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This paper reports an extension of the existing investigations on determining identifiability of statistical
parameter models. By making use of the Kullback-Leibler divergence (KLD) in information theory, we cast
the identifiability problem into the optimization theory framework. This is the first work that studies the
identifiability problem from the optimization theory perspective which leads to connections in many
areas of scientific research, e.g., identifiability theory, information theory and optimization theory.
Within this new framework, we derive identifiability criteria according to the types of models. First, by
formulating the identifiability problem of unconstrained parameter models as an unconstrained
optimization problem, we derive identifiability criteria by checking the rank of the Hessian matrix of
KLD. The resulting theorems extend the existing approaches and work in arbitrary statistical models.
Second, by formulating the identifiability problem of parameter-constrained models as a constrained
optimization problem, we derive a novel criterion which has a clear algebraic and geometric
interpretation. Further, we discuss the pros/cons of the new framework from both theoretical and
application viewpoints. Several model examples from the literature are presented to examine their

identifiability property.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Identifiability is an essential requirement in system modeling
when the parameters to be estimated have a physically interpre-
table meaning [1-3]. An important part of system modeling
involves the derivation of conditions under which a given model
structure will be identifiable [1-5]. The identifiability property
describes whether there is a theoretical possibility for the unique
determination of model parameters from perfect model specifica-
tion and noise-free input-output measurements or not [1,3,4].
This property is an important aspect to reflect an interpretability
and transparency degree of the model and hence “determining
identifiability of the models should be addressed before any imple-
mentation of estimation” [2,3]. Moreover, identifiability is closely
related to the convergence of a class of estimators including the
maximum likelihood estimator (MLE) [6,7]. Lack of identifiability
gives no guarantee of convergence to the true value of parameter
and therefore usually results in severe ill-posed estimation pro-
blems [2,6], which is a critical issue if decisions are to be taken on
the basis of their numerical values [4]. Besides the ability to detect
deficient models in advance, the analysis of identifiability can also
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bring practical benefits, such as insightful revealing of the rela-
tions among inputs, outputs and parameters, which can be very
useful for model structure selection and design [2,8]. Therefore,
once a model structure has been chosen, one should test identifia-
bility so as to rule out prior unidentifiable models to avoid
potential defects.

Most of previous work on system modeling has emphasized the
special features of particular model structure, the identifiability
issue is often neglected by many researchers, who start from the
experimental data and then fit a model structure to the available
data to estimate unknown parameter values. This tends to obscure
the fact that the problem of identifiability is a general and
fundamental one arising in many fields of scientific study. Gen-
erally, if a model has hierarchical structures [6,9], unobservable
state variables [1,4], latent factors [10], nuisance parameters [11]
or coupled submodels [12,13], the model may be unidentifiable. To
summarize up, in the areas of machine learning, system identifica-
tion and pattern recognition, the utility and importance of iden-
tifiability can be recognized in at least the following four aspects:

1. Statistical learning theory. Identifiability is a primary assump-
tion in all classical statistical models [14]. However, such an
assumption may be violated in a large variety of statistical
learning machines. Theoretically, the concept of identifiability
is closely related to singular learning theory [7]. A statistical
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learning machine is called singular if its Fisher information
matrix (FIM) degenerates, or equivalently, if the model is not
locally identifiable. In a singular learning machine, the standard
statistical paradigm of the Cramér-Rao bound (CRB) does not
hold [6], the MLE and the Bayesian posterior distribution are no
longer subject to Gaussian distribution even in an asymptotical
sense [6,7]. Therefore, it is imperative to check identifiability
for statistical learning theory.

2. Knowledge-based modeling. Within the context of nonlinear
system identification, a common practice is to build a “black-
box” model in order to achieve accurate prediction or control.
However, the fully nonlinear black-box model may be too
generic for some situations where there are evidences to
include a knowledge-based submodel in the complete model.
The practical rule of “do not estimate what you already know”
would require us to define an ad-hoc model structure if we
know that the real system contains a prior known part. Thus,
some or all parameters in the complete model have physically
interpretable meaning [1,3,10,12,13]; and to identify the true
values of such parameters is of practical importance because
nonuniqueness of such parameters not only means nonunique
description of the physical process but also results in comple-
tely erroneous or misleading results. One would not select
a model if its parameters cannot be uniquely determined.
Therefore, testing identifiability is an essential prerequisite in
such models.

3. Model structure learning and model selection. In some applica-
tion scenarios, one needs to implement joint model and
parameter learning, thus requiring one to learn an identifiable
model structure [10]; otherwise, the interpretability of the
learned model will be severely limited and the model selection
criteria such as AIC, BIC and MDL cannot be applied properly
[6,8]. For instance, [10] considered a sparse and identifiable
linear latent factor and linear Bayesian network model for
parsimonious analysis of multivariate data, and showed that
the identifiability is a necessary prerequisite for capturing the
correlations between the latent factors.

4. Learning algorithm and learning dynamics. In unidentifiable
parametric models, the trajectories of dynamics of learning
generated by standard gradient descent algorithm are strongly
affected by the nonidentifiability, causing plateaus or slow
manifolds [6]. It has been shown that once parameters are
attracted to unidentifiable points, the learning trajectory is very
slow to move away from them. To overcome such slow
convergence phenomenon, Amari [9] proposed a natural gra-
dient descent (NGD) algorithm, showing that the NGD method
works efficiently in such unidentifiable models.

Despite extensive literature exists on the identifiability pro-
blem and a number of identifiability criteria for various specific
models, the identifiability issue has not been resolved completely.
In this paper, we report an extension of the existing investigations
on determining identifiability of statistical parameter models in
two directions. First, in our previous studies, Yang et al. [2,12]
considered the identifiability problem in generalized-constraint
neural network (GCNN) models, and derived identifiability theo-
rems for Single-input Single-output (SISO) and Multiple-input Sin-
gle-output (MISO) models. However, their theorems cannot deal
with Multiple-input Multiple-output (MIMO) models. In [15], Qu
et al. studied a kind of GCNN model consisting of RBF neural
network and a set of linear priors (linear constraints), but the
identifiability issue has not been justified. Recently, Ran et al. [16]
generalized the concept of GCNN model and proposed a more
general generalized-constraint (GC) model. Further, the authors [16]
derived some new results for MIMO parameter learning machines.
For a detailed description of GCNN and GC models, one can see

