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a b s t r a c t

This paper reports an extension of the existing investigations on determining identifiability of statistical
parameter models. By making use of the Kullback–Leibler divergence (KLD) in information theory, we cast
the identifiability problem into the optimization theory framework. This is the first work that studies the
identifiability problem from the optimization theory perspective which leads to connections in many
areas of scientific research, e.g., identifiability theory, information theory and optimization theory.
Within this new framework, we derive identifiability criteria according to the types of models. First, by
formulating the identifiability problem of unconstrained parameter models as an unconstrained
optimization problem, we derive identifiability criteria by checking the rank of the Hessian matrix of
KLD. The resulting theorems extend the existing approaches and work in arbitrary statistical models.
Second, by formulating the identifiability problem of parameter-constrained models as a constrained
optimization problem, we derive a novel criterion which has a clear algebraic and geometric
interpretation. Further, we discuss the pros/cons of the new framework from both theoretical and
application viewpoints. Several model examples from the literature are presented to examine their
identifiability property.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Identifiability is an essential requirement in system modeling
when the parameters to be estimated have a physically interpre-
table meaning [1–3]. An important part of system modeling
involves the derivation of conditions under which a given model
structure will be identifiable [1–5]. The identifiability property
describes whether there is a theoretical possibility for the unique
determination of model parameters from perfect model specifica-
tion and noise-free input–output measurements or not [1,3,4].
This property is an important aspect to reflect an interpretability
and transparency degree of the model and hence “determining
identifiability of the models should be addressed before any imple-
mentation of estimation” [2,3]. Moreover, identifiability is closely
related to the convergence of a class of estimators including the
maximum likelihood estimator (MLE) [6,7]. Lack of identifiability
gives no guarantee of convergence to the true value of parameter
and therefore usually results in severe ill-posed estimation pro-
blems [2,6], which is a critical issue if decisions are to be taken on
the basis of their numerical values [4]. Besides the ability to detect
deficient models in advance, the analysis of identifiability can also

bring practical benefits, such as insightful revealing of the rela-
tions among inputs, outputs and parameters, which can be very
useful for model structure selection and design [2,8]. Therefore,
once a model structure has been chosen, one should test identifia-
bility so as to rule out prior unidentifiable models to avoid
potential defects.

Most of previous work on system modeling has emphasized the
special features of particular model structure, the identifiability
issue is often neglected by many researchers, who start from the
experimental data and then fit a model structure to the available
data to estimate unknown parameter values. This tends to obscure
the fact that the problem of identifiability is a general and
fundamental one arising in many fields of scientific study. Gen-
erally, if a model has hierarchical structures [6,9], unobservable
state variables [1,4], latent factors [10], nuisance parameters [11]
or coupled submodels [12,13], the model may be unidentifiable. To
summarize up, in the areas of machine learning, system identifica-
tion and pattern recognition, the utility and importance of iden-
tifiability can be recognized in at least the following four aspects:

1. Statistical learning theory. Identifiability is a primary assump-
tion in all classical statistical models [14]. However, such an
assumption may be violated in a large variety of statistical
learning machines. Theoretically, the concept of identifiability
is closely related to singular learning theory [7]. A statistical
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learning machine is called singular if its Fisher information
matrix (FIM) degenerates, or equivalently, if the model is not
locally identifiable. In a singular learning machine, the standard
statistical paradigm of the Cramér-Rao bound (CRB) does not
hold [6], the MLE and the Bayesian posterior distribution are no
longer subject to Gaussian distribution even in an asymptotical
sense [6,7]. Therefore, it is imperative to check identifiability
for statistical learning theory.

2. Knowledge-based modeling. Within the context of nonlinear
system identification, a common practice is to build a “black-
box” model in order to achieve accurate prediction or control.
However, the fully nonlinear black-box model may be too
generic for some situations where there are evidences to
include a knowledge-based submodel in the complete model.
The practical rule of “do not estimate what you already know”

would require us to define an ad-hoc model structure if we
know that the real system contains a prior known part. Thus,
some or all parameters in the complete model have physically
interpretable meaning [1,3,10,12,13]; and to identify the true
values of such parameters is of practical importance because
nonuniqueness of such parameters not only means nonunique
description of the physical process but also results in comple-
tely erroneous or misleading results. One would not select
a model if its parameters cannot be uniquely determined.
Therefore, testing identifiability is an essential prerequisite in
such models.

3. Model structure learning and model selection. In some applica-
tion scenarios, one needs to implement joint model and
parameter learning, thus requiring one to learn an identifiable
model structure [10]; otherwise, the interpretability of the
learned model will be severely limited and the model selection
criteria such as AIC, BIC and MDL cannot be applied properly
[6,8]. For instance, [10] considered a sparse and identifiable
linear latent factor and linear Bayesian network model for
parsimonious analysis of multivariate data, and showed that
the identifiability is a necessary prerequisite for capturing the
correlations between the latent factors.

4. Learning algorithm and learning dynamics. In unidentifiable
parametric models, the trajectories of dynamics of learning
generated by standard gradient descent algorithm are strongly
affected by the nonidentifiability, causing plateaus or slow
manifolds [6]. It has been shown that once parameters are
attracted to unidentifiable points, the learning trajectory is very
slow to move away from them. To overcome such slow
convergence phenomenon, Amari [9] proposed a natural gra-
dient descent (NGD) algorithm, showing that the NGD method
works efficiently in such unidentifiable models.

Despite extensive literature exists on the identifiability pro-
blem and a number of identifiability criteria for various specific
models, the identifiability issue has not been resolved completely.
In this paper, we report an extension of the existing investigations
on determining identifiability of statistical parameter models in
two directions. First, in our previous studies, Yang et al. [2,12]
considered the identifiability problem in generalized-constraint
neural network (GCNN) models, and derived identifiability theo-
rems for Single-input Single-output (SISO) and Multiple-input Sin-
gle-output (MISO) models. However, their theorems cannot deal
with Multiple-input Multiple-output (MIMO) models. In [15], Qu
et al. studied a kind of GCNN model consisting of RBF neural
network and a set of linear priors (linear constraints), but the
identifiability issue has not been justified. Recently, Ran et al. [16]
generalized the concept of GCNN model and proposed a more
general generalized-constraint (GC)model. Further, the authors [16]
derived some new results for MIMO parameter learning machines.
For a detailed description of GCNN and GC models, one can see

[2,12,15,16] and the references therein. Hence, this paper is an
extension of [2,12,15,16] and we further expect to derive identifia-
bility criteria for parameter-constrained models whose parameters
are constrained by a set of nonlinear equality constraints. Second,
based on Kullback–Leibler divergence (KLD) in information theory
[17], we extend the conventional KLD equation method [18,19] and
provide an optimization theory [20,21] treatment for identifiability
analysis. To the best of our knowledge, this is the first work that
studies the problem of identifiability from the optimization theory
perspective. The resulting theorems are workable for a large
variety of models wherein other methods fail (see Sections 3 and
5 for more details). The main contribution of this paper is given
from the following two aspects:

1. From a theoretical viewpoint, we develop a novel perspective
of processing identifiability problems based on optimization
theory framework. Within the new framework, we formulate
the identifiability problem of unconstrained and parameter-
constrained models as unconstrained and constrained optimi-
zation problems, respectively. The benefit gained will be two-
fold. First, when information theory through KLD is the link,
the interplay between identifiability theory and optimization
theory (Fig. 1) is derived theoretically. Second, one is able to
achieve a geometrically perceivable insight into the identifia-
bility analysis.

