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ABSTRACT

This paper reports an extension of our previous study on determining structural identifiability of the
generalized constraint (GC) models, which are considered to be parameter learning machines. Identifia-
bility defines a uniqueness property to the model parameters. This property is particularly important for
those physically interpretable parameters in GC models. We derive identifiability criteria according to the
types of models. First, by taking the models as a family of deterministic nonlinear transformations from
input space to output space, we provide a criterion for examining identifiability of the Multiple-input
Multiple-output (MIMO) models. This result therefore generalizes the previous one for Single-input Single-
output (SISO) and Multiple-input Single-output (MISO) models. Second, if considering the models as the
mean functions of input-dependent conditional distributions within stochastic framework, we derive an
identifiability criterion by means of the Kullback-Leibler divergence (KLD) and regular summary. Third,
time-variant models are studied based on the exhaustive summary method. The new identifiability
criterion is valid for a range of differential/difference equation models whenever their exhaustive
summaries can be obtained. Several model examples from the literature are presented to examine their

identifiability property.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical models have become another sensing channel
for human beings to perceive, describe, and understand either
natural or virtual worlds deeply. For this reason, more and more
models are and will be generated for a vast variety of applications.
Their modeling approaches are of course different from varied
aspects. For a fast examination of the approach differences, Dubios
et al. [1], Solomatine and Ostfeld [2] and Todorovski and Dzeroski
[3] considered two basic modeling approaches with respect to the
degree of knowledge included, namely, “knowledge-driven” and
“data-driven”. The knowledge-driven modeling approach is also
called “physical-based” [2]| or “mechanistic-based” [3] modeling
approach, because the approach relies mainly on the given know-
ledge in modeling, such as the first principle from physics.
In contrary, the data-driven modeling approach is capable of con-
structing a model solely from the given data without using any prior
knowledge. While Todorovski and Dzeroski [3] described the applica-
tion advantages and drawbacks between the two types of modeling
approaches, Hu et al. [4] compared them from the viewpoints of
inference methodologies (deduction vs. induction) and parameter
meaning involved. Although the data-driven models have parameters
for themselves, the models are considered as “non-parametric”
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because their parameters are generally unable to represent the real
ones in a physical (or target) system.

In order to take advantage of each approach, a study of integrating
two types of modeling approaches is reported [2-G]. Hence, “hybrid”
models are called when the integration approach is applied to the
models [5,2,3]. For stressing on a mathematical description, another
term, “generalized constraint” (GC) [7,4], is adopted to call these
models. Considering the large diversity and unstructured representa-
tions of prior knowledge, one can expect that the “hybridizing”
difficulty is appeared more from imposing “knowledge constraints”
on the models. Fig. 1 schematically depicts a GC model, which basically
consists of two modules, namely, knowledge-driven (KD) submodel and
data-driven (DD) submodel. For a detailed description of the GC
models, one can refer [4,8,9].

Suppose a time-invariant model is considered, a general
description of the GC model is given in a form of:

y =1f(x,0) =fi.(x,0;) & f4(X,04)
0= (0k,04), O NOg=0 (1)

where xe 2" and y e ™ are the input and output vectors, f is a
function for a complete model relation between x and y, f, and f;
are the functions associated to the KD and DD submodels, respec-
tively. 0 e %* is the parameter vector of the function f, 6, and 6, are
the parameter vectors associated to the functions f, and f; respec-
tively. The symbol “@” represents a coupling operation between the
two submodels. Generally, the KD submodel contains physically
interpretable parameters whose identifiability is of fundamental
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y=f(x0)=f(x,8)®f(x,0)
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Fig. 1. Schematic diagram of GC model including KD submodel and DD submodel
(modification on Figs. 1 and 3 in [4]). Two sets of parameters, ¢, and 6, are
associated with the two submodels, respectively.

importance to the understanding of the system. However, owing to
the coupling operation between the two submodels, the resulting GC
model may have some unidentifiable parameters (i.e., these para-
meters cannot be determined uniquely) even if the parameters of
each submodels are identifiable respectively [4,8]. Identifiability of
parameters will be an important aspect to reflect a transparency
degree of models and hence “determining identifiability of the models
should be addressed before any implementation of estimation” [8,10,11].
Moreover, identifiability is closely related to the convergence of
a class of estimates including the maximum likelihood estimate
(MLE) [8,12]. Lack of identifiability gives no guarantee of convergence
to the true value of parameters and therefore usually results in severe
ill-posed estimation problems [8], which is a critical issue if decisions
are to be taken on the basis of their numerical values [13]. Besides
the ability to detect deficient models in advance, the analysis of
identifiability can also bring practical benefits, such as insightful
revealing of the relations among inputs, outputs and parameters,
which can be very useful for model structure design and selection
[4,8]. To summarize, the usefulness and importance of identifiability
analysis can be recognized in at least threefold:

(a) Statistical inference. In an unidentifiable statistical model, the
standard statistical paradigm of the Cramér-Rao bound (CRB)
does not hold, the MLE is no longer subject to Gaussian
distribution even asymptotically, the model selection criteria
such as AIC, BIC and MDL fail to hold, and the singularity gives
rise to strange behaviors in parameter estimation, hypothesis
test, Bayesian inference, model selection, etc. [14,15]. There-
fore, it is imperative to check identifiability for statistical
inference.