[2,12,15,16] and the references therein. Hence, this paper is an
extension of [2,12,15,16] and we further expect to derive identifia-
bility criteria for parameter-constrained models whose parameters
are constrained by a set of nonlinear equality constraints. Second,
based on Kullback-Leibler divergence (KLD) in information theory
[17], we extend the conventional KLD equation method [18,19] and
provide an optimization theory [20,21] treatment for identifiability
analysis. To the best of our knowledge, this is the first work that
studies the problem of identifiability from the optimization theory
perspective. The resulting theorems are workable for a large
variety of models wherein other methods fail (see Sections 3 and
5 for more details). The main contribution of this paper is given
from the following two aspects:

1. From a theoretical viewpoint, we develop a novel perspective
of processing identifiability problems based on optimization
theory framework. Within the new framework, we formulate
the identifiability problem of unconstrained and parameter-
constrained models as unconstrained and constrained optimi-
zation problems, respectively. The benefit gained will be two-
fold. First, when information theory through KLD is the link,
the interplay between identifiability theory and optimization
theory (Fig. 1) is derived theoretically. Second, one is able to
achieve a geometrically perceivable insight into the identifia-
bility analysis.

2. From an application viewpoint, we derive several novel theo-
rems for determining identifiability. Based on the theorems,
one is able to deal with both unconstrained and parameter-
constrained models. Compared with existing techniques, such
as KLD equation method [18,19] and orthogonal complement
method [22], the main advantage of the new results is that one
is able to determine identifiability by calculating the rank of
a numerical matrix, thus avoiding the usual bottleneck of
seeking for the roots from a set of nonlinear equations. The
benefit gained is that the new results lead to a reduction of
complexity from NP-complete to O(k®), where k is the dimen-
sionality of parameter vector.

The remainder of this paper is organized as follows. Section 2
introduces the basic concepts and gives a concise overview of the
literature. Section 3 provides some identifiability theorems for
unconstrained parameter models. In Section 4, we provide some
identifiability theorems for parameter-constrained models. Section
5 presents some examples to verify the validity of the proposed
theorems. Section 6 concludes this paper with a brief summary.

2. Identifiability: basic concepts and existing methods

The identifiability analysis in statistical models is concerned
with the possibility of drawing inferences from observed samples
to an underlying theoretical distribution. Consider a statistical
space {R",a(R™), Py}, where R" is the sample space, o(R") is the
o-algebra of R" and {Py, 6 € R¥} is the parametric distribution
family in ¢(R"). The identifiability problem is defined in terms of
the mapping 0 — Py being one-to-one. Following [14,16,19,23], we
give the following definitions.

Information

Identifiability Optimization

Theory Theory

Fig. 1. Schematic diagram of the relationship of identifiability theory, information
theory and optimization theory, from which information theory builds a bridge
between identifiability theory and optimization theory.
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Definition 1. A model {Py, 0c R} is globally identifiable if
Py, =Py, = 01 =0, V01,0, € RK. A model is locally identifiable if
for every 0 € R¥, there is an open neighborhood N(8) of 6 such that
Pel :Pe2 = 01 =0,, V01,0, € N(0).

If a parameter point « e R¥ is of particular interest, for example,
« is assumed to be the real value of the model parameter, we give
the following definition.

Definition 2. A parameter point «e R¥ is globally identifiable if
Py =Py, 0 cR¥ = 0 =a. A parameter point aecR¥ is said to be
locally identifiable if there is an open neighborhood N(a) of a such
that Py =Py, 0 e N(a) = 0 =a..

If two distinct parameter points 01, 0, define the same model,
we say 0; is observationally equivalent to 0, [23], and denote
01 ~ 0, [14,16,19]. That is, 8; ~ 0, < Py, = Ps,. Note that the rela-
tion “ ~ " is a proper equivalent relation (reflectivity, symmetry and
transitivity) [14,16,19]. For 8 € R¥, we denote the equivalence class
of 6 by [0]= {0’ e R : ' ~0}.

Remark 1. From Definitions 1 and 2, one can see that identifia-
bility is a structural or intrinsic property of the model. In other
words, the presence or absence of identifiability is a feature of the
model structure, and so, is independent of the experiment data and
the inferential procedure [3,16,24].

Because of the theoretical and practical importance of iden-
tifiability analysis, a large amount of investigations have been
devoted to this study, applying various methods and techniques. In
[23], Rothenberg proved that the local identifiability of a statistical
model Py is equivalent to regularity of its FIM F(8) = (F;j(0))y,.

olog p(x,0)0log p(x,0)
0; 0; ’

Fij(0) =Eo (1)
where p(X, 0) is the probability density function (PDF) of Py, and Ey
is the expectation operation evaluated at 0. As a special case, [25]
studied the connection between identifiability and information
regularity in Gaussian family based on holomorphic functions.
In [18], the author proposed a KLD equation method which needs
to solve a set of nonlinear equations, making it hard to implement
in most cases (see Theorem 1 in Section 3). In [14], Dasgupta et al.
established an analytical method for constructing new parameters
under which an unidentifiable model will be locally identifiable.
For parameter-constrained models, the first local identifiability
result was proposed in [23]. In [22], the author provided an
identifiability criterion which needs to compute the orthogonal
complement of a functional matrix, making it a hard task to
perform. In [26], Yao et al. studied the regularity and identifiability
of blind source separation (BSS) problem with constant modulus
(CM) constraints on the sources. Unfortunately, it is very difficult
to obtain a global result in more generic settings. In [23],

Table 1
General methods for testing identifiability of statistical parameter models.

Rothenberg established an FIM-based criterion to test global
identifiability for exponential family. Outside the exponential
family it does not seem possible to get a necessary and sufficient
condition for global identifiability using only the FIM. In [19], the
authors proved that global identifiability is a necessary condition
for the existence of an unbiased estimator. In [27]. Martin et al.
extended this result to asymptotically unbiased estimators. They
further proved that global identifiability is a necessary condition
for the existence of a consistent estimator. The most obvious cause
of nonidentifiability is parameter redundancy, in the sense that the
model can be written in terms of a smaller set of parameters
[28,14,2,16]. In [28], Catchpole et al. introduced the concept of
parameter redundancy in the context of exponential family. They
showed that whether or not a model is parameter redundant can
be determined by checking the symbolic rank of a derivative matrix
(DM), but their DM-based method only works in the exponential
family. In order to detect parameter redundancy in more general
models, an exhaustive summary method was presented [29]
which generalized the results in [28] to a wider spectrum of
models. In [2], Yang et al. proposed a derivative functional vector
(DFV) method to examine parameter redundancy for the GCNN
models, but the DFV method is not applicable in time-variant
models. In [16], Ran et al. proposed a regular summary method
which can deal with time-variant models including a range of
ordinary differential equation (ODE) dynamical models. However,
their method cannot work in more complicit partial differential
equation (PDE) models. Recently, Hu [30] analyzed redundancy of
Bayesian classifiers whose parameters are given in a form of
functionals, not functions. The author further proved that for M-
class classification problem with reject option, the number of
independent parameters in cost matrix is M. Although the iden-
tifiability problem has been extensively studied in the literature,
identifiability issues have not been resolved fully. In Table 1, we
list the commonly used methods for checking identifiability
together with their associated parametric models.