2. From an application viewpoint, we derive several novel theo-
rems for determining identifiability. Based on the theorems,
one is able to deal with both unconstrained and parameter-
constrained models. Compared with existing techniques, such
as KLD equation method [18,19] and orthogonal complement
method [22], the main advantage of the new results is that one
is able to determine identifiability by calculating the rank of
a numerical matrix, thus avoiding the usual bottleneck of
seeking for the roots from a set of nonlinear equations. The
benefit gained is that the new results lead to a reduction of
complexity from NP-complete to Oðk3Þ, where k is the dimen-
sionality of parameter vector.

The remainder of this paper is organized as follows. Section 2
introduces the basic concepts and gives a concise overview of the
literature. Section 3 provides some identifiability theorems for
unconstrained parameter models. In Section 4, we provide some
identifiability theorems for parameter-constrained models. Section
5 presents some examples to verify the validity of the proposed
theorems. Section 6 concludes this paper with a brief summary.

2. Identifiability: basic concepts and existing methods

The identifiability analysis in statistical models is concerned
with the possibility of drawing inferences from observed samples
to an underlying theoretical distribution. Consider a statistical
space fℝn;sðℝnÞ; Pθg, where ℝn is the sample space, sðℝnÞ is the
s-algebra of ℝn and fPθ; θAℝkg is the parametric distribution
family in sðℝnÞ. The identifiability problem is defined in terms of
the mapping θ-Pθ being one-to-one. Following [14,16,19,23], we
give the following definitions.

Fig. 1. Schematic diagram of the relationship of identifiability theory, information
theory and optimization theory, from which information theory builds a bridge
between identifiability theory and optimization theory.
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Definition 1. A model fPθ; θAℝkg is globally identifiable if
Pθ1 ¼ Pθ2 ) θ1 ¼ θ2; 8θ1; θ2Aℝk. A model is locally identifiable if
for every θAℝk, there is an open neighborhood NðθÞ of θ such that
Pθ1 ¼ Pθ2 ) θ1 ¼ θ2; 8θ1; θ2ANðθÞ.

If a parameter point αAℝk is of particular interest, for example,
α is assumed to be the real value of the model parameter, we give
the following definition.

Definition 2. A parameter point αAℝk is globally identifiable if
Pθ ¼ Pα; θAℝk ) θ¼ α. A parameter point αAℝk is said to be
locally identifiable if there is an open neighborhood NðαÞ of α such
that Pθ ¼ Pα; θANðαÞ ) θ¼ α.

If two distinct parameter points θ1; θ2 define the same model,
we say θ1 is observationally equivalent to θ2 [23], and denote
θ1 � θ2 [14,16,19]. That is, θ1 � θ23Pθ1 ¼ Pθ2 . Note that the rela-
tion “� ” is a proper equivalent relation (reflectivity, symmetry and
transitivity) [14,16,19]. For θAℝk, we denote the equivalence class
of θ by ½θ� ¼ fθ0Aℝk : θ0 � θg.

Remark 1. From Definitions 1 and 2, one can see that identifia-
bility is a structural or intrinsic property of the model. In other
words, the presence or absence of identifiability is a feature of the
model structure, and so, is independent of the experiment data and
the inferential procedure [3,16,24].

Because of the theoretical and practical importance of iden-
tifiability analysis, a large amount of investigations have been
devoted to this study, applying various methods and techniques. In
[23], Rothenberg proved that the local identifiability of a statistical
model Pθ is equivalent to regularity of its FIM FðθÞ ¼ ðFijðθÞÞk�k;

FijðθÞ ¼ Eθ
∂ log pðx; θÞ

θi

∂ log pðx; θÞ
θj

� �
; ð1Þ

where pðx; θÞ is the probability density function (PDF) of Pθ, and Eθ
is the expectation operation evaluated at θ. As a special case, [25]
studied the connection between identifiability and information
regularity in Gaussian family based on holomorphic functions.
In [18], the author proposed a KLD equation method which needs
to solve a set of nonlinear equations, making it hard to implement
in most cases (see Theorem 1 in Section 3). In [14], Dasgupta et al.
established an analytical method for constructing new parameters
under which an unidentifiable model will be locally identifiable.
For parameter-constrained models, the first local identifiability
result was proposed in [23]. In [22], the author provided an
identifiability criterion which needs to compute the orthogonal
complement of a functional matrix, making it a hard task to
perform. In [26], Yao et al. studied the regularity and identifiability
of blind source separation (BSS) problem with constant modulus
(CM) constraints on the sources. Unfortunately, it is very difficult
to obtain a global result in more generic settings. In [23],

Rothenberg established an FIM-based criterion to test global
identifiability for exponential family. Outside the exponential
family it does not seem possible to get a necessary and sufficient
condition for global identifiability using only the FIM. In [19], the
authors proved that global identifiability is a necessary condition
for the existence of an unbiased estimator. In [27]. Martin et al.
extended this result to asymptotically unbiased estimators. They
further proved that global identifiability is a necessary condition
for the existence of a consistent estimator. The most obvious cause
of nonidentifiability is parameter redundancy, in the sense that the
model can be written in terms of a smaller set of parameters
[28,14,2,16]. In [28], Catchpole et al. introduced the concept of
parameter redundancy in the context of exponential family. They
showed that whether or not a model is parameter redundant can
be determined by checking the symbolic rank of a derivative matrix
(DM), but their DM-based method only works in the exponential
family. In order to detect parameter redundancy in more general
models, an exhaustive summary method was presented [29]
which generalized the results in [28] to a wider spectrum of
models. In [2], Yang et al. proposed a derivative functional vector
(DFV) method to examine parameter redundancy for the GCNN
models, but the DFV method is not applicable in time-variant
models. In [16], Ran et al. proposed a regular summary method
which can deal with time-variant models including a range of
ordinary differential equation (ODE) dynamical models. However,
their method cannot work in more complicit partial differential
equation (PDE) models. Recently, Hu [30] analyzed redundancy of
Bayesian classifiers whose parameters are given in a form of
functionals, not functions. The author further proved that for M-
class classification problem with reject option, the number of
independent parameters in cost matrix is M. Although the iden-
tifiability problem has been extensively studied in the literature,
identifiability issues have not been resolved fully. In Table 1, we
list the commonly used methods for checking identifiability
together with their associated parametric models.

3. Identifiability criteria for unconstrained parameter models

Essentially, nonidentifiability is the consequence of the lack of
enough “information” to discriminate among admissible para-
meter values in the model. Hence, it is natural to test identifiability
with the help of KLD, which is defined as [17]

KLðp; qÞ ¼ Ep log
pðxÞ
qðxÞ

� �
¼
Z

pðxÞlog pðxÞ
qðxÞdx; ð2Þ

where pðxÞ and qðxÞ are two PDFs on ℝn. In information theory, the
KLD is used to measure the dissimilarity between two PDFs pðxÞ
and qðxÞ [17]. While in classical statistics, the KLD arises as an

Table 1
General methods for testing identifiability of statistical parameter models.

