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a b s t r a c t

This paper reports an extension of our previous study on determining structural identifiability of the
generalized constraint (GC) models, which are considered to be parameter learning machines. Identifia-
bility defines a uniqueness property to the model parameters. This property is particularly important for
those physically interpretable parameters in GC models. We derive identifiability criteria according to the
types of models. First, by taking the models as a family of deterministic nonlinear transformations from
input space to output space, we provide a criterion for examining identifiability of the Multiple-input
Multiple-output (MIMO) models. This result therefore generalizes the previous one for Single-input Single-
output (SISO) and Multiple-input Single-output (MISO) models. Second, if considering the models as the
mean functions of input-dependent conditional distributions within stochastic framework, we derive an
identifiability criterion by means of the Kullback–Leibler divergence (KLD) and regular summary. Third,
time-variant models are studied based on the exhaustive summary method. The new identifiability
criterion is valid for a range of differential/difference equation models whenever their exhaustive
summaries can be obtained. Several model examples from the literature are presented to examine their
identifiability property.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical models have become another sensing channel
for human beings to perceive, describe, and understand either
natural or virtual worlds deeply. For this reason, more and more
models are and will be generated for a vast variety of applications.
Their modeling approaches are of course different from varied
aspects. For a fast examination of the approach differences, Dubios
et al. [1], Solomatine and Ostfeld [2] and Todorovski and Dzeroski
[3] considered two basic modeling approaches with respect to the
degree of knowledge included, namely, “knowledge-driven” and
“data-driven”. The knowledge-driven modeling approach is also
called “physical-based” [2] or “mechanistic-based” [3] modeling
approach, because the approach relies mainly on the given know-
ledge in modeling, such as the first principle from physics.
In contrary, the data-driven modeling approach is capable of con-
structing a model solely from the given data without using any prior
knowledge. While Todorovski and Dzeroski [3] described the applica-
tion advantages and drawbacks between the two types of modeling
approaches, Hu et al. [4] compared them from the viewpoints of
inference methodologies (deduction vs. induction) and parameter
meaning involved. Although the data-driven models have parameters
for themselves, the models are considered as “non-parametric”

because their parameters are generally unable to represent the real
ones in a physical (or target) system.

In order to take advantage of each approach, a study of integrating
two types of modeling approaches is reported [2–6]. Hence, “hybrid”
models are called when the integration approach is applied to the
models [5,2,3]. For stressing on a mathematical description, another
term, “generalized constraint” (GC) [7,4], is adopted to call these
models. Considering the large diversity and unstructured representa-
tions of prior knowledge, one can expect that the “hybridizing”
difficulty is appeared more from imposing “knowledge constraints”
on themodels. Fig.1 schematically depicts a GCmodel, which basically
consists of twomodules, namely, knowledge-driven (KD) submodel and
data-driven (DD) submodel. For a detailed description of the GC
models, one can refer [4,8,9].

Suppose a time-invariant model is considered, a general
description of the GC model is given in a form of:

y¼ fðx; θÞ ¼ fkðx; θkÞ � fdðx; θdÞ
θ¼ ðθk; θdÞ; θk \ θd ¼∅ ð1Þ
where xAℛn and yAℛm are the input and output vectors, f is a
function for a complete model relation between x and y, fk and fd
are the functions associated to the KD and DD submodels, respec-
tively. θAℛk is the parameter vector of the function f, θk and θd are
the parameter vectors associated to the functions fk and fd respec-
tively. The symbol “�” represents a coupling operation between the
two submodels. Generally, the KD submodel contains physically
interpretable parameters whose identifiability is of fundamental
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importance to the understanding of the system. However, owing to
the coupling operation between the two submodels, the resulting GC
model may have some unidentifiable parameters (i.e., these para-
meters cannot be determined uniquely) even if the parameters of
each submodels are identifiable respectively [4,8]. Identifiability of
parameters will be an important aspect to reflect a transparency
degree of models and hence “determining identifiability of the models
should be addressed before any implementation of estimation” [8,10,11].
Moreover, identifiability is closely related to the convergence of
a class of estimates including the maximum likelihood estimate
(MLE) [8,12]. Lack of identifiability gives no guarantee of convergence
to the true value of parameters and therefore usually results in severe
ill-posed estimation problems [8], which is a critical issue if decisions
are to be taken on the basis of their numerical values [13]. Besides
the ability to detect deficient models in advance, the analysis of
identifiability can also bring practical benefits, such as insightful
revealing of the relations among inputs, outputs and parameters,
which can be very useful for model structure design and selection
[4,8]. To summarize, the usefulness and importance of identifiability
analysis can be recognized in at least threefold:

(a) Statistical inference. In an unidentifiable statistical model, the
standard statistical paradigm of the Cramér–Rao bound (CRB)
does not hold, the MLE is no longer subject to Gaussian
distribution even asymptotically, the model selection criteria
such as AIC, BIC and MDL fail to hold, and the singularity gives
rise to strange behaviors in parameter estimation, hypothesis
test, Bayesian inference, model selection, etc. [14,15]. There-
fore, it is imperative to check identifiability for statistical
inference.

(b) Physically interpretable (sub-)models. In these models, some or
all parameters have physically interpretable meaning [4,13,16],
and to identify the true values of such parameters is important
because nonuniqueness of such parameters not only means
nonunique description of the process but also leads to com-
pletely erroneous or misleading results. One would not select
an unidentifiable model since the parameters are of practical
importance. Hence, identifiability analysis should be
addressed, as part of qualitative experiment design, before
any experimental data have been collected [8].

(c) Learning dynamics. In an unidentifiable parametric model, the
trajectories of dynamics of learning are strongly affected by
the nonidentifiability [14]. It has been shown that once
parameters are attracted to singular points, the learning
trajectory is very slow to move away from them. For example,
[14] studied the dynamical behaviors of learning in multi-layer
perceptions (MLP) and Gaussian mixture models (GMM), and

showed that nonidentifiability resulting in plateaus and slow
manifolds.

The structural identifiability is concerned with the uniqueness
of the parameters determined from the input–output data.
A property is said to be “structural” if it is true for all admissible
parameter values [8]. In [4,8], the authors derived identifiability
results for Single-input Single-output (SISO) and Multiple-input
Single-output (MISO) models. However, their theorems cannot deal
withMultiple-input Multiple-output (MIMO) models. Therefore, this
work is an extension of [4,8] and we further expect to consider the
problem from a wide spectrum of models. In this study, we view
a model to be a “parameter learning machine” if it can be
parameterized by a finite-dimensional vector (Fig. 2). A special
emphasis is put on identifiability of arbitrary nonlinear functions
for parameter learning machines. The main contribution of the
present work is given from the following three aspects:

(1) From a partial derivative matrix (PDM), we derive a new
identifiability criterion for deterministic nonlinear functions,
which is applicable to MIMO models.