3. Identifiability criteria for unconstrained parameter models

Essentially, nonidentifiability is the consequence of the lack of
enough “information” to discriminate among admissible para-
meter values in the model. Hence, it is natural to test identifiability
with the help of KLD, which is defined as [17]

p(Xx) P(X)
KL = log =——= ) = log ——= 2
P [E”<°g q(x)) | pooios Gax @

where p(x) and q(x) are two PDFs on R". In information theory, the
KLD is used to measure the dissimilarity between two PDFs p(x)
and q(x) [17]. While in classical statistics, the KLD arises as an

Parameter space Framework Model Method
Unconstrained Analytical Gaussian Holomorphic function method [25]
Algebra Linear model Rank test method [31,19]
Exponential family Derivative matrix (DM) method [28]
General distribution Exhaustive summary method [29]
Derivative functional vector (DFV) method [2]
Statistics General distribution Fisher information matrix (FIM) method [23]

Information theory

Constrained Algebra

General distribution

Linear model

Statistic method [19,27]

KLD equation method [18,19]
Regular summary method [16]
Rank test method [31]

+Linear constraints

Statistical

General distribution
+Nonlinear constraints

Reparameterization method [23,32]
KLD equation method [18,19]
Orthogonal complement method [22]
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expected logarithm of the likelihood ratio, and is a measure of the
inefficiency of assuming that the distribution is p(x) while the true
distribution is q(x) [24]. Compared with the FIM, the KLD is
claimed to be a more suitable measure for identifiability analysis,
as the KLD is a function of two arguments which makes it can
simultaneously deal with global and local identifiability problems
[18,19], while FIM is the function of a single variable which makes
it can only deal with local identifiability problem [23]. Therefore,
the KLD will be a promising tool in identifiability analysis.

In this section, we focus our attention on identifiability issue
for unconstrained parameter models whose admissible parameter
space is R¥. To proceed, a common existing criterion for testing
identifiability is stated as follows [18,19].

Theorem 1. In a statistical model p(X, 8), a parameter point « € R¥ is
globally (locally) identifiable if and only if a is the unique solution of
the equation KL(x,0) =0 in R¥ (an open neighborhood of a), where

KL(at, 0) = Eq <log p(x. ‘”) - / px, olog P Ygy 3)

p(X,0) p(X,0)

The proof can be easily verified by the facts that KL(«, 8) > 0 for
all 0 e R¥, KL(e, ) =0, and KL(ex, 0) = 0 < p(X, o) = p(X, ) for almost
everywhere (a.e.) X e R" [17]. However, for many PDFs it is not an
easy task to determine all the solutions of the equation KL(a, ) =0
in a direct way [19]. To give an example, consider the m-dimen-
sional Gaussian family

1
P(X.) p{ —E(X—He)TZ(;](X—He)}» “)

= - 1X
(27)?| X2

where p, is the mean vector and X, is the covariance matrix. The
KLD can be calculated as [17]:

> 1
KL(et.0) = KL(ct. ) +5 (1o — o) Eg. ' (g — o) (5)
with
; 1 |Zal 1 et
I(L(oz,()):i log EJrTrace(Ee(Ea -2 ) - (6)
(]

It is easy to see that [17]
KL(c,0) =0 < py = o, Tg = Zq. (7)

Checking the identifiability of « requires us to solve a system of
m+m(m+1)/2 nonlinear equations which makes the task an NP-
complete problem [4]. Therefore, it is desirable to investigate some
effective and efficient approaches to attack this problem. For this
purpose, we cast the identifiability problem into the optimization
theory framework [20,21].

Definition 3. [20]. A point « e R is said to be a local minimum
point of f(0) if there is a neighbor N(«) of « such that f(0) > f(a) for

a b

KL(a,0)
KL(a,0)

0

all 8 e N(w). If f(0) > f(o) for all ® e N(), 0 # o, then « is said to be
a strict local minimum point.

Definition 4. [20]. A point « e R¥ is said to be a global minimum
point of f(0) if f(0)>f(a) for all @Rk If f(0)>f(a) for all
0 cR¥, 0+ a, then a is said to be a strict global minimum point.

With the optimization theory, we can equivalently rewrite
Theorem 1 as the following theorem.

Theorem 2. In a statistical model p(xX, 8), a parameter point o € R¥ is
globally (locally) identifiable if and only if o is the strict global (local)
minimum point of the unconstrained optimization problem

Minimize{KL(c, 0),0 € R} . 8)

In Fig. 2, we visually illustrate the equivalence of Theorems
1 and 2 with several simple cases. As a matter of fact, the
statement of Theorem 2 can be regarded as a dual interpretation
of Theorem 1. Specifically, Theorem 1 formulates the identifiability
problem as a nonlinear equation system problem, while Theorem
2 formulates the identifiability problem as an unconstrained
optimization problem.

Therefore, with the help of the KLD, we transform the identifia-
bility problem of unconstrained parameter models into an uncon-
strained optimization problem. We now present an identifiability
criterion for unconstrained parameter models. For mathematical
simplicity, it should be noted that the interchanges of integral, limitation
and derivative are permissible throughout the paper.