(b) Physically interpretable (sub-)models. In these models, some or
all parameters have physically interpretable meaning [4,13,16],
and to identify the true values of such parameters is important
because nonuniqueness of such parameters not only means
nonunique description of the process but also leads to com-
pletely erroneous or misleading results. One would not select
an unidentifiable model since the parameters are of practical
importance. Hence, identifiability analysis should be
addressed, as part of qualitative experiment design, before
any experimental data have been collected [8].

(c) Learning dynamics. In an unidentifiable parametric model, the
trajectories of dynamics of learning are strongly affected by
the nonidentifiability [14]. It has been shown that once
parameters are attracted to singular points, the learning
trajectory is very slow to move away from them. For example,
[14] studied the dynamical behaviors of learning in multi-layer
perceptions (MLP) and Gaussian mixture models (GMM), and

showed that nonidentifiability resulting in plateaus and slow
manifolds.

The structural identifiability is concerned with the uniqueness
of the parameters determined from the input-output data.
A property is said to be “structural” if it is true for all admissible
parameter values [8]. In [4,8], the authors derived identifiability
results for Single-input Single-output (SISO) and Multiple-input
Single-output (MISO) models. However, their theorems cannot deal
with Multiple-input Multiple-output (MIMO) models. Therefore, this
work is an extension of [4,8] and we further expect to consider the
problem from a wide spectrum of models. In this study, we view
a model to be a “parameter learning machine” if it can be
parameterized by a finite-dimensional vector (Fig. 2). A special
emphasis is put on identifiability of arbitrary nonlinear functions
for parameter learning machines. The main contribution of the
present work is given from the following three aspects:

(1) From a partial derivative matrix (PDM), we derive a new
identifiability criterion for deterministic nonlinear functions,
which is applicable to MIMO models.

(2) Based on the Kullback-Leibler divergence (KLD) and regular
summary, we present a new identifiability theorem for sto-
chastic models which can be applied to more generic statis-
tical models without restricting to exponential family [17].

(3) For the time-variant models, we adopt an exhaustive summary
method which is valid for a wide range of differential/differ-
ence equation models whenever their exhaustive summaries
can be obtained.

The remainder of this paper is organized as follows. Section 2
gives some basic definitions and views the identifiability problem
from two different perspectives. Section 3 presents an identifia-
bility criterion for deterministic MIMO models. In Section 4, we
present an identifiability result for stochastic models with the help
of KLD and regular summary. Section 5 gives a method for testing
parameter redundancy by using exhaustive summary. Section 6
concludes with a brief summary.

2. Models and definitions

Typically, the approaches of examining structural identifiability
of parameter learning machines can be categorized into two
frameworks according to the modeling nature:

(1) Deterministic framework. In this framework, it is assumed that
the model is deterministic and noise-free [8,13,16]. In other
words, the model is viewed as a family of parameterized
nonlinear mappings from an input vector X e £" to an output
vector y e &M,

y=1£(x,0), )

Hypothesis Space

Functional Space

Parameter
Space

Knowledge
Space

Fig. 2. Schematic diagram of spaces studied in machine learning, from which a
model can be viewed as a parameter learning machine.
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Table 1

General methods for testing identifiability of parametric models.

Framework Model

Method

Deterministic Nonlinear regression

Dynamic model

Gaussian distribution
Exponential family
General distribution

Stochastic

Derivative function vector (DFV) method [8]
Transfer function method [22]

Taylor series method [23]

Generating series method [24]

Similarity transformation method [25]
Differential algebra method [26]

Implicit function theorem method [27]

Holomorphic function method [28]

Derivative matrix (DM) method [17]

Fisher information matrix (FIM) method [19]
Kullback-Leibler divergence (KLD) method [20]
Sufficient statistic method [29]

where 6 € @ is a parameter vector indexing a specific mapping
NACIHCES (8 S)X 3)

and © = %* is the admissible parameter space. In this context,
structural identifiability analysis deals with the theoretic
uniqueness of solutions of model parameters from perfect
model specification and noise-free input-output data [8,16].

(2) Stochastic framework. In this framework, we introduce random
noise in input and output spaces. Formally, we assume that the
available data are contaminated and are generated by some
stochastic system. Therefore, we can give the model a prob-
abilistic interpretation [8,14,15]. More specifically, we assume
that, given an input vector x e 2", the model emits an output
vector f(x,0)e 2™ which is disturbed by a random noise
ce %M. The final output y e 2™ is

y=1x0)+e “4)
hence, we can interpret f(x, 9) as the mean function of y which
has an input-dependent conditional distribution p(y|x, 8). That
is, Ey(y|X,0) =f(x,0). Let p(x) be the probability density func-
tion (PDF) over the input space %", thus the joint PDF of x and
yis

p(z,0)=Dp(X,y,0) = pX)pYIX,0) ()
where z=(X,y)e #""™. Each 0e O therefore defines a PDF

p(z,0) in #"*™ and we denote the corresponding probability
measure by .Z(0).

Following [8,12,13,16], we give a unified definition for the two
frameworks:

Definition 1. A model .#(9), 0 € © is globally identifiable if
MO1)=M(O) = 61 =02, YO, 60€0. (6)

A model is locally identifiable if for every 6 € ©, there exists an open
neighborhood N(0) of 9 such that the following holds

M) = M(62) = 01 =02, V61, 62eN(). (7)

Obviously, global identifiability implies local identifiability. When
a parameter point 9y € @ is of particular interest, for example, ¢, is
assumed to be the real value for the model parameter, we give the
following definition.