(2) Based on the Kullback–Leibler divergence (KLD) and regular
summary, we present a new identifiability theorem for sto-
chastic models which can be applied to more generic statis-
tical models without restricting to exponential family [17].

(3) For the time-variant models, we adopt an exhaustive summary
method which is valid for a wide range of differential/differ-
ence equation models whenever their exhaustive summaries
can be obtained.

The remainder of this paper is organized as follows. Section 2
gives some basic definitions and views the identifiability problem
from two different perspectives. Section 3 presents an identifia-
bility criterion for deterministic MIMO models. In Section 4, we
present an identifiability result for stochastic models with the help
of KLD and regular summary. Section 5 gives a method for testing
parameter redundancy by using exhaustive summary. Section 6
concludes with a brief summary.

2. Models and definitions

Typically, the approaches of examining structural identifiability
of parameter learning machines can be categorized into two
frameworks according to the modeling nature:

(1) Deterministic framework. In this framework, it is assumed that
the model is deterministic and noise-free [8,13,16]. In other
words, the model is viewed as a family of parameterized
nonlinear mappings from an input vector xAℛn to an output
vector yAℛm,

y¼ fðx; θÞ; ð2Þ

Fig. 1. Schematic diagram of GC model including KD submodel and DD submodel
(modification on Figs. 1 and 3 in [4]). Two sets of parameters, θk and θd are
associated with the two submodels, respectively.

Fig. 2. Schematic diagram of spaces studied in machine learning, from which a
model can be viewed as a parameter learning machine.
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where θAΘ is a parameter vector indexing a specific mapping

ℳðθÞ : θ-fðx; θÞ; ð3Þ
and ΘDℛk is the admissible parameter space. In this context,
structural identifiability analysis deals with the theoretic
uniqueness of solutions of model parameters from perfect
model specification and noise-free input–output data [8,16].

(2) Stochastic framework. In this framework, we introduce random
noise in input and output spaces. Formally, we assume that the
available data are contaminated and are generated by some
stochastic system. Therefore, we can give the model a prob-
abilistic interpretation [8,14,15]. More specifically, we assume
that, given an input vector xAℛn, the model emits an output
vector fðx; θÞAℛm which is disturbed by a random noise
ϵAℛm. The final output yAℛm is

y¼ fðx; θÞþϵ; ð4Þ
hence, we can interpret fðx; θÞ as the mean function of y which
has an input-dependent conditional distribution pðyjx; θÞ. That
is, Eθðyjx; θÞ ¼ fðx; θÞ. Let pðxÞ be the probability density func-
tion (PDF) over the input space ℛn, thus the joint PDF of x and
y is

pðz; θÞ ¼ pðx; y; θÞ ¼ pðxÞpðyjx; θÞ ð5Þ
where z¼ ðx; yÞAℛnþm. Each θAΘ therefore defines a PDF
pðz; θÞ in ℛnþm and we denote the corresponding probability
measure by ℳðθÞ.

Following [8,12,13,16], we give a unified definition for the two
frameworks:

Definition 1. A model ℳðθÞ; θAΘ is globally identifiable if

ℳðθ1Þ ¼ℳðθ2Þ ) θ1 ¼ θ2; 8θ1; θ2AΘ: ð6Þ

A model is locally identifiable if for every θAΘ, there exists an open
neighborhood N θð Þ of θ such that the following holds

ℳðθ1Þ ¼ℳðθ2Þ ) θ1 ¼ θ2; 8θ1; θ2ANðθÞ: ð7Þ

Obviously, global identifiability implies local identifiability. When
a parameter point θ0AΘ is of particular interest, for example, θ0 is
assumed to be the real value for the model parameter, we give the
following definition.

Definition 2. A parameter point θ0AΘ is globally identifiable if

ℳðθÞ ¼ℳðθ0Þ ) θ¼ θ0; 8θAΘ: ð8Þ

A parameter point θ0AΘ is said to be locally identifiable if there
exists an open neighborhood N θ0ð Þ of θ0 such that the following

holds

ℳðθÞ ¼ℳðθ0Þ ) θ¼ θ0; 8 θANðθ0Þ ð9Þ

Remark. From Definitions 1 and 2 we can see that structural
identifiability is a theoretic property of the model and that the
presence or absence of identifiability is a feature of the specifica-
tion adopted for the model, and so, is independent of the infer-
ential procedure to be used [18,19]. In other words, if a model is
structurally unidentifiable, no matter how carefully we design the
experiment or how good the observations are, one will definitely
fail to get a reasonable estimation, even when a model selection
criterion (e.g., AIC, BIC, etc.) or regularization term is employed to
panelize the complexity of the model [8]. Therefore, once a model
has been chosen, one should test the identifiability so as to rule
out prior unidentifiable models to avoid potential defects [8,16].
In this paper, special emphasis is put on nonlinear models which

are nonlinear functions of their parameters. This is the rule for
most knowledge-driven models. The structural identifiability
analysis of linear models is well understood and there are a
number of methods to perform such a task. When the model
output is linear with respect to the parameters, the notions of local
and global identifiability become equivalent, and the test for
identifiability boils down to a rank condition on a data design
matrix [20,21]. However, checking the identifiability is very
difficult for nonlinear models. To the best of our knowledge, there
are only a few methods for testing identifiability of nonlinear
models. Table 1 lists the commonly used methods for checking
identifiability together with their associated parametric models.

3. Identifiability criterion for deterministic models

In the deterministic framework, a model is identifiable if there
exists a unique input–output behavior for each admissible para-
meter [8,16]. A nonlinear model that attempts to accurately
describe the underlying phenomena may be complex with too
many parameters. For example, a pair of parameters may always
appear together as a product (or a sum) in the model equations,
making it impossible to obtain unique estimate of both para-
meters. An open problem in nonlinear regression is to determine
when different regression functions having different parameters
implement identical input–output transformation [21]. In the
study of machine learning, a vast majority of research has been
done within the context of artificial neural networks (ANNs).
For instance, for a three-layer network with H hidden units having
“tanh” activation functions and full connectivity in both layers,
there will have an overall weight space symmetry factor of H!2H

[30]. In [8], Yang et al. studied structural identifiability of SISO and

Table 1
General methods for testing identifiability of parametric models.