Theorem 3. Suppose that p(x,8) is a statistical model, a € R¥, and
that the Hessian matrix

*KL(e, e)>
kxk

00;00; ©

H(0) = (
of KL(«, 8) has a constant rank in a neighbor N(«) of «, then « € R¥ is
locally identifiable if and only if H(0) is strictly positive definite at c.
Proof. For sufficiency. Since

a = argmin{KL(«, 0), 0 € R¥}, (10)

by the first order necessary condition of the local minimum point
[20,21], the gradient vector VKL(«, 0) of KL(c, 0) vanishes at o. That is,

VKL(et, @) : = VKL(ex,0)[,_ =0. (11
Apply Taylor's formula to KL(«, 8), we have
KL(ex, 0) = KL(cx, o) + (0 — o) (VK L(ex, o))

+%(97a)T H(ot)(0—ot)+0( 10— all2)

:%(e—a)T H(o)(0 —ot)+o( 110 —axll?) (12)

where o(110 — I ?) is the higher order infinitesimal of 116 — e |l 2. Since
H(a) is strictly positive definite, KL(a,0) >0 for all 6 € N(a), 0 # a.
Hence, « is a strict local minimum point of the optimization problem
(8). By Theorem 2, « is locally identifiable.

c

KL(ct,0)

0 0

a

a 0 4

Fig. 2. Schematic illustration of the equivalence of Theorems 1 and 2. In (a), « is globally identifiable. In (b), « is unidentifiable. In (c), « is locally identifiable, but is not

globally identifiable.
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For necessity. Since [p(x,0)dx=1, VOe R¥, by interchange of
integral and derivative, we have

2 2
[E( 1 ap(xe)>_/ap(x,9)dx

(X,8) 06;00; 06;06;
2 2
_9 Jpx,0)dx  0°1 13)
00,00, 00;00;

By simple calculation, we obtain

o log p(x.0)_ _dlog p(x.0)olog px.0) 1 o’px.0) 4,
00;00; 00; 00; p(X,0) 00;00;

Hence,
0* log p(x,0)\ olog p(x,0)0log p(x,0)

By interchange of integral, limitation and derivative, we have
olog p(x,0 olog p(x,0
Eq( g p( )) / PX.a )< g p( ))

_ / <0p(x, 9)>
00

d p(x,0)dx

T R

dx

0=«

dx

0=a

6=«

=0 (16)

0=«

_a
)

and

*KL(ax, 0)
002 0=o
9% [ p(x, a)log p(x, 0)dx
B 00? 0=a
_ < / P’ (px, a)log px,0)) ;. )
0%
2
- rmof )
0 log p(x,0)
=, (227
( 00 >
—r (a log p(x,0)0 log p(x, 9)>
=F, g i .

H(o) =

0=o

dx

6=a

a7

Hence,

_ olog p(x,0)
H(xx) = Covy (T) , (18)

where Cov, is the covariance operation evaluated at a.
Suppose H(a) is not strictly positive definite, there is a non-
trivial vector v(0) # 0, 0 e N(w), such that

vI(0)H(0)v(0) =0, 6  N(cx). (19)
Define a differentiable curve I" as
{O(S)EN( ): @7v(e(s)),9(0):a, —1<s< 1}. (20)
Following the same calculation as Eq.(16), we have
Eo <7‘) loga’é(x’ 0)) 0. @1

Thus, the expectation and variance of VT(O)(%) are as
follows:

Eo (VT(Q) (a log p(x, 0))) —VO)E, (a log p(x, 9)) —o.

E) 00
Var, <vT(e) (W) ) =v'(0) (cOve (W) ) v(0)
=v'(0)H(O)V(0) =0, 0 € N(). (22)

This implies that

vi(0) (W) =0 for ae xeR". (23)

Now, for 6(s) e T, the following equation
dlogp(x,6(s)) _ 9 log p(x, 0(s)) d6(s)

ds B 00 ds
T dlog p(x,6(s))
=V (9(5))7()0
=0 (24)
holds for all —1 <s < 1. That is,
p(X,0(s)) =const, —1<s<1. (25)

Thus p(x, 0(s)) is unchanged for all points 0(s) eI, —1 <s < 1. This
means all the parameters 0(s) in I are local minimum points of the
optimization problem (8). Therefore, by Theorem 2, « is not locally
identifiable. ©

We present a geometrical interpretation for the identifiability
condition in Theorem 3 For a matrix A, we denote
kerA = {u : Au= 0} to be its kernel space. From Eq.(22), we have
v(0) € kerH(0). That is, the set kerH(0) consists of the smooth
curves along which KL(a,0(s)), —1<s<1 has completely flat
ridge in R¥. However, the conventional KLD equation method
[18,19] cannot provide us such geometrical sight.

Most of previous studies on identifiability problem concerned
mainly with local identifiability. Up to now, few investigations
have been reported on how to examine global identifiability.
However, in some cases, we are more interested in global iden-
tifiability rather than simply local identifiability [2,16]. Unfortu-
nately, it is very difficult to obtain global results in generic
statistical settings. Based on Theorem 3, we propose a global result
as follows. Compared with the global results in [23,28], our result
is valid for any statistical model without restricting to exponential
family.

Theorem 4. Suppose that the Hessian matrix H(®) of KL(a,0) is
strictly positive definite for all 0 Rk, 0+ «, then o is globally
identifiable.

Proof. Apply Taylor's formula to KL(«, 0) and from Eq.(12), we have

KL(c, 0) = %(e —o)"H(O%)(0— ), (26)
where
2
Hot) = TKH@O) g (1 patre, 0<t<1. 27)
00 0=0*
Since H(0) is strictly positive definite for each 6 € R¥, 0 # o,
KL(a,0) >0 for any 0  a. (28)

That is, « is the strict global minimum point of the optimization
problem (8). By Theorem 2, « is globally identifiable. ©

4. Identifiability criteria for parameter-constrained models

If the parameter in the unconstrained model is unidentifiable,
we can change the nature of modeling approach to make it
identifiable. Traditionally, there are two approaches to achieve
this purpose. The first approach is to introduce a priori distribution
on the unknown parameter to be estimated, and to cast the
estimation problem into a Bayesian framework [24,33]. The second
approach is to impose some deterministic constraints (e.g. func-
tional constraints [22,23,32], sparsity constraints [10], monotoni-
city constraints [34,15], order constraints [15], etc.) on the
unknown parameter, and to result in a parameter estimation
problem with reduced dimensions [23,32].
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In this section, we focus on the identifiability problem for
statistical models with nonlinear equality constraints. Formally,
we suppose that the admissible parameter space is restricted to

S=1{0cR": ®@©)=0), (29)

where ®(8) = (¢(8), -+, 94(8)) and ¢;(8), 1<i<q possess contin-
uous partial derivatives. We also suppose that the rank of the
Jacobian matrix

_IP_ (%%

of ®(0) is g for all 0. This assumption means that the constraints
are non-redundant; otherwise, certain constraints are redundant
and can be removed.