Definition 2. A parameter point 0y € @ is globally identifiable if

MO) = M(0p) = 0=0y, YOeco. )

A parameter point ¢y € © is said to be locally identifiable if there
exists an open neighborhood N(dy) of 6y such that the following

holds

MO) = M(Og) = 0 =00, ¥ 0eN(bp) )

Remark. From Definitions 1 and 2 we can see that structural
identifiability is a theoretic property of the model and that the
presence or absence of identifiability is a feature of the specifica-
tion adopted for the model, and so, is independent of the infer-
ential procedure to be used [18,19]. In other words, if a model is
structurally unidentifiable, no matter how carefully we design the
experiment or how good the observations are, one will definitely
fail to get a reasonable estimation, even when a model selection
criterion (e.g., AlIC, BIC, etc.) or regularization term is employed to
panelize the complexity of the model [8]. Therefore, once a model
has been chosen, one should test the identifiability so as to rule
out prior unidentifiable models to avoid potential defects [8,16].
In this paper, special emphasis is put on nonlinear models which
are nonlinear functions of their parameters. This is the rule for
most knowledge-driven models. The structural identifiability
analysis of linear models is well understood and there are a
number of methods to perform such a task. When the model
output is linear with respect to the parameters, the notions of local
and global identifiability become equivalent, and the test for
identifiability boils down to a rank condition on a data design
matrix [20,21]. However, checking the identifiability is very
difficult for nonlinear models. To the best of our knowledge, there
are only a few methods for testing identifiability of nonlinear
models. Table 1 lists the commonly used methods for checking
identifiability together with their associated parametric models.

3. Identifiability criterion for deterministic models

In the deterministic framework, a model is identifiable if there
exists a unique input-output behavior for each admissible para-
meter [8,16]. A nonlinear model that attempts to accurately
describe the underlying phenomena may be complex with too
many parameters. For example, a pair of parameters may always
appear together as a product (or a sum) in the model equations,
making it impossible to obtain unique estimate of both para-
meters. An open problem in nonlinear regression is to determine
when different regression functions having different parameters
implement identical input-output transformation [21]. In the
study of machine learning, a vast majority of research has been
done within the context of artificial neural networks (ANNSs).
For instance, for a three-layer network with H hidden units having
“tanh” activation functions and full connectivity in both layers,
there will have an overall weight space symmetry factor of H12"
[30]. In [8], Yang et al. studied structural identifiability of SISO and



Z.-Y. Ran, B.-G. Hu / Neurocomputing 127 (2014) 88-97 91

MISO GC models, but their results cannot be applied to MIMO
models. Generally, identifiability of deterministic nonlinear mod-
els is difficult to test since, whatever the method used, e.g.,
transfer function [22], generating series expansion [24], similarity
transformation approach [25], differential algebra [26], implicit
function theorem [27,31], it requires to solve a system of nonlinear
algebraic equations whose complexity increases very fast with the
number of unknown parameters, the number of input-output
variables, the degree of nonlinearity of the model order, etc.
Hence, it is only workable for some specific families of parametric
models (e.g., polynomial and rational equations [32]) and cannot
deal with arbitrary nonlinear models. To date, the precise condi-
tions under which the input-output transformation implemented
by an arbitrary nonlinear MIMO model can be uniquely deter-
mined by its parameters is a fundamental theoretical problem that
has not been solved completely.

In this section, we focus our study on MIMO models within the
deterministic framework. The main objective of this section
involves the derivation of conditions under which a given non-
linear MIMO model will be globally identifiable.

Suppose that the MIMO model is formulated by a nonlinear
vector-valued mapping y = f(x, ) which has m component func-
tions f;(x,0), 1 <i<m, more explicitly,

Yi=fix,0)=fi(xq, -,

If two parameter points ¢; and ¢, in © determine the same model,
we say 6; is equivalent to #,, and denote #;~6,. That is,
01~ 0, < M(01) = M(02). Note that the relation “~ " is a proper
equivalent relation (reflectivity, symmetry and transitivity)
[20,33]. For 6 € ©, we denote the equivalence class corresponding
to Oy by [0g] = {0 € @ : 0 ~ 0p}. We now present a theorem offering
necessary and sufficient conditions of global identifiability for
MIMO models. Our result thus generalizes the SISO and MISO
results in [4,8].

Xn;01,-+,0,), 1<i<m. (10)

Theorem 1. (Examination of parameter identifiability for MIMO
models). Suppose that an MIMO deterministic nonlinear model,
denoted by y=£(x,60), 60e@c%*, is differentiable with respect
to 6, and that for each 0 € 0, [0] is a smooth manifold of &, then the
model is globally identifiable if and only if the partial derivative
matrix (PDM), D = (0f;/06})m .k, Of £ is symbolic column full rank, i.e.,
if and only if v =0 is the unique solution of the equation Dv =0 for
all x. In other words, the model is not globally identifiable if and only
if there exists a nonzero vector v(0) = (v1(0), ..., Vi(0))" such that the
following equation holds:

Vi) af(x o)

+ -+ Vi(0)

af(x 0) —0. an
O

where the vector-valued function of(x, 6)/00; is defined as

of(x,0) _ (dfl(x, 0)  ofmx0)\"

20; 0, " oo ) 12)

Proof. (1) For sufficiency. If the MIMO model is not globally
identifiable, then there must exist two distinct parameters
6o # 67 in O, such that

fi(X,60) =fi(X,01),
Define a differentiable curve I" as follows:

I =1{0(s) € [0o] : 0(0) = 0, 0(1) = 01,0 <s < 1}. (14)

XeR", l1<i<m. (13)

Note that the curve I does exist by our assumption since [6] is
a smooth manifold of %, then y;, 1 <i<m are unchanged along
I, that is,

fix,0(s))=const, 0<s<1, 1<i<m. (15)

Taking derivative with respect to s for each equation, we have

of; do;
<, 00; ds

Z =0, O0<s<l1,

I1<i<m. (16)

That is Dv =0 by letting D = (9f;/90));,.x and v(0) = (d6;(s)/ds)y..1,
where each v;(6) is independent of x.