Framework Model Method

Deterministic Nonlinear regression Derivative function vector (DFV) method [8]
Dynamic model Transfer function method [22]

Taylor series method [23]
Generating series method [24]
Similarity transformation method [25]
Differential algebra method [26]
Implicit function theorem method [27]

Stochastic Gaussian distribution Holomorphic function method [28]
Exponential family Derivative matrix (DM) method [17]
General distribution Fisher information matrix (FIM) method [19]

Kullback–Leibler divergence (KLD) method [20]
Sufficient statistic method [29]
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MISO GC models, but their results cannot be applied to MIMO
models. Generally, identifiability of deterministic nonlinear mod-
els is difficult to test since, whatever the method used, e.g.,
transfer function [22], generating series expansion [24], similarity
transformation approach [25], differential algebra [26], implicit
function theorem [27,31], it requires to solve a system of nonlinear
algebraic equations whose complexity increases very fast with the
number of unknown parameters, the number of input–output
variables, the degree of nonlinearity of the model order, etc.
Hence, it is only workable for some specific families of parametric
models (e.g., polynomial and rational equations [32]) and cannot
deal with arbitrary nonlinear models. To date, the precise condi-
tions under which the input–output transformation implemented
by an arbitrary nonlinear MIMO model can be uniquely deter-
mined by its parameters is a fundamental theoretical problem that
has not been solved completely.

In this section, we focus our study on MIMO models within the
deterministic framework. The main objective of this section
involves the derivation of conditions under which a given non-
linear MIMO model will be globally identifiable.

Suppose that the MIMO model is formulated by a nonlinear
vector-valued mapping y¼ fðx; θÞ which has m component func-
tions f iðx; θÞ; 1r irm, more explicitly,

yi ¼ f iðx; θÞ ¼ f iðx1;⋯; xn; θ1;⋯; θkÞ; 1r irm: ð10Þ

If two parameter points θ1 and θ2 in Θ determine the same model,
we say θ1 is equivalent to θ2, and denote θ1 � θ2. That is,
θ1 � θ23ℳðθ1Þ ¼ℳðθ2Þ. Note that the relation “� ” is a proper
equivalent relation (reflectivity, symmetry and transitivity)
[20,33]. For θ0AΘ, we denote the equivalence class corresponding
to θ0 by ½θ0� ¼ fθAΘ : θ� θ0g. We now present a theorem offering
necessary and sufficient conditions of global identifiability for
MIMO models. Our result thus generalizes the SISO and MISO
results in [4,8].

Theorem 1. (Examination of parameter identifiability for MIMO
models). Suppose that an MIMO deterministic nonlinear model,
denoted by y¼ fðx; θÞ; θAΘDℛk; is differentiable with respect
to θ, and that for each θAΘ, ½θ� is a smooth manifold of ℛk, then the
model is globally identifiable if and only if the partial derivative
matrix (PDM), D¼ ð∂f i=∂θjÞm�k, of f is symbolic column full rank, i.e.,
if and only if v¼ 0 is the unique solution of the equation Dv¼ 0 for
all x. In other words, the model is not globally identifiable if and only
if there exists a nonzero vector vðθÞ ¼ ðv1ðθÞ;…; vkðθÞÞT such that the
following equation holds:

v1ðθÞ
∂fðx; θÞ
∂θ1

þ⋯þvkðθÞ
∂fðx; θÞ
∂θk

¼ 0; ð11Þ

where the vector-valued function ∂fðx; θÞ=∂θi is defined as

∂fðx; θÞ
∂θi

¼ ∂f 1ðx; θÞ
∂θi

;⋯;
∂f mðx; θÞ

∂θi

� �T

: ð12Þ

Proof. (1) For sufficiency. If the MIMO model is not globally
identifiable, then there must exist two distinct parameters
θ0aθ1 in Θ, such that

f iðx; θ0Þ ¼ f iðx; θ1Þ; xAℛn; 1r irm: ð13Þ
Define a differentiable curve Γ as follows:

Γ ¼ fθðsÞA ½θ0� : θð0Þ ¼ θ0; θð1Þ ¼ θ1;0rsr1g: ð14Þ
Note that the curve Γ does exist by our assumption since ½θ0� is
a smooth manifold of ℛk, then yi; 1r irm are unchanged along
Γ, that is,

f iðx; θðsÞÞ ¼ const; 0rsr1; 1r irm: ð15Þ

Taking derivative with respect to s for each equation, we have

∑
k

j ¼ 1

∂f i
∂θj

dθj
ds

¼ 0; 0rsr1; 1r irm: ð16Þ

That is Dv¼ 0 by letting D¼ ð∂f i=∂θjÞm�k and vðθÞ ¼ ðdθjðsÞ=dsÞk�1,
where each vjðθÞ is independent of x.
(2) For necessity. If there exists a non-zero vector

vðθÞ ¼ ðv1 θð Þ;⋯; vkðθÞÞT such that Dv¼ 0, that is

∑
k

j ¼ 1
vjðθÞ

∂f i
∂θj

¼ 0; xAℛn; 1r irm: ð17Þ

This is a Lagrange linear first-order partial differential equation
[34], whose auxiliary equation

dθ1
v1ðθÞ

¼⋯¼ dθk
vkðθÞ

ð18Þ

will in general have k�1 solutions given implicitly by, say,
ajðθÞ ¼ const for 1r jrk�1. The general solution of Eq. (17) is
then f i ¼ hiða1ðθÞ;…; ak�1ðθÞÞ, where hi is an arbitrary differenti-
able function. Thus the model can be expressed by a smaller
parameter set βj; 1r jrk�1 by letting βj ¼ ajðθÞ; 1r jrk�1. This
implies that the mapping θ-ℳðθÞ cannot be one-to-one. There-
fore, the model is not globally identifiable. &
For a geometric interpretation of Theorem 1, we rewrite equa-

tion Dv¼ 0 as the following m equations

∇f Ti v¼ 0; i¼ 1; …; m; ð19Þ

where ∇f T1 ;…;∇f Tm are the transpose of the gradient vectors of
functions f 1;…; f m. Each f i is unvaried along v since the gradient
∇f i of each component f i is orthogonal to the vector field
v¼ ðv1;…; vkÞ in the parameter space. In other words, each f i has
completely flat ridge along every smooth manifold ½θ� of ℛk.
We now give some examples to illustrate the applications of

Theorem 1 in examining parameter identifiability in the determi-
nistic framework.