Following the same line as the unconstrained case, we for-
mulate the identifiability problem as the following constrained
optimization problem.

Theorem 5. In a statistical model p(x, 0) with constrained parameter
space S={0eRK: ®@®)=0}, a parameter point aeS is globally
(locally) identifiable if and only if a is the strict global (local)
minimum point of the following constrained optimization problem

Minimize KL(, 0)

Subjectto  @(0) =0. 31

After transforming the identifiability problem into a con-
strained optimization problem, we present the following theorem.

Theorem 6. Suppose that the parameter space of the statistical
model p(x,0) is restricted to S={0ecRK: d@)=0}, acS, M(®) is
a block matrix of the form

H(0)
M) = <J(e) ) (32)

where H(0) is the Hessian matrix of KL(«, 0) and J(0) is the Jacobian
matrix of ®(0), if M(0) has constant rank in an open neighbor N(w)
of a, then the following three conditions are equivalent:

(a) aeS is not locally identifiable.
(b) The block matrix M(e) is column rank-deficient.
(c) The matrix H(a)+J ()J() is rank-deficient.

Proof. (a) = (b). Since rank]J(a)=gq, by the implicit function
theorem [35], we can see that the constrained parameter space S
is, in a neighbor N(«) of «, a manifold of k—q dimensionalities.
Thus S is locally homeomorphic to an open set of R¥~9. Suppose
o e S is not locally identifiable, there exists a differentiable non-
trivial curve I" in S,

r={6(s)eS:005)efa], 0(0)=a, —-1<s<1} (33)

along which all 6(s), —1<s <1 are local minimum points of the
optimization problem (31), i.e.,

KL(e,0(5)) =0, —-1<s<1. (34)

Taking second derivative with respect to s for Eq.(34), we have

(aKL(oc, e(s))>T@ N (@) TP?KL(a, 0(5)) (@) o 35)
00 dsz * \ds 002 ds

Moreover, since the curve T lies on the surface S, we obtain

®0(s))=0, —-1<s<1. (36)

Taking derivative with respect to s for Eq.(36), we have

ode

Combining Eq.(35) with (37), we obtain

T
oKL(@.0() ) " d*0
(T) a2 T

Ty
(g =0

ds ) (38)
abde _
20 ds

From Eq.(11), we have
oKL(ox,0(S)) _ 0KL(a,0)

a0 <_o 00

—0. (39)

0=

Evaluating Eq.(38) at s =0, we obtain

{ u'H(yu=0

J@u=0 (40)

by letting u= (de/ds)|, _, which is nonzero as I is non-trivial.
From Eq.(10) and the second order necessary condition of local
minimum point [20,21], the Hessian matrix H(a) is positive
semidefinite. Hence, Eq. (40) can be written as

M(a)yu = 0. 41)
Therefore, the block matrix M(w) is column rank-deficient.

(b) = (c). Immediate.

(c) = (a). Suppose that H(x)+JT()J(ex) is rank-deficient, there
exists a non-trivial vector u such that
(H(e)+]J" (@) (e)u =0. (42)

Since H(w) is positive semidefinite and ker(J(a)) = ker(JT(a)J(ex))
[36], we have

H(ow)u = J(a)u=0. 43)
This means
M(o)u=0. (44)

Since M(w) has constant rank in a neighbor N(a) of «, then M(0) is
rank-deficient for all @ € N(a). Let " be the smooth curve in N(«) as
follows

I'={0(s) e N(a) : M(0(s))u(s) = 0,000) =, u(0) =u, —1 <s < 1}.

(45)
We then have
Jos)u(s) =0,

Since rankJ(0) =q for all 0, u(s) is on the tangent plane of the
surface S at 0(s) [35]. Define a differentiable curve Y on S as follows

Y= {a(s)eS:@—u(s),a(O)za,u(O)zu, —-1<s< 1}. (47)

—1<s<1. (46)

ds

That is, the curve Y is on the constrained surface S passing through
o with tangent vector u(s) at 0(s). Further, from Eq.(45), we have

H@OG)uis)=0, —-1<s<1. (48)
Hence,
u'(sH@O())Hu(s) =0, —-1<s<1. (49)

Following the same calculation as Eqs.(16) and (17), we have

Fogs (uT(s)a log p(x, 0(5))> — uT($)Ea (0 log p(x, 9(8))) ~0. (50

00 00
Vareg) (uRs)W) — u"(s)H(O(s))u(s) = O. (51)
Hence, we obtain
uT(s)w =0 forae xeR" (52)

Taking derivative with respect to s for KL(a, 6(s)), we have

dKL(ee,6(s) _ (da(s)\" (oKL(ex, 6(5))
ds _< ds ) < a0 )
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. / u'(s) <7a log & (ex’ “(s))) px, wydx

—0. (53)

The equation above implies that all the points a(s), —1<s<1
on S are local minimum points of the optimization problem (31).
Therefore, by Theorem 5, a €S is not locally identifiable. ©

The identifiability result in Theorem 6 can be viewed in two
complementary ways. They are, in a geometrical viewpoint, if a € S
is not locally identifiable, then KL(«,a(s)), —1<s<1 has com-
plete flat ridge on the constrained parameter space S. From an
algebraic viewpoint, a € S is locally identifiable if the deficiency in
H(a) can be compensated by the rank of J" (o)) ().

In some practical applications, it is of interest to study the
problem of how many constraints are needed to guarantee
identifiability. The following theorem can be applied as a guideline
to quantitative experiment design.

Theorem 7. Suppose rankH(a) =r, r <k, the minimum number of
constraints needed to achieve local identifiability is k—r.

