry images. We also identified that our SCMs rendering has the
same scale of similarity with the mesh multiresolution rendering, as they are mapped
as view-dependent rendering as well.

Due to the fact that the model simplification is processed by the specific condition
of view-dependent rendering, we have conducted the experiments using two groups
of testing models: mesh multiresolution rendering, and our SCMs multiresolution
rendering. The two testing groups used the same input of 3D models, but different
representations (meshes, SCMs) and simplified processes. Four multiresolution lev-
els are used in the testing groups: the numbers of rendering primitives (vertices) are
70 50, 30 and 10 % of that in the original 3D models. From the original model, the
viewing distances of simplified models are adjusted accordingly.

The participants investigated the rendering sequences group by group, and rated
each sequence according to how easy to capture the content and how impressed the
rendering results. The score is given from 0 to 10 (worst to best). The participants
were not aware of the simplified levels of the moving object, and they can repeat any
motion sequences in the same group if they prefer. The mean opinion score (MOS)
is obtained by averaging the scores given by each user, as follows:

MOSk =
Nuser∑

i=1

Marki,k

Nexp
(2)

where k is the motion sequence’s id, Nuser is the number of users (experimentally 25),
and Marki,k is the mark given by the ith user for the kth testing samples.

Similarity Ratio

0

0.2

0.4

0.6

0.8

1 2 3 4

Testing Models

R
at

io

Mesh Multiresolution Rendering

Geomertry Image Resampling

SCMs Multiresolution Rendering

Fig. 10 Similarity scores for four test models (bunny, laurana, venus, armadillo), using the mesh mul-
tiresolution rendering, direct resampling geometry images, and our SCMs multiresolution rendering

Multimed Tools Appl (201) 72:231–2524 243

Peception Quality

4

5

6

7

8

9

10

0 20 40 60 80 100

Model Simplification Ratio [%]
(#rendering vertices/#original vertices of complex models)

M
ea

n
 O

p
ti

o
n

 S
co

re
(M

O
S

)

Mesh-level Multiresolution Rendering
SCMs Multiresolution Rendering

Peception Quality

4

5

6

7

8

9

10

0 20 40 60 80 100

Model Simplification Ratio [%]
(#rendering vertices/#original vertices of complex models)

M
ea

n
 O

p
ti

o
n

 S
co

re
(M

O
S

)

Mesh-level Multiresolution Rendering
SCMs Multiresolution Rendering

Peception Quality

4

5

6

7

8

9

10

0 20 40 60 80 100

Model Simplification Ratio [%]
(#rendering vertices/#original vertices of complex models)

M
ea

n
 O

p
ti

o
n

 S
co

re
(M

O
S

)

Mesh-level Multiresolution Rendering
SCMs Multiresolution Rendering

Peception Quality

4

5

6

7

8

9

10

0 20 40 60 80 100

Model Simplification Ratio [%]
(#rendering vertices/#original vertices of complex models)

M
ea

n
 O

p
ti

o
n

 S
co

re
(M

O
S

)

Mesh-level Multiresolution Rendering
SCMs Multiresolution Rendering

Fig. 11 Comparison of MOS between SCMs multiresolution rendering and the mesh multiresolution
rendering

Figure 11 shows the curves of MOS for the four rendering models in interactive
environments, with respect to the multiresolution levels of complex models. It is
shown that for both SCMs rendering and mesh multiresolution rendering of 3D
models, the Mean Option Score (MOS) is decreased when the number of rendering
vertices is reduced. The SCMs multiresolution rendering has the higher MOS over
the other tests. Especially when the model simplification ration becomes smaller than
20 %, the perception quality of SCM multiresolution rendering is much better than
that of the mesh multiresolution rendering for most testing models. The necessary
information for human perception is preserved better in the SCMs multiresolution
rendering. The SCMs rendering provides consistent visual perception without tem-
poral flick, due to the restricted quadtree simplification in regular quadtree domain.
The rendering of 3D simplified models is commonly used in VR applications,
to reduce the heavy overhead in computation, transmission and large volume of
storages. We observe that the SCMs multiresolution rendering can support better
perceptibility and subject quality of moving objects, especially for the rendering of
3D models simplified largely as shown in Fig. 11.