Parameter space Framework Model Method

Unconstrained Analytical Gaussian Holomorphic function method [25]
Algebra Linear model Rank test method [31,19]

Exponential family Derivative matrix (DM) method [28]
General distribution Exhaustive summary method [29]

Derivative functional vector (DFV) method [2]
Statistics General distribution Fisher information matrix (FIM) method [23]

Statistic method [19,27]
Information theory General distribution KLD equation method [18,19]

Regular summary method [16]
Constrained Algebra Linear model Rank test method [31]

þLinear constraints
Statistical General distribution Reparameterization method [23,32]

þNonlinear constraints KLD equation method [18,19]
Orthogonal complement method [22]
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expected logarithm of the likelihood ratio, and is a measure of the
inefficiency of assuming that the distribution is pðxÞ while the true
distribution is qðxÞ [24]. Compared with the FIM, the KLD is
claimed to be a more suitable measure for identifiability analysis,
as the KLD is a function of two arguments which makes it can
simultaneously deal with global and local identifiability problems
[18,19], while FIM is the function of a single variable which makes
it can only deal with local identifiability problem [23]. Therefore,
the KLD will be a promising tool in identifiability analysis.

In this section, we focus our attention on identifiability issue
for unconstrained parameter models whose admissible parameter
space is ℝk. To proceed, a common existing criterion for testing
identifiability is stated as follows [18,19].

Theorem 1. In a statistical model pðx; θÞ, a parameter point αAℝk is
globally (locally) identifiable if and only if α is the unique solution of
the equation KLðα; θÞ ¼ 0 in ℝk (an open neighborhood of α), where

KLðα; θÞ ¼ Eα log
pðx;αÞ
pðx; θÞ

� �
¼
Z

pðx;αÞlog pðx;αÞ
pðx; θÞdx: ð3Þ

The proof can be easily verified by the facts that KLðα; θÞZ0 for
all θAℝk, KLðα;αÞ ¼ 0, and KLðα; θÞ ¼ 03pðx;αÞ ¼ pðx; θÞ for almost
everywhere (a.e.) xAℝn [17]. However, for many PDFs it is not an
easy task to determine all the solutions of the equation KLðα; θÞ ¼ 0
in a direct way [19]. To give an example, consider the m-dimen-
sional Gaussian family

pðx; θÞ ¼ 1

ð2πÞm2 Σθj j12
exp �1

2
ðx�μθÞTΣ�1

θ ðx�μθÞ
� �

; ð4Þ

where μθ is the mean vector and Σθ is the covariance matrix. The
KLD can be calculated as [17]:

KLðα; θÞ ¼ ~KLðα; θÞþ1
2
ðμθ�μαÞTΣ�1

α ðμθ�μαÞ ð5Þ

with

~KLðα; θÞ ¼ 1
2

log
Σαj j
Σθj jþTraceðΣθðΣ�1

α �Σ�1
θ ÞÞ

� �
: ð6Þ

It is easy to see that [17]

KLðα; θÞ ¼ 03μθ ¼ μα; Σθ ¼ Σα: ð7Þ

Checking the identifiability of α requires us to solve a system of
mþmðmþ1Þ=2 nonlinear equations which makes the task an NP-
complete problem [4]. Therefore, it is desirable to investigate some
effective and efficient approaches to attack this problem. For this
purpose, we cast the identifiability problem into the optimization
theory framework [20,21].

Definition 3. [20]. A point αAℝk is said to be a local minimum
point of f ðθÞ if there is a neighbor NðαÞ of α such that f ðθÞZ f ðαÞ for

all θANðαÞ. If f ðθÞ4 f ðαÞ for all θANðαÞ; θaα, then α is said to be
a strict local minimum point.

Definition 4. [20]. A point αAℝk is said to be a global minimum
point of f ðθÞ if f ðθÞZ f ðαÞ for all θAℝk. If f ðθÞ4 f ðαÞ for all
θAℝk; θaα, then α is said to be a strict global minimum point.

With the optimization theory, we can equivalently rewrite
Theorem 1 as the following theorem.

Theorem 2. In a statistical model pðx; θÞ, a parameter point αAℝk is
globally (locally) identifiable if and only if α is the strict global (local)
minimum point of the unconstrained optimization problem

MinimizefKLðα; θÞ; θAℝkg : ð8Þ
In Fig. 2, we visually illustrate the equivalence of Theorems

1 and 2 with several simple cases. As a matter of fact, the
statement of Theorem 2 can be regarded as a dual interpretation
of Theorem 1. Specifically, Theorem 1 formulates the identifiability
problem as a nonlinear equation system problem, while Theorem
2 formulates the identifiability problem as an unconstrained
optimization problem.

Therefore, with the help of the KLD, we transform the identifia-
bility problem of unconstrained parameter models into an uncon-
strained optimization problem. We now present an identifiability
criterion for unconstrained parameter models. For mathematical
simplicity, it should be noted that the interchanges of integral, limitation
and derivative are permissible throughout the paper.

Theorem 3. Suppose that pðx; θÞ is a statistical model, αAℝk, and
that the Hessian matrix

HðθÞ ¼ ∂2KLðα; θÞ
∂θi∂θj

� �
k�k

ð9Þ

of KLðα; θÞ has a constant rank in a neighbor NðαÞ of α, then αAℝk is
locally identifiable if and only if HðθÞ is strictly positive definite at α.

Proof. For sufficiency. Since

α¼ argminfKLðα; θÞ; θAℝkg; ð10Þ
by the first order necessary condition of the local minimum point
[20,21], the gradient vector ∇KLðα; θÞ of KLðα; θÞ vanishes at α. That is,
∇KLðα;αÞ : ¼∇KLðα; θÞ

��
θ ¼ α

¼ 0: ð11Þ
Apply Taylor's formula to KLðα; θÞ, we have

KLðα; θÞ ¼ KLðα;αÞþðθ�αÞTð∇KLðα;αÞÞ
þ1
2
ðθ�αÞT HðαÞðθ�αÞþοðJθ�αJ2Þ

¼ 1
2
ðθ�αÞT HðαÞðθ�αÞþοðJθ�αJ2Þ ð12Þ

where οðJθ�αJ2Þ is the higher order infinitesimal of Jθ�αJ2. Since
HðαÞ is strictly positive definite, KLðα; θÞ40 for all θANðαÞ; θaα.
Hence, α is a strict local minimum point of the optimization problem
(8). By Theorem 2, α is locally identifiable.

Fig. 2. Schematic illustration of the equivalence of Theorems 1 and 2. In (a), α is globally identifiable. In (b), α is unidentifiable. In (c), α is locally identifiable, but is not
globally identifiable.
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For necessity. Since
R
pðx; θÞdx¼ 1; 8θAℝk, by interchange of