Proof. From the identifiability condition in Theorem 6 and the fact
rank(JT(a)J(a)) = rank(J()) [36], we have
k = rank(H(ot) +J (o) (cx))

< rank(H(w)) + rank(JT (o) (ex))

=Tr+q. (54)
Hence,
q=k-r. (55)
That is, the number of constraints needed to guarantee local
identifiability is at least k—r. Next we prove that the equality is

attainable. Consider the spectral decomposition [36] of the sym-
metric positive semidefinite matrix H(o):

S 0 (Ul
H(a)=(U1(l¥),U2(a))<0 O)<U§(a)>, (56)

where X(a)=diag{i;(),...,A-(o)} with () >0,i=1,....,1. We
choose a set of constraints as

®(0) =UJ ()0 +b=0. (57)

Since the Jacobian matrix J(0) of ®(0) is Ug(a), it is clear to see that

Hioo) -+ (@) e) = (U (0. Uz(a))<2(a) 0 > (UR“)) (58)
0 I )\ Ui

where I, is the identity matrix of size k—r. Hence, we have
H(a)+]" (@)()| = 41 (@)....Ar(ex) > 0. (59)

From Theorem 6, a is locally identifiable. Since the number of
constraints in Eq.(57) is k—r, this means the lower bound k—r is
tight. o©

In the final part of this section, we briefly discuss the global
identifiability problem for parameter-constrained models. A direct
result from the convex optimization theory [37] is that, if the
objective function in Eq.(31) is strictly convex with respect to
0 and the constraint function @(0) is convex, then the identifia-
bility result in Theorem 6 becomes a global one. However, the
KL(e,0) is not generally convex with respect to 0 although KL(p, q)
is convex with respect to the second argument q [38], as q is
nonlinear in 6. Thus, we cannot cast the identifiability problem
into the convex optimization theory framework, making one
difficult to derive a global criterion. Therefore, the global identifia-
bility problem remains a challenging subject in identifiability
theory.

5. Applications

In this section, we first present several simple examples from
literature to illustrate the validity of the proposed identifiability
criteria. Specific examples considered include learning machine,
Gaussian linear model with linear constraints, nonlinear regres-
sion, and RBF neural network. Further, we present three practical
models to study their identifiability property. They are GCNN
model, partially linear support vector machine (PL-SVM) model
and signal estimation with power constraints.

Example 1. Consider a statistical learning machine [39]
1 1
X,0)=——exp|—= —ax—bz}, 60
p(yIx,0) Neor P{ 20/ ) (60)

where 0 = (a, b)". The admissible parameter space is R2. Then each
0 € R? defines a PDF p(x,y, ) = p(x)p(y|x, 0) in R2. Suppose that the
true model is

1 1
Py = 5 exp| 508 37|, ®1)

T

The KLD can be calculated as [39]

KL(c,0) = / p(x,y, a)log p&x.y, a)dxdy

p(x,y.0)
_ pYIx, o)
= / p(x,y,log PO, e)dxdy
:%(a2+b2). (62)

It is easy to see that « is locally identifiable since 6 =0 is the
unique solution of the equation KL(«, 8) = 0. « is locally identifiable
by conventional KLD equation method [18,19]. We then use
Theorem 3 to test the identifiability of a. It is obvious that the
Hessian matrix H(a) =1, is strictly positive definite, « is therefore
locally identifiable. The two approaches give the same result. In
this example, we can see that, compared with the FIM method
[23], the main advantage of the KLD-based method is that we do
not need the explicit PDF p(x) since it can be eliminated from the
KLD calculation, while FIM method cannot deal with this problem
if the exact form of p(x) is not available.

Example 2. (Gaussian linear model [19,40]) Consider a simple
Gaussian linear model

y=X0+e¢, (63)

where X is an n x k design matrix with rankX < n < k, the additive
error vector e ~ N(0, X). It is well known that local identifiability
and global identifiability are synonyms in those linear models [19].
As the distribution of y depends on 0 through X6 and X is not of
column full rank, there exist several distinct values of 6 compatible
with the same distribution of y, the model is therefore unidentifi-
able. Alternatively, from Eq.(5), it is easy to see that the KLD is
given by

KL(ax, 0) :%IIXB—X(xIIZ. (64)

The Hessian matrix is H(®)=X"X for any 0, by Theorem 3, the
model is unidentifiable since X'X is rank deficient. Next we
suppose that a linear constraint A@+b =0 is imposed on model
(63), where A is a known row full-rank matrix, b is a known vector
and X"X+ATA is of full rank. We first directly show that this
parameter-constrained model is identifiable. Otherwise, there
exist two distinct parameters 0; # 0, such that

X0, = X0, and A0, +b= 0, A9, +b=0. (65)
This leads to

X"X+ATA)0, —0,)=0. (66)
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This is contradictory to the fact that X'X+A"A is of full rank. The
parameter-constrained model is therefore identifiable. Then, by
using the statement (c) of Theorem 6, the model is identifiable
since H(0)+]J'(0)J0)=X"X+ATA is of full rank. The two
approaches therefore give the same result.

Example 3. (Nonlinear regression [41]). Consider the MIMO non-
linear regression model

y=f£(X,0)+¢, (67)

where xeR", yeR™ are the input and output vectors, 6 e R,
f(x,0) is a vector-valued mapping

f(x,0) = (f1(X.0), ... n(X,0)". (68)

Suppose that the PDF p(x) is positive for a.e. X e R" and the noise
vector € ~ N(0, X). The joint PDF of x and y is

_ 1 1o Teo1,y }
p(X,y,0) = (27[)%|Z‘exp{ 5 f(x,0)) >~ (y—f(x,0)) rpx). (69)
Denote H(a) = (hg,(ax)). From Eq.(18) we have

hyp(et) = / dlog p(x,y,o) 0 log p(x,y, a) Xy, e)dxdy

90, 20,
[ (ofx) g (of (X, 00
- () s (45
where
Ax, o)  (ofix,@) of X 00\" .
o0, _( 0 T o6, ),1szsk. (71)

From Theorem 3, we can see that « is not locally identifiable if and
only if H(e) is not strictly positive definite, i.e., there is a non-zero
vector V= (v1, ..., V)" such that

VIH(o)v = S vhg,(a)v, = 0. (72)
a,b
By Eq.(70), we have
T
VvIH(oyv = / (Z viafg;"a) ) x-1 <Z viafg;"a) ) px)dx. (73)

Since p(x) is positive for a.e. X e R", a is not locally identifiable if
and only if

Z Viaff));a) =0 for ae xeR", (74)
1 1

i.e., the vectors of(x,a)/00;, i=1,...,k are linearly dependent.
The validity of this identifiability condition is consistent with our
intuition.