Table 1 ANOWA comparison of the mesh-level multiresolution rendering and SCM rendering

Source df Mean square F p
#Rendering method (SCM/Mesh-level) 1 17.828 76.594 <0.001
#Object type 3 4.418 18.979 <0.001
#Simplification ratio 4 64.728 278.082 <0.001

Multimed Tools Appl (201) 72:231–2524244

Table 2 Algorithm performance of our multiresolution node selection

Models

Bunny Dragon Armadillo

#Charts 6 6 6
SCMs size 6 × 2572 6 × 5132 6 × 5132

Average rendered nodes 116,670 196,560 212,864
Our GPU Times(ms) 1.98 2.68 3.06

implementation CPU load 8–10 % 12–18 % 12–20 %
Our CPU Times(ms) 10.6–15.2 16.5–21.0 17.1–23.2

implementation CPU load ∼ 31 % ∼ 45 % ∼ 48 %
Tree transversing Times(ms) 6.42–8.83 10.4–18.0 12.5–19.7

on CPU CPU load 28–41 % 42–55 % 43–58 %

We adopt the ANOVA analysis for validating the difference between SCM
rendering and mesh-level rendering. The statistical analysis was performed with
Statistical Package for Social Sciences version 17.0 (SPSS). The statistic result is
shown in Table 1, we find that the test statistics for the rendering method were
statistically significant. The result for the comparison of SCM rendering with the
mesh-level rendering was F = 75.574 and p < 0.001 (a p value of 0.001 or less
denotes a statistically significant result). From the test statistics, there is a significant
difference between mesh multiresolution rendering and SCMs models. Additionally,
for the comparisons of different simplification ratio and different objects, the results
were also statistically significant. From this we can conclude that SCM rendering
had significantly higher perception quality than that of mesh-level rendering (P <

0.001). These results demonstrate that SCM rendering may in fact be exploited to
significantly reduce the geometrical complexity of complex models without having
visible affect on the observer’s s perception of the scene.

6.2 Rendering efficiency

Taking advantage of the regular structure of a quadtree, our multiresolution render-
ing implementation induced a lower run-time overhead (the rendering timing results
are shown in Table 2). In addition, the GPU-based SCM rendering is more efficient
than the tree traversing approach on CPU. In the proposed algorithm , when the
multiresolution node selection is working in the first pass, the nodes are prepared on
CPU simultaneously. The sequential point tree (SPT) [8] can be integrated into our

Table 3 Performance comparison of the multiresolution rendering on SCM with [22]

Models Bunny Venus Head

#Charts 6 6 6
Samples 40 k 134 k 376 k
P_quadtree SPM 25 fps 16 fps 11 fps
[22] 9.09 fps 2.38 fps 0.89 fps

Multimed Tools Appl (201) 72:231–2524 245

Table 4 Packing performance for Polycube maps, multi-chart GIM and our Sole-cube maps

Texture packing rate of models Bunny Laurana Armadillo

Sole-cube maps ∼ 88.9 % ∼ 88.9 % ∼ 88.9 %
Tarini et al. [38] ∼ 59.5 % ∼ 67.5 % ∼ 65.8 %
Sander et al. [33] ∼ 43.2 % ∼ 55.6 % ∼ 50.9 %

framework so as to reduce the quadtree nodes in GPU in the second pass. This can
further improve the performance of our SCM rendering.

Table 3 compared the performance of our approach with that of the algorithm
used in [22]. Our GPU based multiresolution rendering processing was initially
applied to polycube maps [38] and multi-chart geometry images [33]. Then we
recognized that the level-of-detail techniques inherently prefer to square texture
patches, given the compact/fexible hierarchical construction, whereas polycube maps
[38] project geometry on rectangular patches. Furthermore, multi-chart geometry
images divide and map the mesh into texture patches in irregular shapes. To convert
the non-square patches into square ones is less-than-efficient for multiresolution
rendering, in terms of texture packing and indexing. Therefore, our method for
converting irregular mesh into a cube-map structure can improve the rendering
efficiency, both on the storage cost and processing load.

Table 4 compares SCM’s performance to per-quadtree packing rates in other
approaches. Table 5 shows the timing comparison of our SCMs rendering and simple
GPU vertex buffer rendering. Although such averages may conceal the algorithmic
complexity, they nonetheless show that the SCM has much more compact texture
packing than the polycube maps and multi-chart geometry images that produce
quadtree structures. Another reason for choosing SCMs over polycube map for
rendering is that polycube maps manually construct the texture charts with flexible
adjacency. This will make the neighboring nodes in adjacent charts too difficult to be
searched and indexed, given the intricacy of the algorithm. Also, it undermines the
overall performance of the multiresolution rendering. This is especially true when
compared with our SCMs rendering. Figure 12 presents the rendering frame rates
from different resolutions for test models.