(2) For necessity. If there exists a non-zero vector
V(0) = (V1(0), -+, V()" such that Dv =0, that is
Zv](a) f'_O, XeR", 1<i<m. 17)

j=1

This is a Lagrange linear first-order partial differential equation
[34], whose auxiliary equation

do, __ do,
vi0) T (0

(18)

will in general have k—1 solutions given implicitly by, say,
a;j(0) = const for 1<j<k—1. The general solution of Eq. (17) is
then f; = hj(a;(0),...,a,_1(0)), where h; is an arbitrary differenti-
able function. Thus the model can be expressed by a smaller
parameter set §j, 1 <j<k—1 by letting §; =a;(6), 1 <j<k—1.This
implies that the mapping 6 —.#(0) cannot be one-to-one. There-
fore, the model is not globally identifiable. [J

For a geometric interpretation of Theorem 1, we rewrite equa-
tion Dv =0 as the following m equations

Vflv=0, i=1,...m, (19)

where Vfg,...,VfZ1 are the transpose of the gradient vectors of
functions f, ....f,,. Each f; is unvaried along v since the gradient
Vf; of each component f; is orthogonal to the vector field
V= (vq,..., V) in the parameter space. In other words, each f; has
completely flat ridge along every smooth manifold [0] of %X.

We now give some examples to illustrate the applications of
Theorem 1 in examining parameter identifiability in the determi-
nistic framework.

Example 1. (Adapted from [21]). We consider a two-input two-
output deterministic model given by

X,0)= 376‘233)61 + 9_1(] _e—ﬂzﬂg)q )X

F1%,0) o \ oo
F2(X,0) = 0103%1 +(1 - 6203)x;

with 0e%3. It can be verified that for any 10,

(01,02, 03) ~ (101,104, 03/2). Geometrically, the input-output map-
ping is unchanged along the differentiable curve (1-dimensional
smooth manifold)

={(01,02,03) : 01 =t,0, =t,05=1/t,t #0}. 21

hence, the model is not globally identifiable. We then apply
Theorem 1 to this model and have

D= %’Q (%XIXZ*HSM ,,zxz)e’yzw“ *%Xz (011X — O2x1)e~ 72054 )
03X — 03Xy 01X1 — 02X

(22)

It is obvious that Dv=0 for all (x1,x5,x3)e %>, where

V= (01,6,, —03), and therefore the model is not globally identifi-

able by Theorem 1. This verifies the validity of Theorem 1.

Example 2. [35]. Consider an MISO regression model

k
f(x’ 0)= ‘E] gi(ﬂi(x)’ (23)
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where ¢;(X), i=1, ..., k are known as basic functions or feature
maps and 0 € %. For this type of model, we have the PDM as
0
D= (L) =1 24)
691 1xk

By Theorem 1, the model is not globally identifiable if and only if
the equation

k
Dv= 3 vigix)=0 (25)
i=1
has nonzero solution v. That is, ¢;(X), ..., (X) are functionally
dependent. The validity of Theorem 1 is consistent with our
intuition.

Example 3. Consider a two-input two-output nonlinear determi-
nistic model

{y1 = abx; +cdx;

¥, =e P 4a sin(dx,) (26)

with 6 =(a,b,c,d) and @ = %*. First, we directly show that the
model is globally identifiable. Otherwise, there must exist two
different parameters 6, = (a,, b1, cy,dq) and 6, = (a,, by, ¢3, dy) such
that f(x, 0;) =f(x, 0,) for all x e %2, that is,

{ a1byxq +c1dixy = apbyxq +crdyx; 7

e~b% L ay sin(dixy) =e 2% a, sin(dyxy)’

From Example 2 we can see that x, e¥, sin x are functionally
independent. We then have

aiby =axby , c1di =cydy, a; sin di =ay sin dy, e b :e"’2
(28)

The above equations imply that ; = 6,. This is controversial to the
assumption that 0, # 6,. Hence, the model is globally identifiable.
We then apply Theorem 1 to this model and have the PDM

I T
D= <5_9j>2x4_ (Sin(de) —x1e~ 0 ax, cos(dxy) )

Suppose there exists a vector v = (vy,V,V3,V4)" such that Dv=0
for all xe %% we will prove that v must be trivial. By setting
x=(1,0), (b,0), (0,z/d), (0, 1), respectively, we have v, =0, v; =0,
v4 =0, v3 =0, correspondingly. That is, the unique solution of Dv = 0
is v = 0. Therefore, the model is globally identifiable.

4. Identifiability criterion for stochastic models

Identifiability is a primary assumption in all classical statistical
models [15,20,33]. However, such an assumption may be violated
in a large variety of models. Unidentifiable families of probability
distributions occur in many statistical modeling fields. In particular,
in the study of machine learning, almost all learning machines used
in information processing are unidentifiable [15]. Generally, if a
model has hierarchical structures, latent variables or coupled
submodels, the model must be unidentifiable [15].