For a geometric interpretation of the identifiability condition,
we equivalently rewrite Eq.(74) as the following m equations

Vflv=0, i=1,...m, (75)
where

_(ofi(x,0)  ofix,0)\"
Vfi_< ®9 I8 (76)

is the gradient vector of f; with respect to 6. Each f; is unchanged
along the vector field v since Vf; is orthogonal to v in the parameter
space. In other words, each f; has completely flat ridge along this
vector filed v. It is worthwhile noting that Eqs.(74) and (75) provide a
dual interpretation for the identifiability condition. Specifically, Eq.
(74) says that the following partial derivative matrix (PDM)

_ (ofix, )
PDM_( 90; )mxk 7

is column linearly dependent. While Eq.(75) says that all the row
vectors of the PDM are orthogonal to the vector v. Moreover, the

identifiability condition is independent of the PDF p(x) and the
covariance matrix X. That is to say, even if we do not know the
explicit expressions of p(x) and X, we can still derive the identifia-
bility condition. In this example, we can see that the FIM [23] and the
KLD equation method [18,19] is not applicable since the close-form
FIM and KLD cannot be obtained.

Next, we restrict the admissible parameter space to S, and
further study the identifiability condition of the parameter-
constrained models. From Theorem 6, « is locally identifiable if
and only if the matrix M(e) defined in Eq.(32) is column full-rank.
To verify the validity of this assertion, from Eq.(19), we can see that
v(0) € kerH(0). That is, the set kerH(®) consists of all the directions
along which KL(«,0) has completely flat ridges, while the set
kerJ(0) consists of all the feasible directions. If M(a) is of column
full-rank, then the set kerM(w) is trivial. That is, there exists no
non-trivial feasible direction such that KL(«, 0) has completely flat
ridge. Hence, « is locally identifiable since « is the unique local
optimum point of the optimization problem (31).

Example 4. (RBF neural network [42]) Consider the RBF neural
network

Y =011 (X)+ - + Oy (X) +e, (78)

where y;(X) =w(lIX—p;1l) is a Gaussian RBF with center p; and
common covariance matrix X. The unknown parameter
0=(01,...,00)" eRk. ¢e~N(0,6%). It has been shown that 0 is
identifiable if and only if p;, 1 <i<k are distinct [42]. Or alter-
natively, it is clear that the PDM of model (78) is
PDM = (y{(X), ...,w(X)). From Example 3, the model is identifiable
if and only if w;(x), 1<i<k are functionally independent. This
means that the interpolation equation ¥0 = 0 has a trivial solution,
where ¥ =y wij =w(Ilp;—p;1). This condition is equivalent
to the fact that u;, 1 <i<k are distinct [43]. This verifies the
validity of Theorem 6.

Example 5. (GCNN model). In [12], a GCNN model given by
y=f(X,0)+ec=g(X,a) x h(Xx,w,c)+¢e

=e ™ i wie -’ 4 ¢ (79)
i=1

is applied to a nonlinear regression problem, where w = (wx, ...,
wn)',  €=(cq,...,cn)" and « is a positive real number. The GCNN
model f(x,0) basically consists of two submodels, namely the
knowledge-driven submodel g(x,a)=e~* which represents the
available domain knowledge and the data-driven submodel
h(x,w, )= Z};]w,-e*("*cf)2 which fits the experimental data by
making use of the RBF neural network. The two submodels are
coupled by a multiplication operation. The unknown parameter
0=(a,w,c)’ and the additive noise e ~A(0,?). The parameter
a has a physically interpretable meaning (a dampen coefficient)
which is of practical interest since its value reflects the level of the
energy dissipation in the real system. All parameters including the
physically based parameter « were learned simultaneously from
observation data. Although higher generalization capability was
obtained in comparison with other methods due to the introduc-
tion of domain knowledge, it was also observed through numerical
simulations, that it is not possible to obtain a reasonable estima-
tion for this practically important parameter «. In this example, we
will rigorously prove that the model is actually unidentifiable,
revealing that it is just the nonidentifiability that leads to ambi-
guity in parameter estimation. For clarity, we consider the follow-
ing simplified model

f(x,0) = g(X, @) x h(x,w, ) =we e ¥ +@c—ax (80)

where 0 = (a, w, ¢)", since the extension to general form Eq. (79) is
rather straightforward. Intuitively, the model is unidentifiable due
to the presence of terms we—¢ and 2c—a. From Example 3, we
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only need to check column dependence of the PDM of f(x, ). This
is easily verified by the following algebraic equation

of of of _
2£+2wca—w %_O. (81)
This implies that there is a nontrivial linear dependence among
the columns of the PDM of f(x, 8). Or equivalently,

vflv =0, (82)

where v oc (2,2wc, 1)". This implies that f has completely flat ridge
along the vector field v in parameter space. Therefore, the
parameter « is unidentifiable due to the coupling effect in the
model. The practical implication of nonidentifiability suggests that,
in order to identify the physically interpretable parameter a, the
current model structure should be reformulated or an additional
parameter constraint should be imposed on the unconstrained
GCNN model. Compared with the result in [2], the superiority of
the proposed method lies that, on the one hand, it provides a dual
interpretation of the identifiability condition which is algebraically
reasonable and geometrically comprehensible, while the result in
[2] is simply an algebraic one. On the other hand, our method
explicitly gives the observationally equivalent parameter vector v,
while [2] can only detect the redundancy status of the model.

Example 6. (PL-SVM model, [13]). The objective of nonlinear
system identification is to establish a relation between input u(t)
and output y(t) generated by an unknown target dynamical
system. Let z(t)=[y(t—1),...y(t—a),u(t),ut—1),...,u(t—b)] be
the regression vector corresponding to the output y(t) in a non-
linear autoregressive exogenous (NARX) model of order (a, b). The
task is then to estimate a nonlinear function g such that
y(t,0) =g(z(t),0)+e(t), t=1,...,N. In [13], the authors studied the
case where there is evidence that some of the regressors in the
model g(z(t),0) is linear. In other words, the nonlinearity of
g(z(t),0) does not apply over all the components of z(t), rather
a subset of it, leading to the identification of the following partially
linear model

y(t,0) = g(b(t)+a' (OP+b+e(t), (83)

where a(t) and b(t) represent the subvectors of z(t) that enter
linearly and nonlinearly into the model, respectively. In [13], the
following PL-SVM model

y(t,0) =@  (b(t)w+a"(H)p+b+e(t) (84)

is applied to approximate the unknown target system, where ¢ is
the nonlinear feature mapping from input space to infinite-
dimensional feature space and satisfies «(u, V) = ¢'(w)¢(Vv), where
k(u,v) is the kernel function. The unknown parameter
0= (w,4,b). We suppose that the additive noise e(t)~AN(0,1).
The problem addressed in this example is to determine whether or
not the linear part a”(t)g+b can be fully recovered from the model
structure since this part is of practical importance to control or
prediction purpose. The numerical experiments in [13] demon-
strated the advantages of this structured model in, e.g., better
performance results, improved generalization ability, and reduc-
tion of effective parameters. However, the identifiability issue is
not theoretically verified in [13]. It is clear that for any finite
observation data, (5, b) cannot be uniquely determined from the
unconstrained model since w contains infinitely many parameters.
To the best of our knowledge, none of the existing methods can
deal with this infinite-dimensional parameter case. The goal in this
example is to determine the precise conditions under which the
parameter vector (4,b) will be identifiable. Formally, we suppose
that a constant modulus constraint ||w|| = const is imposed on the
original unconstrained model. From Eq.(5) we can see that the KLD
criterion in this example is equivalent to the least squares
criterion. Hence, by Theorem 5, the model is identifiable if and

only if the following equivalent optimization problem has unique
minimum point.