Our approach mainly works on the genus-0 manifold meshes, due to the inherent
requirement of spherical parameterization. But with some simple mesh completion
manipulations for non-manifold surfaces, we can also use SCM for multiresolution
rendering (e.g. SCMs-based packing of Laurana model in Table 4). In our current
system, the chart size of our SCMs and normal map atlas ranged from 33×33 to
513×513. The visual qualities of the reconstructed meshes depend on the resolution

Table 5 Timing statistics for SCM rendering with traditional GPU rendering

Input meshes Bunny Tyra Horse
vertices 6,291,456 6,291,456 6,291,456
Traditional GPU rendering (FPS) 29.67 29.65 29.35
SCM rendering (FPS) 48.35 51.65 48.16

Multimed Tools Appl (201) 72:231–2524246

1000 10000 100000 1000000

#Total Quadtree Nodes

Bunny-SCM Armadillo-SCM

Bunny-Polycube Armadillo-Polycube

1

10

100

1000

10000

F
P

S

Fig. 12 Comparison between the frame rate obtained with multiresolution rendering of Polycube
maps and that of our new Sole-cube maps (SCM). Note that our SCM can further accelerate the
rendering due to employing simple neighboring node searching

adopted, especially for those highly detailed models. Our approach is able to
generate adaptive meshes dynamically according to the viewpoint. Figure 13 shows
the multiresolution rendering of these models.

Fig. 13 The SCMs multiresolution rendering results with GPU implementation

Multimed Tools Appl (201) 72:231–2524 247

7 Summary

In this paper, we have developed a novel multiresolution rendering on GPU, in which
the SCMs texture atlas proved to be robust and efficient, with a reduced computing
load of CPU. The quadtree structure is created based on seamless SCMs atlas, which
is 3D surface representation in parameter space, combining the features of geometry
images and poly-cube maps.

Our SCMs rendering approach generates adaptive meshes dynamically, and is
fully implemented on GPU. Our approach does not need to construct additional
lookup table to index texels in each chart, therefore further improves the efficiency
of multiresolution node selection and reducing the computing load on CPU. We find
that the quantization error of the geometry images can be reduced by employing
the float-point pixel values. Our user study validated the visual quality of the SCMs
multiresolution rendering, and evaluated the efficiency contribution of our approach
by adaptively simplifying the models on GPU. Compared with the multiresolution
rendering techniques based on polycube maps, ours can map the input meshes into
SCMs automatically. We will further investigate the application of sole-cube maps,
and try to extract the geometrical features from SCMs into our system, in order to
apply the multiresolution rendering in interactive manipulations.

Acknowledgements We would like to thank the anonymous reviewers for their valuable com-
ments. This work is supported by the National Basic Research Project of China (No. 2011CB302203),
and the National Natural Science Foundation of China (No. 61202154,61133009,61202324,61271431),
RGC research grant (ref. 416311), UGC direct grant for research (no. 2050485, 2050454). This
work is also partially supported by the Open Projects Program of National Laboratory of Pattern
Recognition, and the Open Project Program of the State Key Lab of CAD& CG (Grant No. A1206),
Zhejiang University.

References

1. Alexa M (2000) Merging polyhedral shapes with scattered features. Vis Comput 16(1):26–37
2. Blinn J, Newel M (1976) Texture and reflection in computer generated images. ACM Commun

19(10):542–547
3. Bolz J, Schröder P (2003) Evaluation of subdivision surfaces on programmable graphics hard-

ware. http://www.mutires.calte-ch.edu/pubs/GPUSubD.pdf. Accessed 7 Aug 2012
4. Boubekeur T, Schlick C (2008) A flexible kernel for adaptive mesh refinement on GPU. Comput

Graph Forum 27(1):102–113
5. Bouhekeur T, Schlick C (2005) Generic mesh refinement on GPU. In: ACM SIG-

GRAPH/Eurographics Graphics Hardware, pp 99–104
6. Carr NA, Hart CT (2002) Meshed atlases for real-time procedural solid texturing. ACM Trans

Graph 21(2):106–131
7. Carr NA, Hoberock J, Crane K, Hart JC (2006) Rectangular multi-chart geometry images.

In: Symposium on geometry processing, pp 181–190
8. Dachsbacher C, Vogelgsang C, Stamminger M (2003) Sequential point trees. In: ACM

SIGGRAPH 2003, pp 657–662
9. Engelhardt T, Dachsbacher C (2008) Octahedron environment maps. In: Proceedings of vision,

modelling and visualization 2008
10. Floater M et al (1997) Parametrization and smooth approximation of surface triangulations.