Example 1. (Adapted from [21]). We consider a two-input two-
output deterministic model given by

f 1ðx; θÞ ¼ e� θ2θ3x1 þ θ1
θ2
ð1�e�θ2θ3x1 Þx2

f 2ðx; θÞ ¼ θ1θ3x1þð1�θ2θ3Þx2

(
ð20Þ

with θAℛ3. It can be verified that for any λa0,
ðθ1; θ2; θ3Þ � ðλθ1; λθ2; θ3=λÞ. Geometrically, the input–output map-
ping is unchanged along the differentiable curve (1-dimensional
smooth manifold)

Γ ¼ fðθ1; θ2; θ3Þ : θ1 ¼ t; θ2 ¼ t; θ3 ¼ 1=t; ta0g: ð21Þ

hence, the model is not globally identifiable. We then apply
Theorem 1 to this model and have

D¼
ð1�e� θ2θ3x1 Þ

θ2
x2

θ1θ3
θ2

x1x2�θ3x1� θ1
θ22
x2

� �
e�θ2θ3x1 � θ1

θ22
x2 ðθ1x1x2�θ2x1Þe�θ2θ3x1

θ3x1 �θ3x2 θ1x1�θ2x2

 !
:

ð22Þ
It is obvious that Dv¼ 0 for all ðx1; x2; x3ÞAℛ3, where
v¼ ðθ1; θ2; �θ3Þ, and therefore the model is not globally identifi-
able by Theorem 1. This verifies the validity of Theorem 1.

Example 2. [35]. Consider an MISO regression model

f ðx; θÞ ¼ ∑
k

i ¼ 1
θiφiðxÞ; ð23Þ
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where φiðxÞ; i¼ 1; …; k are known as basic functions or feature
maps and θAℛk. For this type of model, we have the PDM as

D¼ ∂f
∂θi

� �
1�k

¼ ðφ1ðxÞ;…;φkðxÞÞ: ð24Þ

By Theorem 1, the model is not globally identifiable if and only if
the equation

Dv¼ ∑
k

i ¼ 1
viφiðxÞ ¼ 0 ð25Þ

has nonzero solution v. That is, φ1ðxÞ;…;φkðxÞ are functionally
dependent. The validity of Theorem 1 is consistent with our
intuition.

Example 3. Consider a two-input two-output nonlinear determi-
nistic model

y1 ¼ abx1þcdx2
y2 ¼ e�bx1 þa sin ðdx2Þ

(
ð26Þ

with θ¼ ða; b; c;dÞ and Θ¼ℛ4. First, we directly show that the
model is globally identifiable. Otherwise, there must exist two
different parameters θ1 ¼ ða1; b1; c1; d1Þ and θ2 ¼ ða2; b2; c2; d2Þ such
that fðx; θ1Þ ¼ fðx; θ2Þ for all xAℛ2, that is,

a1b1x1þc1d1x2 ¼ a2b2x1þc2d2x2
e�b1x1 þa1 sin ðd1x2Þ ¼ e�b2x1 þa2 sin ðd2x2Þ

(
: ð27Þ

From Example 2 we can see that x; ex; sin x are functionally
independent. We then have

a1b1 ¼ a2b2 ; c1d1 ¼ c2d2; a1 sin d1 ¼ a2 sin d2; e�b1 ¼ e�b2

ð28Þ
The above equations imply that θ1 ¼ θ2. This is controversial to the
assumption that θ1aθ2. Hence, the model is globally identifiable.
We then apply Theorem 1 to this model and have the PDM

D¼ ∂f i
∂θj

� �
2�4

¼
bx1

sin ðdx2Þ
ax1

�x1e�bx1

dx2
0

cx2
ax2 cos ðdx2Þ

 !
ð29Þ

Suppose there exists a vector v¼ ðv1; v2; v3; v4ÞT such that Dv¼ 0
for all xAℛ4, we will prove that v must be trivial. By setting
x¼ ð1;0Þ; ðb;0Þ; ð0; π=dÞ; ð0;1Þ, respectively, we have v2 ¼ 0; v1 ¼ 0;
v4 ¼ 0; v3 ¼ 0, correspondingly. That is, the unique solution of Dv¼ 0
is v¼ 0. Therefore, the model is globally identifiable.

4. Identifiability criterion for stochastic models

Identifiability is a primary assumption in all classical statistical
models [15,20,33]. However, such an assumption may be violated
in a large variety of models. Unidentifiable families of probability
distributions occur in many statistical modeling fields. In particular,
in the study of machine learning, almost all learning machines used
in information processing are unidentifiable [15]. Generally, if a
model has hierarchical structures, latent variables or coupled
submodels, the model must be unidentifiable [15].

The identifiability problem in stochastic framework is con-
cerned with the possibility of drawing inferences from an under-
lying theoretical distribution. In [19], Rothenberg proved that the
local identifiability of a stochastic model pðz; θÞ is equivalent to
singularity of its Fisher information matrix (FIM), i.e.,

FIMðθÞ ¼ �Eθ
∂2 log pðz; θÞ

∂θ2

� �
: ð30Þ

A statistical learning machine is called singular if its FIM is singular
[15,36]. The FIM is an important tool in singular learning theory,
for more details about singular learning machines, one can refer
[36,37]. As a special case, Hochwald et al. [28] proposed a method

to establish identifiability and information-regularity of para-
meters in Gaussian distributions with the help of holomorphic
functions. In [33], Dasgupta et al. proposed an analytical method
for constructing new parameters under which an unidentifiable
model will be at least locally identifiable.

Most of the previous work on identifiability problem concerned
mainly with local identifiability. Up to now, few investigations
have been reported on how to examine global identifiability of the
models. However, as for the nonlinear regression models, we are
more interested in global identifiability rather than simply local
identifiability [8]. Unfortunately it is very difficult to obtain global
results in a general nonlinear setting. In [19], Rothenberg estab-
lished a criterion to test global identifiability for exponential
family of stochastic models. Outside the exponential family it does
not seem possible to get necessary and sufficient conditions for
global identifiability using only the FIM. In this section, we present
an applicable criterion of testing global identifiability in the
stochastic framework. Essentially, non-identifiability is the conse-
quence of the lack of enough “information” to discriminate among
alternative parameter values in the model specification. Hence, it
is natural to test identifiability with the help of the Kullback–
Leibler divergence (KLD), which is defined as [38]

KLðθ0; θÞ ¼
Z

pðz; θ0Þlog
pðz; θ0Þ
pðz; θÞ dz: ð31Þ

The KLD KLðθ0; θÞ is always non-negative and is zero if and only
if pðz; θ0Þ ¼ pðz; θÞ for every z [38]. To proceed in examining
identifiability of parameter learning machines, a common criterion
for global (local) identifiability is stated as follows [20,39].