The identifiability problem in stochastic framework is con-
cerned with the possibility of drawing inferences from an under-
lying theoretical distribution. In [19], Rothenberg proved that the
local identifiability of a stochastic model p(z,0) is equivalent to
singularity of its Fisher information matrix (FIM), i.e.,

o log p(z, 0)}
FIM(@) = —Fy | ——=—"—|.
®) 9{ £!

A statistical learning machine is called singular if its FIM is singular
[15,36]. The FIM is an important tool in singular learning theory,
for more details about singular learning machines, one can refer
[36,37]. As a special case, Hochwald et al. [28] proposed a method

(30)

to establish identifiability and information-regularity of para-
meters in Gaussian distributions with the help of holomorphic
functions. In [33], Dasgupta et al. proposed an analytical method
for constructing new parameters under which an unidentifiable
model will be at least locally identifiable.

Most of the previous work on identifiability problem concerned
mainly with local identifiability. Up to now, few investigations
have been reported on how to examine global identifiability of the
models. However, as for the nonlinear regression models, we are
more interested in global identifiability rather than simply local
identifiability [8]. Unfortunately it is very difficult to obtain global
results in a general nonlinear setting. In [19], Rothenberg estab-
lished a criterion to test global identifiability for exponential
family of stochastic models. Outside the exponential family it does
not seem possible to get necessary and sufficient conditions for
global identifiability using only the FIM. In this section, we present
an applicable criterion of testing global identifiability in the
stochastic framework. Essentially, non-identifiability is the conse-
quence of the lack of enough “information” to discriminate among
alternative parameter values in the model specification. Hence, it
is natural to test identifiability with the help of the Kullback-
Leibler divergence (KLD), which is defined as [38]

p(z,00)
2Z.6) dz.

The KLD KL(6,, 0) is always non-negative and is zero if and only
if p(z,0p)=p(z,0) for every z [38]. To proceed in examining
identifiability of parameter learning machines, a common criterion
for global (local) identifiability is stated as follows [20,39].

KL(0.0) = / ' p(z.00)log 31)

Theorem 2. In a stochastic model p(z,0), 0 ®, a parameter point
0o € O is globally (locally) identifiable if and only if 0, is the unique
solution of the equation KL(6y,0)=0 in © (an open neighborhood
of 6y).

The proof can be easily verified by the fact that KL(6p,0)=
0 < p(z,0p) = p(z,0) for every z [38]. However, for many models it
is not an easy task to determine all the solutions of the equation
KL(6y,0) =0 in a direct way [20]. To give an example, we consider
the Gaussian family

1
p.0)= xp{ - §<z—ug>T2,;‘<z—ug>}, (32)

—5 €
(7)™ (detzy)'/?

where p, is the mean vector and X, is the covariance matrix. The
KLD can be calculated as [38]

1 1
KL(8o,0) = KL(O0, 0)+ 5 (o —ta,) o, (o= Hay) (33)
with
= 1 detx
KL(69,6) = 5 {log d‘fet;: +Trace(Zy(Z,, —Z;l))}. (34)

It is easy to see that [38]

KL(00,0) =0 <= pg =g, Zo=Zg,. (35)

Checking the identifiability of 6y requires us to solve a system of
m+m(m+1)/2 nonlinear equations which makes the task intract-
able. Therefore, it is imperative to investigate some effective and
efficient approaches to attack this problem. First we propose the
following lemma.

Lemma 1. Suppose that the parameter space @ of a stochastic model
p(z,0) is a convex subset of Z* and that the Hessian matrix

*KL(6,, 0))
kxk

00,00; (36)

H(9) = (
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of the KLD KL(09, 0) is positive definite for each 6 € ©, 6 # 6y, then 6, is
globally identifiable.

Proof. It is easy to see that [38]
KL(6o,6)|, _ 0 =0 37)
Since [p(z,0)dz=1,

o[ p(z,0)dz _al
90 o—g, 00

vV e @, we have

—0. (38)

0=0y

hence, by interchange of integral and derivative, we get

oKL(%.0)|  _ o(J Pz 00)log (p(z.60)/P(z,0))dz)
20 0= 0 a0 0= 0
_ / (61)(2, to)log (p(z, 60)/P(2, 9))) dz
a0 0= 0,

_ p(z,0)

B _/ ( a0 ) ezeodz

— ,M —-0. 39)

20 0= 0,
Apply Taylor's formula to KL(6y, ), we have
KL(6o,0) = KL(60.6)|,_, +(©@—60) (W)
=% 20 0= 0,
1
+5(0—00) HE*)(0—00). (40)
where
2
H(e*):w , 0F=(1—-t)0p+1t0, 0<t<1 (41)
20 0=0*

hence,
KL(00.0) = 5 (6—00)'H(@*)0 o). “2)
Since 6* # 6y, H(6¥) is positive definite. Hence
KL(6y,6) > 0 for any 0 # 6, 43)

That is, 6y is the unique solution of the equation KL(6y,8)=0.
By Theorem 2, 6, is globally identifiable. ©

In order to provide some efficient and applicable criteria, we
should resort to two key quantities, namely the exhaustive sum-
mary and regular summary, which can help to determine the
parameter structure of the model. An exhaustive summary is a
vector-valued function of original parameters that uniquely
defines the model, and a formal definition is given below, adapted
from [24].

