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Effective Image Retrieval via Multilinear
Multi-index Fusion
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Abstract—Multi-index fusion has demonstrated impressive
performances in retrieval task by integrating different visual
representations in a unified framework. However, previous works
mainly consider propagating similarities via neighbor structure,
ignoring the high order information among different visual
representations. In this paper, we propose a new multi-index
fusion scheme for image retrieval. By formulating this procedure
as a multilinear based optimization problem, the complemen-
tary information hidden in different indexes can be explored
more thoroughly. Specially, we first build our multiple indexes
from various visual representations. Then a so-called index-
specific functional matrix, which aims to propagate similarities,
is introduced for updating the original index. The functional
matrices are then optimized in a unified tensor space to achieve
a refinement, such that the relevant images can be pushed more
closer. The optimization problem can be efficiently solved by
the augmented Lagrangian method with theoretical convergence
guarantee. Unlike the traditional multi-index fusion scheme, our
approach embeds the multi-index subspace structure into the new
indexes with sparse constraint, thus it has little additional mem-
ory consumption in online query stage. Experimental evaluation
on three benchmark datasets reveals that the proposed approach
achieves the state-of-the-art performance, i.e., N-score 3.94 on
UKBench, mAP 94.1% on Holiday and 62.39% on Market-1501.

Index Terms—Image retrieval, Multi-index fusion, Tensor
multi-rank, Person re-identification

I. INTRODUCTION

THIS paper considers the Content Based Image Retrieval
(CBIR), whose aim is to find relevant images in massive

visual data. Most CBIR systems are built on various kinds
of visual features with different index building methods. It
usually consists two steps, where the first step is to describe
a image by a vector with fixed dimension, such as the bag-
of-visual-words (BOW) [15], Fisher vectors [2], Vector of
locally aggregated descriptors (VLAD) [4], and other deep
convolutional neural network (CNN) based features [20], [3];
then a simple comparison of two such vectors with cosine
distance reflects the similarity of original sets. However, dif-
ferent visual features are different representations of the same
instance, which reflects distinct information from different
perspectives, e.g., SIFT feature has good representative ability
for local texture [8], while CNN feature focuses on reflecting
high level semantic information [17], [18]. Although both of
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Fig. 1. The flowchart of the proposed approach.

these methods are capable of searching visually similar images
effectively, totally different results may be obtained, which
motivates us to fuse various features [11], [5], [6] to boost
the retrieval accuracy. But, the feature characteristics and the
procedures of index building methods are quite different, such
as the holistic feature based method [13], [16] and the local
feature based method [7], [21], [57], resulting in the difficulties
of fusion on feature level.

Alternatively, a simple yet effective way is to fuse different
visual features on index level (also referred to multi-index
fusion) [45], [46], which implicitly conduct feature fusion by
updating the indexes. The index structure is usually considered
as a specific database management strategy. By avoiding the
exhaustive search, a proper index scheme can significantly
promote the efficiency of CBIR system. A representive index
structure is the inverted index structure. Local descriptors
extracted from the images are firstly quantized to the visual
word via nearest neighbor search. Then each image can
be indexed as a sparse vector and similar images can be
retrieved by counting the co-occurrence of visual words with
TF-IDF weighting [15]. Since only the product of non-zero
elements is calculated, inverted index structure has brought
the CBIR system to deal with large scale data. Furthermore,
the traditional index building techniques accompanying with
deep ConvNet feature have elevated the performance of image
retrieval to a new level [33].

To make sufficient use of the inverted index structure, pre-
vious multi-index fusion works mainly consider propagating
similarities via neighbor structure [45], [46]. This raises a
problem that the high order information among different visual
representations is more or less ignored. By contrast, motivated
by the multi-view learning methods [22], [23], our work learns
a index-specific functional matrix to propagate similarities
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in a unsupervised manner. Instead of simply measuring the
Euclidean distance in one visual feature space to find the
neighbor structure, our approach optimize the functional ma-
trix in a unified tensor space with the recently proposed tensor-
Singular Value Decomposition (t-SVD) based tensor nuclear
norm [25], such that the high order information by comparing
every image sample (sample-specific) and every type of visual
feature (index-specific) can be captured more effectively and
thoroughly.