integral and derivative, we have

Eθ
1

pðx; θÞ
∂2pðx; θÞ
∂θi∂θj

� �
¼
Z

∂2pðx; θÞ
∂θi∂θj

dx

¼ ∂2
R
pðx; θÞdx
∂θi∂θj

¼ ∂21
∂θi∂θj

¼ 0: ð13Þ

By simple calculation, we obtain

∂2 log pðx; θÞ
∂θi∂θj

¼ �∂ log pðx; θÞ
∂θi

∂ log pðx; θÞ
∂θj

þ 1
pðx; θÞ

∂2pðx; θÞ
∂θi∂θj

: ð14Þ

Hence,

Eθ
∂2 log pðx; θÞ

∂θi∂θj

� �
¼ �Eθ

∂ log pðx; θÞ
∂θi

∂ log pðx; θÞ
∂θj

� �
: ð15Þ

By interchange of integral, limitation and derivative, we have

Eα
∂ log pðx; θÞ

∂θ

� �
¼
Z

pðx;αÞ ∂ log pðx; θÞ
∂θ

� �����
θ ¼ α

dx

¼
Z

∂pðx; θÞ
∂θ

� �����
θ ¼ α

dx

¼ ∂
R
pðx; θÞdx
∂θ

����
θ ¼ α

¼ ∂1
∂θ

����
θ ¼ α

¼ 0 ð16Þ

and

HðαÞ ¼ ∂2KLðα; θÞ
∂θ2

����
θ ¼ α

¼ �∂2
R
pðx;αÞlog pðx; θÞdx

∂θ2

����
θ ¼ α

¼ �
Z

∂2ðpðx;αÞlog pðx; θÞÞ
∂θ2

dx
� �����

θ ¼ α

¼ �
Z

pðx;αÞ ∂2 log pðx; θÞ
∂θ2

� �����
θ ¼ α

dx

¼ �Eα
∂2 log pðx; θÞ

∂θ2

� �

¼ Eα
∂ log pðx; θÞ

∂θ
∂ log pðx; θÞ

∂θT

� �
: ð17Þ

Hence,

HðαÞ ¼ Covα
∂ log pðx; θÞ

∂θ

� �
; ð18Þ

where Covα is the covariance operation evaluated at α.
Suppose HðαÞ is not strictly positive definite, there is a non-

trivial vector vðθÞa0; θANðαÞ, such that

vTðθÞHðθÞvðθÞ ¼ 0; θANðαÞ: ð19Þ
Define a differentiable curve Γ as

Γ¼ θðsÞANðαÞ : dθðsÞ
ds

¼ vðθðsÞÞ; θð0Þ ¼ α; �1oso1
� �

: ð20Þ

Following the same calculation as Eq.(16), we have

Eθ
∂ log pðx; θÞ

∂θ

� �
¼ 0: ð21Þ

Thus, the expectation and variance of vTðθÞ ∂ log pðx;θÞ
∂θ

	 

are as

follows:

Eθ vTðθÞ ∂ log pðx; θÞ
∂θ

� �� �
¼ vTðθÞEθ ∂ log pðx; θÞ

∂θ

� �
¼ 0;

Varθ vTðθÞ ∂ log pðx; θÞ
∂θ

� �� �
¼ vTðθÞ Covθ

∂ log pðx; θÞ
∂θ

� �� �
vðθÞ

¼ vTðθÞHðθÞvðθÞ ¼ 0; θANðαÞ: ð22Þ

This implies that

vTðθÞ ∂ log pðx; θÞ
∂θ

� �
¼ 0 for a:e: xAℝn: ð23Þ

Now, for θðsÞAΓ, the following equation

dlogpðx; θðsÞÞ
ds

¼ ∂ log pðx; θðsÞÞ
∂θ

dθðsÞ
ds

¼ vTðθðsÞÞ∂ log pðx; θðsÞÞ
∂θ

¼ 0 ð24Þ
holds for all �1oso1. That is,

pðx; θðsÞÞ ¼ const; �1oso1: ð25Þ
Thus pðx; θðsÞÞ is unchanged for all points θðsÞAΓ; �1oso1. This
means all the parameters θðsÞ in Γ are local minimum points of the
optimization problem (8). Therefore, by Theorem 2, α is not locally
identifiable. □

We present a geometrical interpretation for the identifiability
condition in Theorem 3 For a matrix A, we denote
kerA¼ fu : Au¼ 0g to be its kernel space. From Eq.(22), we have
vðθÞAkerHðθÞ. That is, the set kerHðθÞ consists of the smooth
curves along which KLðα; θðsÞÞ; �1oso1 has completely flat
ridge in ℝk. However, the conventional KLD equation method
[18,19] cannot provide us such geometrical sight.

Most of previous studies on identifiability problem concerned
mainly with local identifiability. Up to now, few investigations
have been reported on how to examine global identifiability.
However, in some cases, we are more interested in global iden-
tifiability rather than simply local identifiability [2,16]. Unfortu-
nately, it is very difficult to obtain global results in generic
statistical settings. Based on Theorem 3, we propose a global result
as follows. Compared with the global results in [23,28], our result
is valid for any statistical model without restricting to exponential
family.

Theorem 4. Suppose that the Hessian matrix HðθÞ of KLðα; θÞ is
strictly positive definite for all θAℝk, θaα, then α is globally
identifiable.

Proof. Apply Taylor's formula to KLðα; θÞ and from Eq.(12), we have

KLðα; θÞ ¼ 1
2
ðθ�αÞTHðθnÞðθ�αÞ; ð26Þ

where

HðθnÞ ¼ ∂2KLðα; θÞ
∂θ2

����
θ ¼ θn

; θn ¼ ð1�tÞαþtθ; 0oto1 : ð27Þ

Since HðθÞ is strictly positive definite for each θAℝk, θaα,

KLðα; θÞ40 for any θaα: ð28Þ
That is, α is the strict global minimum point of the optimization
problem (8). By Theorem 2, α is globally identifiable. □

4. Identifiability criteria for parameter-constrained models

If the parameter in the unconstrained model is unidentifiable,
we can change the nature of modeling approach to make it
identifiable. Traditionally, there are two approaches to achieve
this purpose. The first approach is to introduce a priori distribution
on the unknown parameter to be estimated, and to cast the
estimation problem into a Bayesian framework [24,33]. The second
approach is to impose some deterministic constraints (e.g. func-
tional constraints [22,23,32], sparsity constraints [10], monotoni-
city constraints [34,15], order constraints [15], etc.) on the
unknown parameter, and to result in a parameter estimation
problem with reduced dimensions [23,32].
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In this section, we focus on the identifiability problem for
statistical models with nonlinear equality constraints. Formally,
we suppose that the admissible parameter space is restricted to

S¼ fθAℝk : ΦðθÞ ¼ 0g; ð29Þ
where ΦðθÞ ¼ ðφ1ðθÞ;⋯;φqðθÞÞ and φiðθÞ; 1r irq possess contin-
uous partial derivatives. We also suppose that the rank of the
Jacobian matrix

JðθÞ ¼ ∂Φ
∂θ

¼ ∂φi

∂θj

� �
q�k

ð30Þ

of ΦðθÞ is q for all θ. This assumption means that the constraints
are non-redundant; otherwise, certain constraints are redundant
and can be removed.

Following the same line as the unconstrained case, we for-
mulate the identifiability problem as the following constrained
optimization problem.

Theorem 5. In a statistical model pðx; θÞ with constrained parameter
space S¼ fθAℝk : ΦðθÞ ¼ 0g, a parameter point αAS is globally
(locally) identifiable if and only if α is the strict global (local)
minimum point of the following constrained optimization problem

Minimize KLðα; θÞ
Subject to ΦðθÞ ¼ 0: ð31Þ

After transforming the identifiability problem into a con-
strained optimization problem, we present the following theorem.

Theorem 6. Suppose that the parameter space of the statistical
model pðx; θÞ is restricted to S¼ fθAℝk : ΦðθÞ ¼ 0g, αAS, MðθÞ is
a block matrix of the form

MðθÞ ¼
HðθÞ
JðθÞ

 !
; ð32Þ

where HðθÞ is the Hessian matrix of KLðα; θÞ and JðθÞ is the Jacobian
matrix of ΦðθÞ, if MðθÞ has constant rank in an open neighbor NðαÞ
of α, then the following three conditions are equivalent:

(a) αAS is not locally identifiable.
(b) The block matrix MðαÞ is column rank-deficient.
(c) The matrix HðαÞþJTðαÞJðαÞ is rank-deficient.