Theorem 2. In a stochastic model pðz; θÞ; θAΘ, a parameter point
θ0AΘ is globally (locally) identifiable if and only if θ0 is the unique
solution of the equation KLðθ0; θÞ ¼ 0 in Θ (an open neighborhood
of θ0).

The proof can be easily verified by the fact that KLðθ0; θÞ ¼
03pðz; θ0Þ ¼ pðz; θÞ for every z [38]. However, for many models it
is not an easy task to determine all the solutions of the equation
KLðθ0; θÞ ¼ 0 in a direct way [20]. To give an example, we consider
the Gaussian family

pðz; θÞ ¼ 1

ð2πÞm=2ðdetΣθÞ1=2
exp � 1

2
ðz�μθÞTΣ�1

θ ðz�μθÞ
� 	

; ð32Þ

where μθ is the mean vector and Σθ is the covariance matrix. The
KLD can be calculated as [38]

KLðθ0; θÞ ¼ fKLðθ0; θÞþ 1
2
ðμθ�μθ0 ÞTΣ�1

θ0
ðμθ�μθ0 Þ ð33Þ

with

fKLðθ0; θÞ ¼ 1
2

log
detΣθ0

detΣθ
þTraceðΣθðΣ�1

θ0
�Σ�1

θ ÞÞ
� 	

: ð34Þ

It is easy to see that [38]

KLðθ0; θÞ ¼ 03μθ ¼ μθ0 ; Σθ ¼ Σθ0 : ð35Þ

Checking the identifiability of θ0 requires us to solve a system of
mþmðmþ1Þ=2 nonlinear equations which makes the task intract-
able. Therefore, it is imperative to investigate some effective and
efficient approaches to attack this problem. First we propose the
following lemma.

Lemma 1. Suppose that the parameter space Θ of a stochastic model
pðz; θÞ is a convex subset of ℛk and that the Hessian matrix

HðθÞ ¼ ∂2KLðθ0; θÞ
∂θi∂θj

� �
k�k

ð36Þ
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of the KLD KLðθ0; θÞ is positive definite for each θAΘ, θaθ0, then θ0 is
globally identifiable.

Proof. It is easy to see that [38]

KLðθ0; θÞ



θ ¼ θ0

¼ 0 ð37Þ

Since
R
pðz; θÞdz¼ 1; 8θAΘ, we have

∂
R
pðz; θÞdz
∂θ






θ ¼ θ0

¼ ∂1
∂θ






θ ¼ θ0

¼ 0: ð38Þ

hence, by interchange of integral and derivative, we get

∂KLðθ0; θÞ
∂θ






θ ¼ θ0

¼ ∂ðR pðz; θ0Þlog ðpðz; θ0Þ=pðz; θÞÞdzÞ
∂θ






θ ¼ θ0

¼
Z

∂pðz; θ0Þlog ðpðz; θ0Þ=pðz; θÞÞ
∂θ

� �




θ ¼ θ0

dz

¼ �
Z

∂pðz; θÞ
∂θ

� �




θ ¼ θ0

dz

¼ �∂
R
pðz; θÞdz
∂θ






θ ¼ θ0

¼ 0: ð39Þ

Apply Taylor's formula to KL θ0; θð Þ, we have

KLðθ0; θÞ ¼ KLðθ0; θÞ



θ ¼ θ0

þðθ�θ0ÞT
∂KLðθ0; θÞ

∂θ

� �




θ ¼ θ0

þ 1
2
ðθ�θ0ÞTHðθnÞðθ�θ0Þ; ð40Þ

where

HðθnÞ ¼ ∂2KL θ0; θð Þ
∂θ2






θ ¼ θn

; θn ¼ ð1�tÞθ0þtθ; 0oto1 ð41Þ

hence,

KLðθ0; θÞ ¼
1
2
ðθ�θ0ÞTHðθnÞðθ�θ0Þ: ð42Þ

Since θnaθ0, HðθnÞ is positive definite. Hence

KLðθ0; θÞ40 for any θaθ0 ð43Þ
That is, θ0 is the unique solution of the equation KL θ0; θð Þ ¼ 0.
By Theorem 2, θ0 is globally identifiable. □

In order to provide some efficient and applicable criteria, we
should resort to two key quantities, namely the exhaustive sum-
mary and regular summary, which can help to determine the
parameter structure of the model. An exhaustive summary is a
vector-valued function of original parameters that uniquely
defines the model, and a formal definition is given below, adapted
from [24].

Definition 3. A vector-valued function sðθÞ ¼ ðs1ðθÞ;…; sqðθÞÞT , is an
exhaustive summary if each siðθÞ; i¼ 1; …; q is a non-constant
function and the mapping sðθÞ-ℳðθÞ is bijective. That is, the
following condition holds:
ℳðθ1Þ ¼ℳðθ2Þ3sðθ1Þ ¼ sðθ2Þ; 8θ1; θ2AΘ: ð44Þ
A vector-valued function sðθÞ ¼ ðs1ðθÞ;…; sqðθÞÞT of θ is a regular
summary if HðsÞ is positive definite for all s, where HðsÞ is the
Hessian matrix of KLðs0; sÞ.

In the above definition, we make the assumption that each siðθÞ
is not a constant function, as a constant component in sðθÞ is
helpless in determining the parameter structure of ℳðθÞ. More-
over, Eq. (44) ensures that the mapping sðθÞ-ℳðθÞ cannot be
trivial. Take the Gaussian model (Eq. (32)) as an example, the
exhaustive summary is formed from the non-constant elements in
the m� 1 mean vector μθ and the mðmþ1Þ=2 non-constant, non-
duplicated elements in the covariance matrix Σθ (See Example 4).

We then give an identifiability result for stochastic models with
the help of KLD and regular summary.

Theorem 4. Suppose that pðz; θÞ; θAΘ is a stochastic model and
that sðθÞ is a regular summary, if the Jacobian matrix JðθÞ ¼ ð∂s=
∂θÞ ¼ ð∂si=∂θjÞ is of symbolic column full rank, i.e., JðθÞ is of full rank
for all θAΘ, then the model pðz; θÞ; θAΘ is globally identifiable.