In this paper, we propose a new multi-index fusion scheme
for image retrieval. We formulate this procedure as a mul-
tilinear based optimization problem to find a index-specific
functional matrix. We need to emphasize here that our contri-
butions are not meant as a simple combination between [46]
and [23]. The proposed method (called as MMF) carefully
considers the sparse index structure for retrieval, which is
the intrinsic property of inverted index structure. Meanwhile,
the complementary information captured by high order tensor
norm can be propagated via the index-specific functional
matrix. Although the proposed method seems to need an
unaffordable computing cost and memory usage, the heavy
procedure is performed offline only once at training time and
can be further invested by dividing images into groups. In
summary, the key insight of our approach is to propagate
similarity via high order (tensor) information in a unsupervised
manner, which implicitly conduct feature fusion on index level.
Fig. 1 shows the pipeline of our proposed scheme.

The main contributions of this paper are summarized as
follows:

• We propose a new multi-index fusion scheme to im-
plicitly conduct feature fusion on index level, where
complementary information from all visual indexes can
be effectively explored via high-order low-rank tensor
norm.

• We present an efficient optimization algorithm to solve
the proposed objective function, with relatively low com-
putational complexity and theoretical convergence guar-
antee.

• We conduct the extensive evaluation of our method on
several challenge datasets, where a significant improve-
ment over the state-of-the-art approaches is achieved. By
regarding person re-identification as a special retrieval
task, the proposed model has achieved highly competent
(even better) performance compared to recent proposed
method.

The rest of this paper is organized as follows. Section II
introduces related works. Section III gives the notations that
will be used throughout the paper and the preliminaries on
tensors. In Section IV, we review previous multi-index fusion
method and motivate our model in detail, give an optimization
algorithm to solve it, and analyze its convergence. In Section
V, we show our experimental analysis and completion results
to verify our method. Then we analyse and discuss the
proposed model in detail. Finally, we conclude the proposed
method in Section VI.

II. RELATED WORK

Most of the CBIR systems can be roughly divided into two
parts: image representation and image indexing. Additionally,
our work is also related with the multi-feature fusion and
multi-view subspace learning. Their strengths and limitations
are briefly reviewed below.

A. Image representation

Image representation has been extensively studied in recent
years. To give more discriminative description for image, local
features such as SIFT [8] are introduced in CBIR systems [15].
Due to its good property of invariance to orientation, uniform
scaling and illumination changes, BOW based CBIR systems
achieve great success [28], [27], [29]. During this period,
several methods are proposed to promote the discrimination
of BOW based image representation, such as the Hamming
embedding [28], negative evidence [30], soft assignment [14]
and so on.

Meanwhile, a lot of works aim to produce the compact
image representation [7], [21], [4], [2], which is benefit
for computational efficiency and memory cost. Furthermore,
several recent proposed methods attempt to extract features
from the pre-trained deep convolutional networks via compact
encoding. By using the compact codes, Babenko et al. discover
that the features from the fully-connected layers of CNN
(fully-connected feature) provide high-level descriptors of the
visual content [13], yielding competitive results. But more
recently, the research attention has moved to the activations
of CNN filters (convolutional feature) [20]. Convolutional
features have a natural interpretation as descriptors of local
image regions, which not only share the same benefits with the
local features, but also hold high-level semantic information
[31]. Empirically, they gain even better results than the local
features. Generally speaking, both of these methods hold
distinct merits, resulting in different retrieval results. This may
cause us to consider whether we should only focus on one type
visual feature (e.g., abandon these hand-crafted features), or
combine different visual representations for retrieval.