Proof. ðaÞ ) ðbÞ. Since rank JðαÞ ¼ q, by the implicit function
theorem [35], we can see that the constrained parameter space S
is, in a neighbor NðαÞ of α, a manifold of k�q dimensionalities.
Thus S is locally homeomorphic to an open set of ℝk�q. Suppose
αAS is not locally identifiable, there exists a differentiable non-
trivial curve Γ in S,
Γ¼ fθðsÞAS : θðsÞA ½α�; θð0Þ ¼ α; �1oso1g ð33Þ
along which all θðsÞ; �1oso1 are local minimum points of the
optimization problem (31), i.e.,

KLðα; θðsÞÞ ¼ 0; �1oso1: ð34Þ
Taking second derivative with respect to s for Eq.(34), we have

∂KLðα; θðsÞÞ
∂θ

� �Td2θ
ds2

þ dθ
ds

� �T∂2KLðα; θðsÞÞ
∂θ2

dθ
ds

� �
¼ 0: ð35Þ

Moreover, since the curve Γ lies on the surface S, we obtain

ΦðθðsÞÞ ¼ 0; �1oso1: ð36Þ
Taking derivative with respect to s for Eq.(36), we have

∂Φ
∂θ

dθ
ds

¼ 0: ð37Þ

Combining Eq.(35) with (37), we obtain

∂KLðα;θðsÞÞ
∂θ

	 
T
d2θ
ds2 þ dθ

ds

� �T∂2KLðα;θðsÞÞ
∂θ2

dθ
ds

� �¼ 0

∂Φ
∂θ

dθ
ds ¼ 0

8><
>: : ð38Þ

From Eq.(11), we have

∂KLðα; θðsÞÞ
∂θ

����
s ¼ 0

¼ ∂KLðα; θÞ
∂θ

����
θ ¼ α

¼ 0: ð39Þ

Evaluating Eq.(38) at s¼ 0, we obtain

uTHðαÞu¼ 0
JðαÞu¼ 0

(
ð40Þ

by letting u¼ dθ=ds
� ���

s ¼ 0 which is nonzero as Γ is non-trivial.
From Eq.(10) and the second order necessary condition of local
minimum point [20,21], the Hessian matrix HðαÞ is positive
semidefinite. Hence, Eq. (40) can be written as

MðαÞu¼ 0: ð41Þ
Therefore, the block matrix MðαÞ is column rank-deficient.

ðbÞ ) ðcÞ: Immediate.
ðcÞ ) ðaÞ. Suppose that HðαÞþ JTðαÞJðαÞ is rank-deficient, there

exists a non-trivial vector u such that

ðHðαÞþ JTðαÞJðαÞÞu¼ 0: ð42Þ
Since HðαÞ is positive semidefinite and kerðJðαÞÞ ¼ kerðJTðαÞJðαÞÞ
[36], we have

HðαÞu¼ JðαÞu¼ 0: ð43Þ
This means

MðαÞu¼ 0: ð44Þ
Since MðαÞ has constant rank in a neighbor NðαÞ of α, then MðθÞ is
rank-deficient for all θANðαÞ. Let Γ be the smooth curve in NðαÞ as
follows

Γ ¼ fθðsÞANðαÞ : MðθðsÞÞuðsÞ ¼ 0; θð0Þ ¼ α;uð0Þ ¼ u; �1oso1g:
ð45Þ

We then have

JðθðsÞÞuðsÞ � 0; �1oso1: ð46Þ
Since rankJðθÞ ¼ q for all θ, uðsÞ is on the tangent plane of the
surface S at θðsÞ [35]. Define a differentiable curve ϒ on S as follows

ϒ¼ sðsÞAS :
dsðsÞ
ds

¼ uðsÞ;sð0Þ ¼ α;uð0Þ ¼ u; �1oso1
� �

: ð47Þ

That is, the curve ϒ is on the constrained surface S passing through
α with tangent vector uðsÞ at θðsÞ. Further, from Eq.(45), we have

HðθðsÞÞuðsÞ ¼ 0; �1oso1: ð48Þ
Hence,

uTðsÞHðθðsÞÞuðsÞ ¼ 0; �1oso1: ð49Þ
Following the same calculation as Eqs.(16) and (17), we have

EθðsÞ uTðsÞ∂ log pðx; θðsÞÞ
∂θ

� �
¼ uTðsÞEθðsÞ ∂ log pðx; θðsÞÞ

∂θ

� �
¼ 0; ð50Þ

VarθðsÞ uTðsÞ∂ log pðx; θ sð ÞÞ
∂θ

� �
¼ uTðsÞHðθðsÞÞuðsÞ ¼ 0: ð51Þ

Hence, we obtain

uTðsÞ∂ log pðx; θðsÞÞ
∂θ

¼ 0 for a:e: xAℝn: ð52Þ

Taking derivative with respect to s for KLðα;rðsÞÞ, we have

dKLðα;rðsÞÞ
ds

¼ drðsÞ
ds

� �T ∂KLðα;rðsÞÞ
∂θ

� �
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¼ �
Z

uTðsÞ ∂ log pðx;rðsÞÞ
∂θ

� �
pðx;αÞdx

¼ 0: ð53Þ

The equation above implies that all the points rðsÞ; �1oso1
on S are local minimum points of the optimization problem (31).
Therefore, by Theorem 5, αAS is not locally identifiable. □

The identifiability result in Theorem 6 can be viewed in two
complementary ways. They are, in a geometrical viewpoint, if αAS
is not locally identifiable, then KLðα;rðsÞÞ; �1oso1 has com-
plete flat ridge on the constrained parameter space S. From an
algebraic viewpoint, αAS is locally identifiable if the deficiency in
HðαÞ can be compensated by the rank of JTðαÞJðαÞ.

In some practical applications, it is of interest to study the
problem of how many constraints are needed to guarantee
identifiability. The following theorem can be applied as a guideline
to quantitative experiment design.

Theorem 7. Suppose rankHðαÞ ¼ r; rrk, the minimum number of
constraints needed to achieve local identifiability is k�r.

Proof. From the identifiability condition in Theorem 6 and the fact
rankðJTðαÞJðαÞÞ ¼ rankðJðαÞÞ [36], we have

k¼ rankðHðαÞþ JTðαÞJðαÞÞ
rrankðHðαÞÞþrankðJTðαÞJðαÞÞ
¼ rþq: ð54Þ

Hence,

qZk�r: ð55Þ
That is, the number of constraints needed to guarantee local
identifiability is at least k�r. Next we prove that the equality is
attainable. Consider the spectral decomposition [36] of the sym-
metric positive semidefinite matrix HðαÞ:

HðαÞ ¼ ðU1ðαÞ;U2ðαÞÞ
ΣðαÞ 0
0 0

� � UT
1ðαÞ

UT
2ðαÞ

 !
; ð56Þ

where ΣðαÞ ¼ diagfλ1ðαÞ;…; λrðαÞg with λiðαÞ40; i¼ 1;…; r. We
choose a set of constraints as