Definition 3. A vector-valued function s(9) = (s1(9), ..., sq(a))T, is an
exhaustive summary if each s;(@), i=1, ..., ¢ is a non-constant
function and the mapping s(@)—.Z(0) is bijective. That is, the
following condition holds:

M(01) = M(02) = S(61) =S(62), VO, 6€0. (44)

A vector-valued function s(6) = (s1(9), ...,54(0))" of 6 is a regular
summary if H(s) is positive definite for all s, where H(s) is the
Hessian matrix of KL(sg, S).

In the above definition, we make the assumption that each s;(9)
is not a constant function, as a constant component in s() is
helpless in determining the parameter structure of .#(6). More-
over, Eq. (44) ensures that the mapping s(¢)—.Z(0) cannot be
trivial. Take the Gaussian model (Eq. (32)) as an example, the
exhaustive summary is formed from the non-constant elements in
the m x 1 mean vector y, and the m(m+1)/2 non-constant, non-
duplicated elements in the covariance matrix X, (See Example 4).

We then give an identifiability result for stochastic models with
the help of KLD and regular summary.

Theorem 4. Suppose that p(z,0), 6 O is a stochastic model and
that s(0) is a regular summary, if the Jacobian matrix J(9) = (ds/
060) = (0s;/06)) is of symbolic column full rank, i.e., J(6) is of full rank
for all 9 € O, then the model p(z,0), 6 e @ is globally identifiable.

Proof. Since [p(z,0)dz=1, V0e O, we have

1 Pp@o) [*p(z0)
o (p(z, 6) 9600, ) -/ dz

00;00;
* [pz.6)dz  3*1
T 00,00;  00i06; 0 “5)

By simple calculation we get

9 log p(z.6) __ dlog p(z.6)0log p(z.6) 1 #*pz0

ae,»aaj 20; 09]‘ p(z,0) 09,‘()91‘ ’ (46)
hence

o* log p(z,0)\ _ olog p(z,0)olog p(z,0)
E"( 00;00; ) - *[E”< 20; 00; > @7
That is,

9* log p(z.0)\ _ dlog p(z.0) 9 log p(z.9)
Ea( Py ) = —[Ee< %0 Pl > (48)

For 6y € ©, by interchange of integral and derivative, we have

_ @[ 6)log p(z,0)dz

0*KL (6o, 0)
H(0p) = 2 ——207 =
(60) 00> o_y, 00° 0="0
_ ( / 9*(p(z. do)log p(z.0)) dz)
00? 90,
g 0 log p(z, 6))
=— o) ———=5—— d
[ ra. o)( ),
0 log p(z,6)
A
_ olog p(z,0)0log p(z,0)
= [y, < - " . (49)
From Eq. (38) we have
alog p(z,0)\ o log p(z,0)
Eg, (T = / p(Zﬁ)T e:eadz
op(z, 9))
/ ( 90 0=10,
hence
a0 0= 0,

where (Cov(o log p(z, 9)/66’))\ 0 =00 is the covariance matrix of the
random vector odlog p(z,0)/00 evaluated at 6¢p. Denote
H(0) = (Hg,(0)). From Eq. (49) we have

dlo z,0)0 lo z,0
Hap(0) = 5y 2105 P20 D))

4. olog p(z,0) os; 4, 0log p(z,0) os;
=F 56 &P 0705 P&, 1Y) 95
"((i ; as;  00a j; as; oy

_ % g, (2108 P(z.0)dlog p(z.0)\ si 05;
T ’ s; 0s; 004 00,
4 0s; 0S;
= Hgp(s) —-—L (52)
,E 100, 00,

Rewrite the above equation in a compact form, we have

H(0) =J(©) H(s))(0). (53)

Since s(0) is a regular summary, H(s) is positive definite. H(®) is
positive definite as J(¢) is of column full-rank. Hence, 6 is globally
identifiable by Lemma 1. From Definition 1 we can see that
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a model p(z,6) is globally identifiable if and only if p(z, ) is
globally identifiable at every 0 e ©. Since 0 is an arbitrary point
in @, the model p(z, ) is globally identifiable. ©

Corollary 1. Suppose the stochastic model p(z,0) is from an expo-
nential family

q
pz.0)= 5(6’)C(Z)EXD{ ' 21 Wi(a)Ti(Z)} (54

and q(é)):(m(e),.,.,nq(a))T is the natural parameter vector, if the
Jacobian matrix J(0) =on/00 is of symbolic column full rank, then
p(z,0) is globally identifiable.

Proof. Let z,, ..., z, be an independent and identically distributed
(i.i.d.) sample from p(z, ), 2i_ 1 Ti(z)) is the sufficient statistic of #;(6)
since 7;(0) is the natural parameter [40]. By the sufficient statistic
method [29] we can see that p(z,#) is globally identifiable. Hence,
p(z,n) satisfies Cramér-Rao regularity conditions [40]. Therefore, the
Hessian matrix H(;) is positive definite since it is the covariance
matrix of random vector 0 log p(z,#)/on. From Eq. (53) we have

H(0) =J(©)"H»))(©). (55)

Since J(0) is of symbolic column full rank, from Theorem 4, p(z, 6) is
globally identifiable. ©

A remarkable feature of Theorem 4 and Corollary 1 is that we
can determine the identifiability of stochastic models by calculat-
ing the symbolic rank of the Jacobian matrix J(9), thus avoiding the
usual bottleneck of seeking for the roots of a nonlinear equation
KL(6p,0) =0. Our result can be applied in a variety of stochastic
models without restricting to exponential family of distributions.