Proof. Since
R
pðz; θÞdz¼ 1; 8θAΘ, we have

Eθ
1

pðz; θÞ
∂2pðz; θÞ
∂θi∂θj

� �
¼
Z

∂2pðz; θÞ
∂θi∂θj

dz

¼ ∂2
R
pðz; θÞdz
∂θi∂θj

¼ ∂21
∂θi∂θj

¼ 0 ð45Þ

By simple calculation we get

∂2 log pðz; θÞ
∂θi∂θj

¼ � ∂ log pðz; θÞ
∂θi

∂ log pðz; θÞ
∂θj

þ 1
pðz; θÞ

∂2pðz; θÞ
∂θi∂θj

: ð46Þ

hence

Eθ
∂2 log pðz; θÞ

∂θi∂θj

� �
¼ �Eθ

∂ log pðz; θÞ
∂θi

∂ log pðz; θÞ
∂θj

� �
: ð47Þ

That is,

Eθ
∂2 log pðz; θÞ

∂θ2

� �
¼ �Eθ

∂ log pðz; θÞ
∂θ

∂ log pðz; θÞ
∂θT

� �
: ð48Þ

For θ0AΘ, by interchange of integral and derivative, we have

Hðθ0Þ ¼
∂2KLðθ0; θÞ

∂θ2






θ ¼ θ0

¼ �∂2
R
pðz; θ0Þlog pðz; θÞdz

∂θ2






θ ¼ θ0

¼ �
Z

∂2ðpðz; θ0Þlog pðz; θÞÞ
∂θ2

dz
� �





θ ¼ θ0

¼ �
Z

pðz; θ0Þ
∂2 log pðz; θÞ

∂θ2

� �




θ ¼ θ0

dz

¼ �Eθ0
∂2 log pðz; θÞ

∂θ2

� �
¼ Eθ0

∂ log pðz; θÞ
∂θ

∂ log pðz; θÞ
∂θT

� �
: ð49Þ

From Eq. (38) we have

Eθ0
∂ log pðz; θÞ

∂θ

� �
¼
Z

pðz; θÞ ∂ log pðz; θÞ
∂θ

� �




θ ¼ θ0

dz

¼
Z

∂pðz; θÞ
∂θ

� �




θ ¼ θ0

dz¼ 0 ð50Þ

hence

Hðθ0Þ ¼ Cov
∂ log pðz; θÞ

∂θ

� �� �




θ ¼ θ0

; ð51Þ

where ðCovð∂ log pðz; θÞ=∂θÞÞ



θ ¼ θ0

is the covariance matrix of the
random vector ∂ log pðz; θÞ=∂θ evaluated at θ0. Denote
HðθÞ ¼ ðHabðθÞÞ. From Eq. (49) we have

HabðθÞ ¼ Eθ
∂ log pðz; θÞ

∂θa
∂ log pðz; θÞ

∂θb

� �
¼ Eθ ∑

q

i ¼ 1

∂ log pðz; θÞ
∂si

∂si
∂θa

 !
∑
q

j ¼ 1

∂ log pðz; θÞ
∂sj

∂sj
∂θb

 ! !

¼ ∑
q

i;j ¼ 1
Eθ

∂ log pðz; θÞ
∂si

∂ log pðz; θÞ
∂sj

� �
∂si
∂θa

∂sj
∂θb

¼ ∑
q

i;j ¼ 1
HabðsÞ

∂si
∂θa

∂sj
∂θb

ð52Þ

Rewrite the above equation in a compact form, we have

HðθÞ ¼ JðθÞTHðsÞJðθÞ: ð53Þ

Since sðθÞ is a regular summary, HðsÞ is positive definite. HðθÞ is
positive definite as JðθÞ is of column full-rank. Hence, θ is globally
identifiable by Lemma 1. From Definition 1 we can see that
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a model pðz; θÞ is globally identifiable if and only if pðz; θÞ is
globally identifiable at every θAΘ. Since θ is an arbitrary point
in Θ, the model pðz; θÞ is globally identifiable. □

Corollary 1. Suppose the stochastic model pðz; θÞ is from an expo-
nential family

pðz; θÞ ¼ ξðθÞcðzÞexp ∑
q

i ¼ 1
ηiðθÞTiðzÞ

( )
ð54Þ

and ηðθÞ ¼ ðη1ðθÞ;…; ηqðθÞÞT is the natural parameter vector, if the
Jacobian matrix JðθÞ ¼ ∂η=∂θ is of symbolic column full rank, then
pðz; θÞ is globally identifiable.
Proof. Let z1; …; zn be an independent and identically distributed

(i.i.d.) sample from pðz; θÞ,∑n
j ¼ 1TiðzjÞ is the sufficient statistic of ηiðθÞ

since ηiðθÞ is the natural parameter [40]. By the sufficient statistic
method [29] we can see that pðz; ηÞ is globally identifiable. Hence,
pðz; ηÞ satisfies Cramér–Rao regularity conditions [40]. Therefore, the
Hessian matrix HðηÞ is positive definite since it is the covariance
matrix of random vector ∂ log pðz; ηÞ=∂η. From Eq. (53) we have

HðθÞ ¼ JðθÞTHðηÞJðθÞ: ð55Þ
Since JðθÞ is of symbolic column full rank, from Theorem 4, pðz; θÞ is
globally identifiable. □

A remarkable feature of Theorem 4 and Corollary 1 is that we
can determine the identifiability of stochastic models by calculat-
ing the symbolic rank of the Jacobian matrix JðθÞ, thus avoiding the
usual bottleneck of seeking for the roots of a nonlinear equation
KLðθ0; θÞ ¼ 0. Our result can be applied in a variety of stochastic
models without restricting to exponential family of distributions.

Example 4. [41]. Consider the second-order state-space model

x1ðtþ1Þ
x2ðtþ1Þ

 !
¼

θ1 0
1 θ2

 !
x1ðtÞ
x2ðtÞ

 !
þ 1

0

� �
ϵðtÞ;

x1ð0Þ
x2ð0Þ

 !
¼ 0

0

� �
;

yðtÞ ¼ x2ðtÞ ð56Þ
where θ¼ ðθ1; θ2ÞAℛ2 and the noise ϵðtÞ is a zero-mean Gaussian
white noise with unit power. Let us study the output sequence
with t ¼ 4. The output sequence y4 is as follows:

y4 ¼

yð1Þ
yð2Þ
yð3Þ
yð4Þ

0BBBB@
1CCCCA¼

0
ϵð0Þ

ðθ1þθ2Þϵð0Þþϵð1Þ
ðθ21þθ1θ2þθ22Þϵð0Þþðθ1þθ2Þϵð1Þþϵð2Þ

0BBBB@
1CCCCA: ð57Þ

It is easy to see that y4 �N ð0;ΣðθÞÞ is a zero-mean Gaussian vector
whose distribution can be uniquely determined by its covariance
matrix ΣðθÞ. Let sðθÞ be a vector containing all the distinct non-
constant elements of ΣðθÞ, that is,