ΦðθÞ ¼UT
2ðαÞθþb¼ 0: ð57Þ

Since the Jacobian matrix JðθÞ of ΦðθÞ is UT
2ðαÞ, it is clear to see that

HðαÞþJTðαÞJðαÞ ¼ ðU1ðαÞ;U2ðαÞÞ
ΣðαÞ 0
0 Ik� r

 !
UT

1ðαÞ
UT

2ðαÞ

 !
ð58Þ

where Ik� r is the identity matrix of size k�r. Hence, we have

HðαÞþ JTðαÞJðαÞ
��� ���¼ λ1ðαÞ…λrðαÞ40: ð59Þ

From Theorem 6, α is locally identifiable. Since the number of
constraints in Eq.(57) is k�r, this means the lower bound k�r is
tight. □

In the final part of this section, we briefly discuss the global
identifiability problem for parameter-constrained models. A direct
result from the convex optimization theory [37] is that, if the
objective function in Eq.(31) is strictly convex with respect to
θ and the constraint function ΦðθÞ is convex, then the identifia-
bility result in Theorem 6 becomes a global one. However, the
KLðα; θÞ is not generally convex with respect to θ although KLðp; qÞ
is convex with respect to the second argument q [38], as q is
nonlinear in θ. Thus, we cannot cast the identifiability problem
into the convex optimization theory framework, making one
difficult to derive a global criterion. Therefore, the global identifia-
bility problem remains a challenging subject in identifiability
theory.

5. Applications

In this section, we first present several simple examples from
literature to illustrate the validity of the proposed identifiability
criteria. Specific examples considered include learning machine,
Gaussian linear model with linear constraints, nonlinear regres-
sion, and RBF neural network. Further, we present three practical
models to study their identifiability property. They are GCNN
model, partially linear support vector machine (PL-SVM) model
and signal estimation with power constraints.

Example 1. Consider a statistical learning machine [39]

pðyjx; θÞ ¼ 1ffiffiffiffiffiffi
2π

p exp �1
2
ðy�ax�bÞ2

� �
; ð60Þ

where θ¼ ða; bÞT. The admissible parameter space is ℝ2. Then each
θAℝ2 defines a PDF pðx; y; θÞ ¼ pðxÞpðyjx; θÞ in ℝ2. Suppose that the
true model is

pðx; y;αÞ ¼ 1
2π

exp �1
2
ðx2þy2Þ

� �
: ð61Þ

The KLD can be calculated as [39]

KLðα; θÞ ¼
Z

pðx; y;αÞlog pðx; y;αÞ
pðx; y; θÞdxdy

¼
Z

pðx; y;αÞlog pðyjx;αÞ
pðyjx; θÞdxdy

¼ 1
2
ða2þb2Þ: ð62Þ

It is easy to see that α is locally identifiable since θ¼ 0 is the
unique solution of the equation KLðα; θÞ ¼ 0. α is locally identifiable
by conventional KLD equation method [18,19]. We then use
Theorem 3 to test the identifiability of α. It is obvious that the
Hessian matrix HðαÞ ¼ I2 is strictly positive definite, α is therefore
locally identifiable. The two approaches give the same result. In
this example, we can see that, compared with the FIM method
[23], the main advantage of the KLD-based method is that we do
not need the explicit PDF pðxÞ since it can be eliminated from the
KLD calculation, while FIM method cannot deal with this problem
if the exact form of pðxÞ is not available.

Example 2. (Gaussian linear model [19,40]) Consider a simple
Gaussian linear model

y¼ Xθþϵ; ð63Þ
where X is an n� k design matrix with rankXonok, the additive
error vector ϵ�N ð0; ΣÞ. It is well known that local identifiability
and global identifiability are synonyms in those linear models [19].
As the distribution of y depends on θ through Xθ and X is not of
column full rank, there exist several distinct values of θ compatible
with the same distribution of y, the model is therefore unidentifi-
able. Alternatively, from Eq.(5), it is easy to see that the KLD is
given by

KLðα; θÞ ¼ 1
2

Xθ�Xαk k2: ð64Þ

The Hessian matrix is HðθÞ ¼XTX for any θ, by Theorem 3, the
model is unidentifiable since XTX is rank deficient. Next we
suppose that a linear constraint Aθþb¼ 0 is imposed on model
(63), where A is a known row full-rank matrix, b is a known vector
and XTXþATA is of full rank. We first directly show that this
parameter-constrained model is identifiable. Otherwise, there
exist two distinct parameters θ1aθ2 such that

Xθ1 ¼Xθ2 and Aθ1þb¼ 0; Aθ2þb¼ 0: ð65Þ
This leads to

ðXTXþATAÞðθ2�θ1Þ ¼ 0: ð66Þ
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This is contradictory to the fact that XTXþATA is of full rank. The
parameter-constrained model is therefore identifiable. Then, by
using the statement (c) of Theorem 6, the model is identifiable
since HðθÞþ JTðθÞJðθÞ ¼XTXþATA is of full rank. The two
approaches therefore give the same result.

Example 3. (Nonlinear regression [41]). Consider the MIMO non-
linear regression model

y¼ fðx; θÞþϵ; ð67Þ
where xAℝn, yAℝm are the input and output vectors, θAℝk,
fðx; θÞ is a vector-valued mapping

fðx; θÞ ¼ ðf 1ðx; θÞ; …; f mðx; θÞÞT: ð68Þ
Suppose that the PDF pðxÞ is positive for a.e. xAℝn and the noise
vector ϵ�N 0;Σð Þ. The joint PDF of x and y is

pðx; y; θÞ ¼ 1

ð2πÞm2 Σj j
exp �1

2
ðy�fðx; θÞÞTΣ�1ðy�fðx; θÞÞ

� �
pðxÞ: ð69Þ

Denote HðαÞ ¼ ðhabðαÞÞ. From Eq.(18) we have

habðαÞ ¼
Z

∂ log pðx;y;αÞ
∂θa

∂ log pðx; y;αÞ
∂θb

p x; y;αð Þdxdy

¼
Z

∂fðx;αÞ
∂θa

� �T

Σ�1 ∂fðx;αÞ
∂θb

� �
pðxÞdx; ð70Þ

where

∂fðx;αÞ
∂θi

¼ ∂f 1ðx;αÞ
∂θi

;⋯;
∂f mðx;αÞ

∂θi

� �T

;1r irk: ð71Þ

From Theorem 3, we can see that α is not locally identifiable if and
only if HðαÞ is not strictly positive definite, i.e., there is a non-zero
vector v¼ ðv1;…; vkÞT such that

vTHðαÞv¼∑
a;b
vahabðαÞvb ¼ 0: ð72Þ

By Eq.(70), we have

vTHðαÞv¼
Z

∑
i
vi
∂fðx;αÞ
∂θi

 !T

Σ�1 ∑
i
vi
∂fðx;αÞ
∂θi

 !
pðxÞdx: ð73Þ

Since pðxÞ is positive for a.e. xAℝn, α is not locally identifiable if
and only if

∑
i
vi
∂fðx;αÞ
∂θi

¼ 0 for a:e: xAℝn; ð74Þ

i.e., the vectors ∂fðx;αÞ=∂θi; i¼ 1;…; k are linearly dependent.
The validity of this identifiability condition is consistent with our
intuition.