Example 4. [41]. Consider the second-order state-space model
X1(t+1) 01 0\ [x:1(D) 1 x1(0) 0

(xz(t+1)> - ( 1 92> (xz(t)> M <0>€(t)’ (X2(0)> - <0>

Y(®) =Xa2(6) (56)

where 0 = (61, 60,) € %% and the noise e(t) is a zero-mean Gaussian
white noise with unit power. Let us study the output sequence
with t = 4. The output sequence y* is as follows:

y(1) 0
V=lye |~ (01 +62)e(0) +¢(1) - 6D
y(4) (62 +010 +03)e(0)+ (01 +02)e(1) +€(2)

It is easy to see that y* ~ A/(0, Z(0)) is a zero-mean Gaussian vector
whose distribution can be uniquely determined by its covariance
matrix (). Let s(9) be a vector containing all the distinct non-
constant elements of X(#), that is,

01+6,
03+ 010, +05
(61+62)" +1 . (58)
(01402)(0% +010,+05+1)
(02 40102 +03)% +(01+62)* + 1

s(0) =

Obviously, s(6) is a regular summary of y*. The Jacobian matrix J(6)
can be calculated as
Further, by using elementary matrix transformation, we can see

that J(0) is equivalent to

1 0
201+6, —01+0;,
2(61+62) 0 (60)
36% 446,16, +265+1 — 63+ 63
2(2603 + 3620, + 30105 + 63+ 0, +6) 0

we have rank (J(8)) =2 for all e %% such that 6; #6,. Hence,
H(9) is positive definite for all 9 %? such that ¢; #6,. From
Corollary 1, the model is globally identifiable for all # € %2 such
that 0y # 6,. According to [41], the model is locally identifiable
by their transfer function method, but our method gives a much
stronger conclusion.

Example 5. Consider the 1-order autoregressive (AR) model
Ye=01Yi_1+62er, 0<O1 <1, 6,#0 (61)

with ¢; a zero-mean Gaussian white noise with unit power and
0 = (01, 02). Assume that the system has reached steady state when
the observations begin, then the observation sequence {y,} will be
a 1-order stationary Markov process whose covariance matrix is

1 6 6 .. 4!
01 1 01 w672
92
(0= _22 0”2 o 1 w673 , t=1,2,..
1-01| . . . .
6t 6 93 1

txt

(62)

Let s;(#) be a vector containing all the distinct non-constant
elements of X:(9), that is,

2

% -
(L0007 (63)
1

St(0) = 1—

Obviously, s¢(0) is a regular summary of the observation sequence

{y¢}. The Jacobian matrix J;(¢) can be calculated as
2010, 2

0, (1 +61)202 29]

Jt(e) = 1 _9%

. . (64)
(=12 +(n+1)0%)0, 264!

We have rank(J,(6)) = 2 for all ¢ such that 0 <6y <1, 6, # 0. From
Corollary 1, the model is globally identifiable for all & such that
0<01<1, 6, #0.

5. Parameter redundancy

The most obvious cause of non-identifiability is parameter
redundancy, in the sense that the model can be written in terms
of a smaller set of parameters. Following [8,17], we give the
following definition.

Definition 4. (Parameter redundancy). A model .Z(0), 0 € © c &*
is said to be parameter redundant if it can be expressed in terms of
a smaller parameter vector p=p(0), where dimp<k. Models
which are not parameter redundant are said to be of full rank.

1 1
201 +6, 601+26,
Jo)= 2(01+02) 2(01+02) (59)
30% 446,10, +203 +1 20% 446,60, +303 +1

21203 +3020,+30103 + 03+ 01 +05) 2203 +3020,+360105 +03 4+ 601 +0,)
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In [17], Catchpole et al. introduced the concept of parameter
redundancy in exponential family of distributions and they further
showed that whether or not a model is parameter redundant can
be determined by checking the symbolic rank of a derivative matrix
(DM), but their DM-based method can only be used in the
exponential case. In this section, we will extend the result for
exponential family to more generic models. By using exhaustive
summaries, we provide a criterion for checking identifiability of
models as follows.

Theorem 6. Suppose that s(0) =(s1(0),...,sq(0))" is the exhaustive
summary of the model .(0), 0 %*, then .u(0) is parameter
redundant if and only if the Jacobian matrix

os (05
0 (ae;) axck (65)

is symbolically column rank-deficient, i.e., the Jacobian matrix is
column-deficient for all 6.

Proof. For necessity. Since .#(0) is parameter redundant, then the
exhaustive summary s(¢) can be expressed by a smaller parameter
vector p=p(0), dimp=r <k. Specifically, let g=(,....5), we
have

Si(01, ... 0) = Si(B1, ... Br) = Si(B1 (01, ... Ok), ... Br (01, ... Ok)) (66)
Taking derivative with respect to ¢; for each equation, we have

dS; _ s aS,'aﬂ[

= =1,....,q j=1,..k (67)
00; — |2, 0p00; ’ ’
That is
91 ., 951 951, 951 W ... I
90, 00), P P, 00, 00
P = = oo . (68)
001 00y axk 1 P, g 90, e ) ok

We rewrite the above matrix equation in a compact form

s s op
= =(= = . 69
(Bb‘)qu <0ﬂ>qxr <66> rxk ©9)

It is easy to see that

0s op
rank <—> <rank (—) <r<k. (70)
a0 qxk a0 rxk

Therefore, the Jacobian matrix 0s/00 is symbolically column
rank-deficient. The sufficiency can be derived in the same line as
Theorem 1.