Comput Aided Geom Des 14(3):231–250
11. Floater MS, Hormann K (2005) Surface parameterization: a tutorial and survey. In: Dodgson

NA, Floater MS, Sabin MA (eds) Advances in multiresolution for geometric modelling. Springer
Verlag, pp 157–186

12. Gotsman C, Gu X, Sheffer A (2003) Fundamentals of spherical parameterization for 3 D meshes.
ACM Trans Graph 22(3):358

Multimed Tools Appl (201) 72:231–2524248

http://www.mutires.calte-ch.edu/pubs/GPUSubD.pdf

13. Greene N (1986) Environment mapping and other applications of world projections. IEEE
Comput Graph Appl 6(11):21–29

14. Gu X, Gortler SJ, Hoppe H (2002) Geometry images. In: Proceedings of ACM SIGGRAPH
2002, pp 355–361

15. Gu X, Yau S (2003) Global conformal surface parameterization. In: Proceedings of the 2003
Eurographics symposium on Geometry processing, pp 127–137

16. Heidrich W, Seidel H (1998) View-independent environment maps. In: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on graphics hardware

17. Hernández B, Rudomín I (2006) Simple dynamic lod for geometry images. In: Proc. of
GRAPHITE 2006, pp 157–163

18. Hernández B, Rudomin I (2006) Simple dynamic lod for geometry images. In: Proceedings of
the 4th international conference on computer graphics and interactive techniques in Australasia
and Southeast Asia. ACM New York, NY, USA, pp 157–163

19. Hu L, Sander PV, Hoppe H (2009) Parallel view-dependent refinement of progressive meshes.
In: Proceedings of the 2009 symposium on interactive 3D graphics and games. ACM, New York,
NY, USA, pp 169–176

20. Hu L, Sander PV, Hoppe H (2010) Parallel view-dependent level-of-detail control. IEEE Trans
Vis Comput Graph 16(5):718–728

21. Ji J, Wu E, Li S, Liu X (2005) Dynamic lod on GPU. In: CGI ’05: proceedings of the com-
puter graphics international 2005. IEEE Computer Society, Washington, DC, USA, pp 108–
114

22. Kalaiah A, Varshney A (2003) Modeling and rendering of points with local geometry. IEEE
Trans Vis Comput Graph 9(1):30–42

23. Karlsson F, Ljungstedt CJ (2004) Ray tracing fully implemented on programmable graphics
hardware. Master’s thesis, Chalmers University of Technology

24. Kobbelt L, Vorsatz J, Labsik U, Seidel H (1999) A shrink wrapping approach to remeshing
polygonal surfaces. Comput Graph Forum 18(3):119–130

25. Lefebvre S, Dachsbacher C (2007) Tiletrees. In: Proceedings of the ACM SIGGRAPH sympo-
sium on interactive 3D graphics and games. ACM Press

26. Lin J, Jin X, Fan Z, Wang C (2008) Automatic polycube-maps. In: GMP 2008: advances in
geometric modeling and processing: 5th international conference. Springer, p 3

27. Losasso F, Hoppe H, Schaefer S, Warren J (2003) Smooth geometry images. In: Proceedings of
the Eurographics/ACM SIGGRAPH symposium on Geometry processing. Eurographics Asso-
ciation, pp 138–145

28. Luebke D, Erikson C (1997) View-dependent simplification of arbitrary polygonal environments.
ACM Press/Addison-Wesley Publishing Co. New York, NY, USA

29. Luebke D, Erikson C (1997) View-dependent simplification of arbitrary polygonal environments.
In: Proceedings of SIGGRAPH 1997, pp 199–208

30. Peyre G, Mallat S (2005) Surface compression with geometric bandelets. ACM Trans Graph
24(3):601–608

31. Praun E, Hoppe H (2003) Spherical parametrization and remeshing. ACM Trans Graph
22(3):340–349

32. Purnomo B, Cohen JD, Kumar S (2004) Seamless texture atlases. In: Proc symp geom,
pp 67–76

33. Sander PV, Wood ZJ, Gortler SJ, Snyder J, Hoppe H (2003) Multi-chart geometry images.
In: Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry processing.
Eurographics Association, pp 146–155

34. Schröder P, Sweldens W (1995) Spherical wavelets: efficiently representing functions on the
sphere. In: Proceedings of the 22nd annual conference on computer graphics and interactive
techniques, pp 161–172