For a geometric interpretation of the identifiability condition,
we equivalently rewrite Eq.(74) as the following m equations

∇f Ti v¼ 0; i¼ 1;…;m; ð75Þ
where

∇f i ¼
∂f iðx; θÞ
∂θ1

; …;
∂f iðx; θÞ
∂θk

� �T

; ð76Þ

is the gradient vector of f i with respect to θ. Each f i is unchanged
along the vector field v since ∇f i is orthogonal to v in the parameter
space. In other words, each f i has completely flat ridge along this
vector filed v. It is worthwhile noting that Eqs.(74) and (75) provide a
dual interpretation for the identifiability condition. Specifically, Eq.
(74) says that the following partial derivative matrix (PDM)

PDM¼ ∂f iðx;αÞ
∂θj

� �
m�k

ð77Þ

is column linearly dependent. While Eq.(75) says that all the row
vectors of the PDM are orthogonal to the vector v. Moreover, the

identifiability condition is independent of the PDF pðxÞ and the
covariance matrix Σ. That is to say, even if we do not know the
explicit expressions of pðxÞ and Σ, we can still derive the identifia-
bility condition. In this example, we can see that the FIM [23] and the
KLD equation method [18,19] is not applicable since the close-form
FIM and KLD cannot be obtained.

Next, we restrict the admissible parameter space to S, and
further study the identifiability condition of the parameter-
constrained models. From Theorem 6, α is locally identifiable if
and only if the matrix MðαÞ defined in Eq.(32) is column full-rank.
To verify the validity of this assertion, from Eq.(19), we can see that
vðθÞAkerHðθÞ. That is, the set kerHðθÞ consists of all the directions
along which KLðα; θÞ has completely flat ridges, while the set
kerJðθÞ consists of all the feasible directions. If MðαÞ is of column
full-rank, then the set kerMðαÞ is trivial. That is, there exists no
non-trivial feasible direction such that KLðα; θÞ has completely flat
ridge. Hence, α is locally identifiable since α is the unique local
optimum point of the optimization problem (31).

Example 4. (RBF neural network [42]) Consider the RBF neural
network

y¼ θ1ψ1ðxÞþ⋯þθkψkðxÞþϵ; ð78Þ
where ψ iðxÞ ¼ ψðJx�μi J Þ is a Gaussian RBF with center μi and
common covariance matrix Σ. The unknown parameter
θ¼ ðθ1;…; θkÞTAℝk. ϵ�N ð0;s2Þ. It has been shown that θ is
identifiable if and only if μi; 1r irk are distinct [42]. Or alter-
natively, it is clear that the PDM of model (78) is
PDM¼ ðψ1ðxÞ; …;ψkðxÞÞ. From Example 3, the model is identifiable
if and only if ψ iðxÞ; 1r irk are functionally independent. This
means that the interpolation equation Ψθ¼ 0 has a trivial solution,
where Ψ ¼ ðψ ijÞk�k, ψ ij ¼ ψðJμi�μj J Þ. This condition is equivalent
to the fact that μi; 1r irk are distinct [43]. This verifies the
validity of Theorem 6.

Example 5. (GCNN model). In [12], a GCNN model given by

y¼ f ðx; θÞþϵ¼ gðx; αÞ � hðx;w; cÞþϵ

¼ e�αx ∑
n

i ¼ 1
wie� x� cið Þ2 þϵ ð79Þ

is applied to a nonlinear regression problem, where w¼ ðw1;…;

wnÞT; c¼ ðc1;…; cnÞT and α is a positive real number. The GCNN
model f ðx; θÞ basically consists of two submodels, namely the
knowledge-driven submodel gðx; αÞ ¼ e�αx which represents the
available domain knowledge and the data-driven submodel
hðx;w; cÞ ¼∑n

i ¼ 1wie�ðx� ciÞ2 which fits the experimental data by
making use of the RBF neural network. The two submodels are
coupled by a multiplication operation. The unknown parameter
θ¼ ðα;w; cÞT and the additive noise ϵ�N ð0;s2Þ. The parameter
α has a physically interpretable meaning (a dampen coefficient)
which is of practical interest since its value reflects the level of the
energy dissipation in the real system. All parameters including the
physically based parameter α were learned simultaneously from
observation data. Although higher generalization capability was
obtained in comparison with other methods due to the introduc-
tion of domain knowledge, it was also observed through numerical
simulations, that it is not possible to obtain a reasonable estima-
tion for this practically important parameter α. In this example, we
will rigorously prove that the model is actually unidentifiable,
revealing that it is just the nonidentifiability that leads to ambi-
guity in parameter estimation. For clarity, we consider the follow-
ing simplified model

f ðx; θÞ ¼ gðx;αÞ � hðx;w; cÞ ¼we� c2 e�x2 þð2c�αÞx; ð80Þ
where θ¼ ðα;w; cÞT, since the extension to general form Eq. (79) is
rather straightforward. Intuitively, the model is unidentifiable due
to the presence of terms we� c2 and 2c�α. From Example 3, we
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only need to check column dependence of the PDM of f ðx; θÞ. This
is easily verified by the following algebraic equation

2
∂f
∂α

þ2wc
∂f
∂w

þ∂f
∂c

¼ 0: ð81Þ

This implies that there is a nontrivial linear dependence among
the columns of the PDM of f ðx; θÞ. Or equivalently,
∇f Tv¼ 0; ð82Þ
where vpð2;2wc;1ÞT. This implies that f has completely flat ridge
along the vector field v in parameter space. Therefore, the
parameter α is unidentifiable due to the coupling effect in the
model. The practical implication of nonidentifiability suggests that,
in order to identify the physically interpretable parameter α, the
current model structure should be reformulated or an additional
parameter constraint should be imposed on the unconstrained
GCNN model. Compared with the result in [2], the superiority of
the proposed method lies that, on the one hand, it provides a dual
interpretation of the identifiability condition which is algebraically
reasonable and geometrically comprehensible, while the result in
[2] is simply an algebraic one. On the other hand, our method
explicitly gives the observationally equivalent parameter vector v,
while [2] can only detect the redundancy status of the model.

Example 6. (PL-SVM model, [13]). The objective of nonlinear
system identification is to establish a relation between input uðtÞ
and output yðtÞ generated by an unknown target dynamical
system. Let zðtÞ ¼ yðt�1Þ;…; yðt�aÞ;uðtÞ;uðt�1Þ;…;uðt�bÞ� �

be
the regression vector corresponding to the output yðtÞ in a non-
linear autoregressive exogenous (NARX) model of order ða; bÞ. The
task is then to estimate a nonlinear function g such that
yðt; θÞ ¼ gðzðtÞ; θÞþϵðtÞ; t ¼ 1;…;N. In [13], the authors studied the
case where there is evidence that some of the regressors in the
model gðzðtÞ; θÞ is linear. In other words, the nonlinearity of
gðzðtÞ; θÞ does not apply over all the components of zðtÞ, rather
a subset of it, leading to the identification of the following partially
linear model

yðt; θÞ ¼ gðbðtÞÞþaTðtÞβþbþϵðtÞ; ð83Þ
where aðtÞ and bðtÞ represent the subvectors of zðtÞ that enter
linearly and nonlinearly into the model, respectively. In [13], the
following PL-SVM model

yðt; θÞ ¼ φTðbðtÞÞwþaTðtÞβþbþϵðtÞ ð84Þ
is applied to approximate the unknown target system, where φ is
the nonlinear feature mapping from input space to infinite-
dimensional feature space and satisfies κðu;vÞ ¼ φTðuÞφðvÞ, where
κðu; vÞ is the kernel function. The unknown parameter
θ¼ ðw; β; bÞT. We suppose that the additive noise ϵðtÞ �N ð0;1Þ.
The problem addressed in this example is to determine whether or
not the linear part aTðtÞβþb can be fully recovered from the model
structure since this part is of practical importance to control or
prediction purpose. The numerical experiments in [13] demon-
strated the advantages of this structured model in, e.g., better
performance results, improved generalization ability, and reduc-
tion of effective parameters. However, the identifiability issue is
not theoretically verified in [13]. It is clear that for any finite
observation data, ðβ; bÞ cannot be uniquely determined from the
unconstrained model since w contains infinitely many parameters.
To the best of our knowledge, none of the existing methods can
deal with this infinite-dimensional parameter case. The goal in this
example is to determine the precise conditions under which the
parameter vector ðβ; bÞ will be identifiable. Formally, we suppose
that a constant modulus constraint w ¼ constkk is imposed on the
original unconstrained model. From Eq.(5) we can see that the KLD
criterion in this example is equivalent to the least squares
criterion. Hence, by Theorem 5, the model is identifiable if and

only if the following equivalent optimization problem has unique
minimum point.