sðθÞ ¼

θ1þθ2
θ21þθ1θ2þθ22

ðθ1þθ2Þ2þ1
ðθ1þθ2Þðθ21þθ1θ2þθ22þ1Þ

ðθ21þθ1θ2þθ22Þ2þðθ1þθ2Þ2þ1

0BBBBBBB@

1CCCCCCCA: ð58Þ

Obviously, sðθÞ is a regular summary of y4. The Jacobian matrix J θð Þ
can be calculated as
Further, by using elementary matrix transformation, we can see

that JðθÞ is equivalent to

1 0
2θ1þθ2 �θ1þθ2

2ðθ1þθ2Þ 0
3θ21þ4θ1θ2þ2θ22þ1 �θ21þθ22

2ð2θ31þ3θ21θ2þ3θ1θ22þθ32þθ1þθ2Þ 0

0BBBBBB@

1CCCCCCA ð60Þ

we have rank ðJðθÞÞ ¼ 2 for all θAℛ2 such that θ1aθ2. Hence,
H θð Þ is positive definite for all θAℛ2 such that θ1aθ2. From
Corollary 1, the model is globally identifiable for all θAℛ2 such
that θ1aθ2. According to [41], the model is locally identifiable
by their transfer function method, but our method gives a much
stronger conclusion.

Example 5. Consider the 1-order autoregressive (AR) model
yt ¼ θ1yt�1þθ2ϵt ; 0oθ1o1; θ2a0 ð61Þ
with ϵt a zero-mean Gaussian white noise with unit power and
θ¼ ðθ1; θ2Þ. Assume that the system has reached steady state when
the observations begin, then the observation sequence yt

� �
will be

a 1-order stationary Markov process whose covariance matrix is

ΣtðθÞ ¼
θ22

1�θ21

1 θ1 θ21 ⋯ θt�1
1

θ1 1 θ1 ⋯ θt�2
1

θ21 θ1 1 ⋯ θt�3
1

⋮ ⋮ ⋮ ⋱ ⋮
θt�1
1 θt�2

1 θt�3
1 ⋯ 1

0BBBBBBB@

1CCCCCCCA
t�t

; t ¼ 1; 2;…

ð62Þ
Let stðθÞ be a vector containing all the distinct non-constant
elements of ΣtðθÞ, that is,

stðθÞ ¼
θ22

1�θ21
ð1; θ1;…; θt�1

1 ÞT : ð63Þ

Obviously, stðθÞ is a regular summary of the observation sequence
fytg. The Jacobian matrix JtðθÞ can be calculated as

JtðθÞ ¼
θ2

1�θ21

2θ1θ2 2
ð1þθ1Þ2θ2 2θ1

⋮ ⋮
ððn�1Þθt�2

1 þðnþ1Þθt1Þθ2 2θt�1
1

0BBBB@
1CCCCA: ð64Þ

We have rank Jt θð Þ �¼ 2 for all θ such that 0oθ1o1; θ2a0. From
Corollary 1, the model is globally identifiable for all θ such that
0oθ1o1; θ2a0.

5. Parameter redundancy

The most obvious cause of non-identifiability is parameter
redundancy, in the sense that the model can be written in terms
of a smaller set of parameters. Following [8,17], we give the
following definition.

Definition 4. (Parameter redundancy). A model ℳðθÞ; θAΘ�ℛk

is said to be parameter redundant if it can be expressed in terms of
a smaller parameter vector β¼ βðθÞ, where dimβok. Models
which are not parameter redundant are said to be of full rank.

JðθÞ ¼

1 1
2θ1þθ2 θ1þ2θ2
2ðθ1þθ2Þ 2ðθ1þθ2Þ

3θ21þ4θ1θ2þ2θ22þ1 2θ21þ4θ1θ2þ3θ22þ1

2ð2θ31þ3θ21θ2þ3θ1θ22þθ32þθ1þθ2Þ 2ð2θ31þ3θ21θ2þ3θ1θ22þθ32þθ1þθ2Þ

0BBBBBB@

1CCCCCCA: ð59Þ

Z.-Y. Ran, B.-G. Hu / Neurocomputing 127 (2014) 88–9794



In [17], Catchpole et al. introduced the concept of parameter
redundancy in exponential family of distributions and they further
showed that whether or not a model is parameter redundant can
be determined by checking the symbolic rank of a derivative matrix
(DM), but their DM-based method can only be used in the
exponential case. In this section, we will extend the result for
exponential family to more generic models. By using exhaustive
summaries, we provide a criterion for checking identifiability of
models as follows.

Theorem 6. Suppose that sðθÞ ¼ ðs1ðθÞ;…; sqðθÞÞT is the exhaustive
summary of the model ℳðθÞ; θAℛk; then ℳ θð Þ is parameter
redundant if and only if the Jacobian matrix

∂s
∂θ

¼ ∂si
∂θj

� �
q�k

ð65Þ

is symbolically column rank-deficient, i.e., the Jacobian matrix is
column-deficient for all θ.

Proof. For necessity. Since ℳðθÞ is parameter redundant, then the
exhaustive summary s θð Þ can be expressed by a smaller parameter
vector β¼ β θð Þ; dimβ¼ rok. Specifically, let β¼ ðβ1;…; βrÞ, we
have

siðθ1;…; θkÞ ¼ siðβ1;…; βrÞ ¼ siðβ1ðθ1;…; θkÞ;…; βrðθ1;…; θkÞÞ ð66Þ

Taking derivative with respect to θj for each equation, we have

∂si
∂θj

¼ ∑
r

l ¼ 1

∂si
∂βl

∂βl
∂θj

; i¼ 1; …; q; j¼ 1; …; k: ð67Þ

That is
∂s1
∂θ1

⋯ ∂s1
∂θk

⋮ ⋱ ⋮
∂sq
∂θ1

⋯ ∂sq
∂θk

0BB@
1CCA

q�k

¼

∂s1
∂β1

⋯ ∂s1
∂βr

⋮ ⋱ ⋮
∂sq
∂β1

⋯ ∂sq
∂βr

0BB@
1CCA

q�r

∂β1
∂θ1

⋯ ∂β1
∂θk

⋮ ⋱ ⋮
∂βr
∂θ1

⋯ ∂βr
∂θk

0BB@
1CCA

r�k

: ð68Þ

We rewrite the above matrix equation in a compact form

∂s
∂θ

� �
q�k

¼ ∂s
∂β

� �
q�r

∂β
∂θ

� �
r�k

: ð69Þ

It is easy to see that

rank
∂s
∂θ

� �
q�k

rrank
∂β
∂θ

� �
r�k

rrok: ð70Þ

Therefore, the Jacobian matrix ∂s=∂θ is symbolically column
rank-deficient. The sufficiency can be derived in the same line as
Theorem 1.