35. Segal M, Akeley K (2004) The openGL graphics system: a specification, version 2.0.
36. Shiue LJ, Jones I, Peters J (2005) A realtime GPU subdivision kernel. ACM Trans Graph

24(3):1010–1015
37. Smolic A, McCutchen D (2004) 3DAV exploration of video-based rendering technology in

MPEG. IEEE Trans Circuits Syst Video Technol 14(3):348–356
38. Tarini M, Hormann K, Cignoni P, Montani C (2004) Polycube-maps. ACM Trans Graph

23(3):853–860
39. Tutte W (1963) How to draw a graph. Proc Lond Math Soc 3(1):743
40. Von Herzen B, Barr A (1987) Accurate triangulations of deformed, intersecting surfaces. In:

Proceedings of the 14th annual conference on computer graphics and interactive techniques,
pp 103–110

41. Wald I (2004) Realtime ray tracing and interactive global illumination. Ph.D. thesis, Computer
Graphics Group, Saarland University

Multimed Tools Appl (201) 72:231–2524 249

42. Wan L, Wong TT, Leung CS (2007) Isocube: exploiting the cubemap hardware. IEEE Trans Vis
Comput Graph 13(4):720–731

43. Wang H, He Y, Li X, Gu X, Qin H (2007) Polycube splines. In: Proceedings of the 2007 ACM
symposium on Solid and physical modeling, pp 241–251

44. Wang H, Jin M, He Y, Gu X, Qin H (2008) User-controllable polycube map for manifold spline
construction. In: Proceedings of the 2008 ACM symposium on solid and physical modeling.
ACM, pp 397–404

45. Xia J, Garcia I, He Y, Xin S, Patow G (2011) Editable polycube map for GPU-based subdivision
surfaces. In: Symposium on interactive 3D graphics and games. ACM, pp 151–158

Bin Sheng received his BA degree in English and BE degree in Computer Science from Huazhong
University of Science and Technology in 2004, MS degree in software engineering from the
University of Macau in 2007, and PhD degree in Computer Science from The Chinese University
of Hong Kong in 2011. He is currently an assistant professor in the Department of Computer Science
and Engineering at Shanghai Jiao Tong University. His research interests include virtual reality,
computer graphics, and image based techniques.

Weiliang Meng received the B.E. degree in Computer Science from Civil Aviation University of
China in 2003, M.Sc. degree in Computer Application from Tianjing University in 2006, and PhD
degree in Computer Application from State Key Laboratory of Computer Science at Institute of
Software, Chinese Academy of Sciences. He is correctly a postdoctor in National Laboratory of
Pattern Recognition (NLPR) at Institute of Automation, Chinese Academy of Sciences. His research
interests include geometry modeling, and image based modeling and rendering.

Multimed Tools Appl (201) 72:231–2524250

Hanqiu Sun received her MS degree in electrical engineering from University of British Columbia,
and PhD degree in computer science from University of Alberta, Canada. She is an associate
professor in Department of Computer Science and Engineering, Chinese University of Hong
Kong (CUHK). Her current research interests include virtual and augmented reality, interactive
graphics/animation, hypermedia, mobile image/video processing and navigation, tele-medicine,
realistic haptics simulations.

Wen Wu received her Bsc, Msc degrees respectively from Beijing Univ. of Aeronautics and
Astronautics, and the Institute of Computing Technology of Chinese Academy of Sciences. She
received her PhD degree from The Chinese University of Hong Kong. She is currently an assistant
professor in Department of Computer and Information Science at University of Macau and also
an honorary research associate in the Department of Computer Science and Engineering at The
Chinese University of Hong Kong. Her research interests include medical simulation, virtual reality
and physically-based animation.

Multimed Tools Appl (201) 72:231–2524 251

Enhua Wu received the BS degree from Tsinghua University in 1970, and the PhD degree from
the University of Manchester (UK) in 1984. He is currently a research professor at the Institute of
Software, Chinese Academy of Sciences. He has also been teaching at the University of Macau since
1997, where he is currently the associate dean of Faculty of Science and Technology. His research
interests include realistic image synthesis, virtual reality, and scientific visualization.

Multimed Tools Appl (201) 72:231–2524252

	Perception-motivated multiresolution rendering on sole-cube maps
	Abstract
	Introduction
	Related work
	Construction of SCMs
	Construction of quadtree SCMs textures
	Quadtree node construction
	Quadtree stacking

	GPU-based multiresolution rendering
	Multiresolution node selection on GPU
	SCM triangulation

	Results and discussion
	User study
	Rendering efficiency

	Summary
	References