Minimize 1
2ϵ

Tϵþ1
2μw

Tw

Subject to y¼ BwþAβþbINþϵ: ð85Þ
Here y¼ ðyð1Þ;…; yðNÞÞT, ϵ¼ ðϵð1Þ;…; ϵðNÞÞT, A and B are matrices
with aTðiÞ and bTðiÞ as their rows, respectively, IN is a column
vector with all its elements equal to 1, and μ is a positive
regularized coefficient. This leads to the following Lagrangian

ℒðw; b; ϵ; β; λÞ ¼ 1
2
ϵTϵþ1

2
μwTwþλTðy�Bw�Aβ�bIN�ϵÞ; ð86Þ

where λ is the vector of Lagrange multipliers. The resulting
Karush-Kuhn-Tucker (K.K.T.) conditions [20,21] are obtained as
follows:

∂ℒ
∂w ¼ 0 ) w¼ μ�1BTλ
∂ℒ
∂b ¼ 0 ) ITNλ¼ 0
∂ℒ
∂ϵ ¼ 0 ) λ¼ ϵ
∂ℒ
∂β ¼ 0 ) ATλ¼ 0
∂ℒ
∂λ ¼ 0 ) y¼ BwþAβþbINþϵ

8>>>>>>>><
>>>>>>>>:

ð87Þ

After elimination of w and ϵ, we obtain the following system

ðμ�1BBTþIÞ A IN

AT 0 0
ITN 0 0

0
BB@

1
CCA

λ

β

b

0
B@

1
CA¼

y
0
0

0
B@

1
CA: ð88Þ

Note that μ�1BBTþI is always strictly positive definite, the
coefficient matrix of the above system is congruent to the following
block matrix

diagfμ�1BBTþI; ðA; INÞTðμ�1BBTþIÞ�1ðA; INÞg: ð89Þ
Hence, a unique solution exists for ðβ; bÞ if and only if the matrix
ðA; INÞTðμ�1BBTþIÞ�1ðA; INÞ is invertible. From elementary linear
algebra, this requires that ðA; INÞ is of full column rank. The practical
implication is that the linear part can be fully recovered from model
Eq.(84) unless the matrix ðA; INÞ is of full column rank. The interest-
ing point in this example is that the infinitely dimensional parameter
w appears implicitly as an intermediate step, and be eliminated in
the final expression, thus avoiding the direct operations in the
infinitely dimensional feature space. This of course attributes to the
interplay of the optimization theory and the kernel trick.

Example 7. (Signal estimation with power constraints, [40]) Con-
sider the problem of estimating the discrete-time signal waveform
θ¼ ðθ1; θ2; θ3ÞT, subject to constraints on the squared-modulus of
the discrete Fourier transformation (DFT) of θ. We suppose that
the sum of the squared moduli on the first frequency interval is to
be a known constant. Denote W¼ ðw1;w2;w3Þ be the 3� 3
unitary matrix of orthonormal DFT columns:

wi ¼
1ffiffiffi
3

p 1; e� j2πi3 ; e� j4πi3
	 
T

; ð90Þ

where j¼
ffiffiffiffiffiffiffiffi
�1

p
. We can write the constraint as ðWθÞ1 ¼ const,

where ðWθÞ1 is the first entry of Wθ. The constraint can be
equivalently written as θTIITθ¼ const. We now specialize to the
linear observation model:

xi ¼ θiþϵi; i¼ 1;2; ð91Þ
where ϵi �N ð0;s2Þ. It is obvious that the unconstrained model
(91) is unidentifiable since it is under-determinant. With the
introduction of the power constraint, we will prove that the model
is locally identifiable. The Hessian matrix of KLD is
HðαÞ ¼ diagf1;1;0g and the Jacobian matrix of the constraint is
JðθÞ ¼ θTIIT. After some algebra operations, we have
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HðαÞþ JTðαÞJðαÞ
��� ���a0. From Theorem 6, the constrained model is

locally identifiable.
As demonstrated before, in addition to the deep theoretical

insight, the formulation of identifiability problem within the
optimization theory framework brings several practical advan-
tages compared with existing methods. First, one can derive
identifiability criteria in the case of lost information (e.g. the pðxÞ
in Example 1, the pðxÞ and Σ in Example 3) while other methods
fail. Second, one is able to determine identifiability by calculating
the rank of a numerical matrix, thus avoiding the usual bottleneck
of seeking for the roots from a set of nonlinear equations. The
benefit gained is that the new results lead to a reduction of
computational complexity from NP-complete to Oðk3Þ. Third, for
processing identifiability problem with infinitely dimensional
unknown parameter (see Example 6), up to now, there exists no
theoretical or methodological treatments in this aspect. As far as
the authors concerned, the proposed optimization theory frame-
work is perhaps the only suitable tool for dealing with this case.
We attribute the derivation to the interplay of the optimization
theory and the kernel trick. Nevertheless, identifiability analysis of
nonlinear models is still difficult to implement since, whatever the
method being used, the complexity increases very fast with the
number of parameters, the dimensionality of input/output spaces,
the nonlinear degree of models. Especially, in real problems with
large dimensionality and high nonlinearity, the Hessian matrix
itself is difficult to obtain. Moreover, the adoption of numerical
approximation can also result in errors. This is a common difficulty
for all existing methods. Therefore, this challenging problem is left
for the future research.

6. Conclusion

In this paper, by making use of the KLD in information theory, we
cast the identifiability problem into the optimization theory frame-
work. Several novel identifiability criteria are derived for uncon-
strained and parameter-constrained models. The results partially
answered the problem proposed by Yang et al. [2], i.e., the problem
of how many, and what types of constraints are required to produce
a unique estimation. The pros/cons of the proposed framework are
detailed discussed from both theoretical and application viewpoints.
Finally, we outline two directions below for future work:

1. One of the major objectives in identifiability theory is to obtain
a set of identifying functions and then use them to reparameterize
themodel [14]. In almost all cases, such a set of functions cannot be
easily obtained by visual inspection or analytic verification. In the
present study, we propose some criteria to test parameter iden-
tifiability, but it tells nothing about reparameterization when
parameter redundancy is detected. However, it would be highly
desirable to seek for generic reparameterization methods. It is still
an open problemwhich is one of the directions of research into the
identifiability theory [14,29].

2. In real application scenarios, a vast variety of parameter systems
are described by time-variant ODE or PDE dynamical models
[4,5,44]. In spite of what a large literature on model identifiability,
we found rare discussions on identifiability of parameter-
constrained time-variant models. Therefore, it is worthwhile
considering the identifiability issue in those models.
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