In the study of modeling dynamical systems using differential
equations for which closed-form solutions are not available,
parameter redundancy analysis is an important tool to study the
problem of structural identifiability.

Example 7. Consider the following dynamic ordinary differential
equation (ODE) model [32]:

_x1 ¼ �θ2x1�θ3x2�θ0u
_x2 ¼ �θ1x1þθ3x1x2
y¼ x1þϵ

8><>: ; ð71Þ

where θ¼ ðθ0; θ1; θ2; θ3Þ; θia0; i¼ 0; …; 3, u is the input variable,
xj; j¼ 1; 2 are the state variables, y is the output variable and ϵ is
the random noise. First, we have the noisy input–output model
as [32]

� €y� €ϵ�θ0 _u�θ2ð_yþ _ϵÞþθ3ð_yþ _ϵÞðyþϵÞ
þθ0θ3uðyþϵÞþθ2θ3ðyþϵÞ2þθ1θ3ðyþϵÞ ¼ 0 ð72Þ

The exhaustive summary is sðθÞ ¼ ðθ0; θ2; θ3; θ0θ3; θ2θ3; θ1θ3ÞT and
the Jacobian matrix ∂s=∂θ is

∂s
∂θ

¼

1 0 0 0
0 0 1 0
0 0 0 1
θ3 0 0 θ0

0 0 θ3 θ2
0 θ3 0 θ1

0BBBBBBBBB@

1CCCCCCCCCA
: ð73Þ

It is easy to check that rank ð∂s=∂θÞ ¼ 4 for every θ, so the model is
of full rank and therefore not parameter redundant. The identifia-
bility of the system can also be checked by differential algebra
method [32]. The two approaches give the same result, but our
method needs not to solve a system of nonlinear equations.

Example 8. Consider a 4-D HIV/AIDS model [27]
_T ¼ s�dT�βvT
_T1 ¼ q1βvT�μ1T1�k1T1
_T2 ¼ q2βvTþk1T1�μ2T2

_v¼ k2T2�cv

y1ðtÞ ¼ TðtÞ
y2ðtÞ ¼ vðtÞ

8>>>>>>>>><>>>>>>>>>:
: ð74Þ

Here the unknown parameter θ¼ ðβ; d; s; q1; k1; μ1; q2; k2; μ2; cÞ and
the initial conditions of the model are assumed to be known.
The main question to be addressed is whether θ is globally
identifiable from an experiment in which the output functions
y1ðtÞ, y2ðtÞ are exactly measured. The exhaustive summary sðθÞ is as
follows [31]:

sðθÞ ¼

β

d

s
cþk1þμ1þμ2

βk2q2
ck1þcμ1þcμ2þk1μ2þμ1μ2

β2k2q2
βk2ðdq2�k1q1�k1q2�μ1q2Þ

�βk2q2sþck1μ2þcμ1μ2

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
: ð75Þ

The Jacobian matrix ∂s=∂θ can be written as a 2-by-2 block matrix

∂s
∂θ

¼
M11 M12

M21 M22

 !
; ð76Þ

where M11 is a 3-by-3 identity matrix. It is obvious that the first three
columns of ∂s=∂θ is column independent and hence the parameters
β; d; s are globally identifiable. Let s1ðθÞ be the sub-vector of sðθÞ
with the terms ðβ; d; sÞ excluded and θ1 ¼ ðq1; k1; μ1; q2; k2; μ2; cÞ, the
column vectors of the Jacobian matrix of M22 ¼ ∂s1=∂θ1 are given as
follows:

0
1
1
0
0
1
1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

0
0
0
βk2
βq2
0
0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

0
cþμ2
cþμ2
0
0

cþk1þμ1
k1þμ1þμ2

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

0
0
0

β2k2
β2q2
0
0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;
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�βk1k2
�βk2ðq1þq2Þ

�βk2q2
βk2ðd�k1�μ1Þ

βðdq2�k1q1�k1q2�μ1q2Þ
0
0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

0
cμ2
cμ2

�βk2s

�βq2s

cðk1þμ1Þ
μ2ðk1þμ1Þ

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: ð77Þ

Since the second and the fourth column vectors of ∂s1=∂θ1 are linearly
dependent, parameter vector θ1 is unidentifiable. Our method gives
the same result as the one given by [27], but our method gives a
solution within a much fewer steps.

6. Conclusion

Identifiability becomes an essential requirement for learning
machines when the models contain physically interpretable para-
meters. Despite the existing methods can handle some specific
families of parameter models, the structural identifiability analysis
for arbitrary nonlinear models is still an open question [8,21]. This
paper is a further study on the structural identifiability of para-
meter learning machines. For the time-invariant models, we first
present an identifiability result for MIMO models within the
deterministic framework. Our result generalizes the previous one
for SISO and MISO models proposed in [4,8]. In addition, we
develop an identifiability criterion by means of KLD and regular
summary within the stochastic framework. The resulting theorem
can be applied in a variety of distributions not restricted to
exponential families. For the time-variant models, we adopt an
exhaustive summary method which is valid for a wide range of
differential/difference equation models whenever their exhaustive
summaries can be obtained.

Finally, we outline two directions below for future work:

(1) One of the major objectives in the analysis of identifiability
problem is to obtain a set of identifying functions and then use
them to reparameterize the model for subsequent analysis and
estimation [33]. In almost all cases, such a set of functions
cannot be easily obtained by visual inspection or by simple
analytic verification. In our present paper, we propose some
criteria to test structural identifiability in parameter learning
machines, but it tells nothing about reparameterization when
parameter redundancy is detected. It is still an open problem
which is one of the directions of research into the identifia-
bility theory [33].

(2) For the time-variant models, the exhaustive summary method we
adopted is theoretically general but may be not practicably
applicable to any parameter models. So far the exhaustive
summary method has worked in a range of ordinary differential
equation (ODE) models. However, it is a hard task to obtain the
exhaustive summaries in partial differential equation (PDE) models
via Laplace transformation [22], Taylor series method [23], etc.
Therefore, it would be highly desirable to consider the alternative
methods for obtaining exhaustive summaries in PDE models.
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