In the study of modeling dynamical systems using differential
equations for which closed-form solutions are not available,
parameter redundancy analysis is an important tool to study the
problem of structural identifiability.

Example 7. Consider the following dynamic ordinary differential
equation (ODE) model [32]:

5(1 = —6X1 — 03Xy —6Opu
Xy = —01X1+63X1X2 | (71)
Yy=X1+e

where 0 = (0g,01,02,03),0; #0, i=0, ..., 3, u is the input variable,
X;, j=1, 2 are the state variables, y is the output variable and ¢ is
the random noise. First, we have the noisy input-output model
as [32]

—Y—E€—0U—O2(Y+&)+ 03V +E)Y+e)

+0003U(Y +€)+0205(y +€)> +0103(y+¢) =0 (72)

The exhaustive summary is s(8) = (6, 62, 03,0903, 6-63,6:03)T and
the Jacobian matrix ds/d6 is

1. 0 0 O

0 0 1 0
os_|0 0 0 1 3
0 |es 0 0 6

0 0 035 6,

0 6; 0 0

It is easy to check that rank (ds/06) = 4 for every 0, so the model is
of full rank and therefore not parameter redundant. The identifia-
bility of the system can also be checked by differential algebra
method [32]. The two approaches give the same result, but our
method needs not to solve a system of nonlinear equations.

Example 8. Consider a 4-D HIV/AIDS model [27]
T=s—dT—pvT
’I:‘l =@ VT —pi T1 =k Ty
Ty = @pvT +k1T1 — i, T

v=kyTy—cv 7%
Y1) =T(t)
Ya(O) =v(t)

Here the unknown parameter 6 = (3,d, s, qq, k1, 11, G2, k2, 2, €) and
the initial conditions of the model are assumed to be known.
The main question to be addressed is whether ¢ is globally
identifiable from an experiment in which the output functions
¥1(b), ¥»(t) are exactly measured. The exhaustive summary s(0) is as
follows [31]:

Vi
d
s

C+ky+pq +puy

pkaqs . (75)

cky +cpy + Cuy +kipy +ppa

B*k2q,
Bka(dqy —k1q; —k1Gy —p1G2)
— BkaqyS+Ckypy + Cuqpy

s(0) =

The Jacobian matrix ds/06 can be written as a 2-by-2 block matrix
M;; M

ﬁ _ 11 12 ’ (76)

20 My, My

where My, is a 3-by-3 identity matrix. It is obvious that the first three
columns of 9s/00 is column independent and hence the parameters
B, d, s are globally identifiable. Let s;(¢) be the sub-vector of s(6)
with the terms (4, d, s) excluded and 6' = (q;, k1, 41, 3, ka2, 15, €), the
column vectors of the Jacobian matrix of My, = ds; /00" are given as
follows:

0 0 0 0

1 0 C+uy 0

1 0 C+uy 0
01, pka |, 0 .| ke |,
ol | pg, 0 £q;

1 0 c+ki+m 0

1 0 ky —+pq1 +pa 0
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—pkik; 0
—pka(q1 +9) Ciz
—pkaqy Cha
Blo(d —ky —py) , —pkas . (77)
Ay —kiqy —k1q; —p1G2) —PAas
0 c(ky +p1)
0 ua (k1 +pq)

Since the second and the fourth column vectors of ds; /06! are linearly
dependent, parameter vector 6! is unidentifiable. Our method gives
the same result as the one given by [27], but our method gives a
solution within a much fewer steps.

6. Conclusion

Identifiability becomes an essential requirement for learning
machines when the models contain physically interpretable para-
meters. Despite the existing methods can handle some specific
families of parameter models, the structural identifiability analysis
for arbitrary nonlinear models is still an open question [8,21]. This
paper is a further study on the structural identifiability of para-
meter learning machines. For the time-invariant models, we first
present an identifiability result for MIMO models within the
deterministic framework. Our result generalizes the previous one
for SISO and MISO models proposed in [4,8]. In addition, we
develop an identifiability criterion by means of KLD and regular
summary within the stochastic framework. The resulting theorem
can be applied in a variety of distributions not restricted to
exponential families. For the time-variant models, we adopt an
exhaustive summary method which is valid for a wide range of
differential/difference equation models whenever their exhaustive
summaries can be obtained.

Finally, we outline two directions below for future work:

(1) One of the major objectives in the analysis of identifiability
problem is to obtain a set of identifying functions and then use
them to reparameterize the model for subsequent analysis and
estimation [33]. In almost all cases, such a set of functions
cannot be easily obtained by visual inspection or by simple
analytic verification. In our present paper, we propose some
criteria to test structural identifiability in parameter learning
machines, but it tells nothing about reparameterization when
parameter redundancy is detected. It is still an open problem
which is one of the directions of research into the identifia-
bility theory [33].

(2) For the time-variant models, the exhaustive summary method we
adopted is theoretically general but may be not practicably
applicable to any parameter models. So far the exhaustive
summary method has worked in a range of ordinary differential
equation (ODE) models. However, it is a hard task to obtain the
exhaustive summaries in partial differential equation (PDE) models
via Laplace transformation [22], Taylor series method [23], etc.
Therefore, it would be highly desirable to consider the alternative
methods for obtaining exhaustive summaries in PDE models.
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