Minimize JeTe+Lw'w

Subject toy = BW+ApB+bly +e€. (85)
Here y = (y(1),....y(N)T, e=(e(1), ...,e(N))T, A and B are matrices
with aT(i) and b'(i) as their rows, respectively, Iy is a column

vector with all its elements equal to 1, and x is a positive
regularized coefficient. This leads to the following Lagrangian

LW, b,e,p,2) = %eTe+%ﬂwTw+zT(y— Bw—Ap—biy—e), (86)

where A is the vector of Lagrange multipliers. The resulting
Karush-Kuhn-Tucker (K.K.T.) conditions [20,21] are obtained as
follows:

¥ _0=w=u 'B1

% =0= ULA =0

Z=0=l=¢ (87)

Z T
% =0=A1=0
%: 0= y= BW+Aﬂ+bUN+€

After elimination of w and €, we obtain the following system

w BB'+I) A Iy\ /2 y
AT 00 pl=10]. (88)
0% 00 b 0

Note that x~'BBT+I is always strictly positive definite, the
coefficient matrix of the above system is congruent to the following
block matrix

diag{u~"BB"+1, (A, In)"(« "BBT+1)~ (A, Iy)}. (89)

Hence, a unique solution exists for (3,b) if and only if the matrix
(A, In)"(u~'BBT+I)" (A, ly) is invertible. From elementary linear
algebra, this requires that (A, ly) is of full column rank. The practical
implication is that the linear part can be fully recovered from model
Eq.(84) unless the matrix (A, Iy) is of full column rank. The interest-
ing point in this example is that the infinitely dimensional parameter
w appears implicitly as an intermediate step, and be eliminated in
the final expression, thus avoiding the direct operations in the
infinitely dimensional feature space. This of course attributes to the
interplay of the optimization theory and the kernel trick.

Example 7. (Signal estimation with power constraints, [40]) Con-
sider the problem of estimating the discrete-time signal waveform
0= (01, 05,057, subject to constraints on the squared-modulus of
the discrete Fourier transformation (DFT) of 0. We suppose that
the sum of the squared moduli on the first frequency interval is to
be a known constant. Denote W = (w;,w;,,w3) be the 3 x3
unitary matrix of orthonormal DFT columns:

1 27 4 T
o - -
w,_ﬁ<1,e 5, e 3) s (90)
where j=+/—1. We can write the constraint as (W), = const,
where (W@), is the first entry of W6. The constraint can be
equivalently written as 671170 = const. We now specialize to the
linear observation model:

Xi = 0i + €, i=1,2, (9])

where ¢~ N(0,6?). It is obvious that the unconstrained model
(91) is unidentifiable since it is under-determinant. With the
introduction of the power constraint, we will prove that the model
is locally identifiable. The Hessian matrix of KLD is
H(o) = diag{1,1,0} and the Jacobian matrix of the constraint is
J@O)=0"11". After some algebra operations, we have
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H(o)+J (@)J ()| # 0. From Theorem 6, the constrained model is

locally identifiable.

As demonstrated before, in addition to the deep theoretical
insight, the formulation of identifiability problem within the
optimization theory framework brings several practical advan-
tages compared with existing methods. First, one can derive
identifiability criteria in the case of lost information (e.g. the p(x)
in Example 1, the p(x) and X in Example 3) while other methods
fail. Second, one is able to determine identifiability by calculating
the rank of a numerical matrix, thus avoiding the usual bottleneck
of seeking for the roots from a set of nonlinear equations. The
benefit gained is that the new results lead to a reduction of
computational complexity from NP-complete to O(k). Third, for
processing identifiability problem with infinitely dimensional
unknown parameter (see Example 6), up to now, there exists no
theoretical or methodological treatments in this aspect. As far as
the authors concerned, the proposed optimization theory frame-
work is perhaps the only suitable tool for dealing with this case.
We attribute the derivation to the interplay of the optimization
theory and the kernel trick. Nevertheless, identifiability analysis of
nonlinear models is still difficult to implement since, whatever the
method being used, the complexity increases very fast with the
number of parameters, the dimensionality of input/output spaces,
the nonlinear degree of models. Especially, in real problems with
large dimensionality and high nonlinearity, the Hessian matrix
itself is difficult to obtain. Moreover, the adoption of numerical
approximation can also result in errors. This is a common difficulty
for all existing methods. Therefore, this challenging problem is left
for the future research.

6. Conclusion

In this paper, by making use of the KLD in information theory, we
cast the identifiability problem into the optimization theory frame-
work. Several novel identifiability criteria are derived for uncon-
strained and parameter-constrained models. The results partially
answered the problem proposed by Yang et al. [2], i.e., the problem
of how many, and what types of constraints are required to produce
a unique estimation. The pros/cons of the proposed framework are
detailed discussed from both theoretical and application viewpoints.
Finally, we outline two directions below for future work:

1. One of the major objectives in identifiability theory is to obtain
a set of identifying functions and then use them to reparameterize
the model [14]. In almost all cases, such a set of functions cannot be
easily obtained by visual inspection or analytic verification. In the
present study, we propose some criteria to test parameter iden-
tifiability, but it tells nothing about reparameterization when
parameter redundancy is detected. However, it would be highly
desirable to seek for generic reparameterization methods. It is still
an open problem which is one of the directions of research into the
identifiability theory [14,29].

2. In real application scenarios, a vast variety of parameter systems
are described by time-variant ODE or PDE dynamical models
[4,5,44]. In spite of what a large literature on model identifiability,
we found rare discussions on identifiability of parameter-
constrained time-variant models. Therefore, it is worthwhile
considering the identifiability issue in those models.
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