B. Image indexing

Indexing local features by inverted index structure and
hashing holistic features by compact binary codes have been
two mainstreams methods in recent years. For the hash
technique, data-independent hash method can produce high
collision probability, but often needs long hash bits and
multiple hash tables [36], [37]. Data-dependent hash methods,
such as Stochastic Multiview Hashing [38], Spectral Hashing
[39] and Nonlinear Sparse Hashing [50] aim to generate
short binary codes via a learning processing, which is more
effectively and efficiently. We refer the readers to [40] for a
comprehensive review. Although it provides accurate search
results, the hash method is a method that loss information. In
contrast, inverted index structure, as one of lossless indexing
methods, is prevalently utilized in the BOW based image
search, which has shown excellent scalability by extensively
studies [28].



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, JUNE 2017 3

For inverted index structure, previous works mainly focus
on adding detail information into the inverted indexes after
the seminal work [15]. Zhou et al. [32] index the geometric
clues of local features via spatial coding. Zhang et al. [34]
jointly embed the local features and semantic clues into the
inverted indexes. Babenko et al. propose a inverted multi-index
framework to reduce the quantization loss [35]. Recently,
Mohedano et al. encode the convolutional features via Bag-
of-words scheme, where competitive results demonstrate the
suitability of the BOW based index building methods for CNN
features [33].

C. Feature fusion

To take full advantage of the strengths of each feature, a
lot of works have already begun to combine different visual
features to boost the retrieval performance [11], [5], [12]. In
[5], Zhang et al. conduct the fusion in ranking stage. By per-
forming a link analysis on a fused graph, the retrieval accuracy
can be greatly improved. Zheng et al. [11] introduce a score-
level fusion method for similar image search. Zheng et al.
[12] propose a coupled Multi-index framework to conduct the
feature fusion. Nevertheless, these methods treat each image
representation independently, ignoring the complementarity
among different visual features. Moreover, query operations
must be performed multiple times for multiple indexes.

To overcome these drawbacks, some works focus on fusing
visual features on index level. A common assumption shared in
these methods is that: two images, which are nearest neighbors
to each other under one type of visual representation, are
probably to be true related. By pushing them closer in other
visual feature spaces, the search accuracy can be greatly
promoted. Under the guidance of this principle, the proposed
collaborative index embedding method [46], which is most rel-
evant to our work, utilize an alternating index update scheme to
fuse feature. By enriching the corresponding feature, it refine
the neighborhood structures to improve the retrieval accuracy.
Chen et al. [45] extend this model for the multi-index fusion
problem. However, both of these methods neglect the distance
information of original feature space. More importantly, high
order information is more or less ignored.

D. multi-view subspace learning

Our work is also related with the multi-view subspace
learning methods, especially the subspace clustering methods.
Sparse subspace clustering [41] and low-rank representation
[22] are most popular subspace clustering methods, which ex-
plore the relationships between samples via self-representation
matrix. Zhang et al. [42] extend the low-rank representation
to the multi-view setting via imposing a unfolding high-order
norm to the subspace coefficient tensor. However, this tensor
constraint can not explore the complementary information
thoroughly, due to the fact that the low-rank norm penalize
each view equally. By using a new tensor construction method,
Xie et al. [23] replace the unfolding tensor norm with a
recently proposed t-SVD based norm [25], [43], which is
based on a new tensor computational framework [44]. This
framework provides a closed multiplication operation between

tensors [24], where the familiar tools used in matrix case
can be directly extended to tensor case. Hence, it has good
theoretical properties for handling complicated relationship
among different views. For more detail information, we refer
readers to read the section III.

III. BACKGROUND AND PRELIMINARIES

In this section, we will introduce the notations and basic
concepts used in this paper.

A. Basic Notations

We use bold lower case letters x to denote vector (e.g., BOW
based sparse histogram), bold upper case letters X to denote
matrix, and lower case letters xij for entries of matrix. The
notation ‖X‖F := (

∑
i,j |xij |2)

1
2 , ‖X‖2,1 :=

∑
i(
∑
j x

2
ij)

1
2

and ‖X‖1 :=
∑
i,j |xij | are the Frobenius norm, the l2,1-norm

and the l1-norm for matrix, respectively. ‖X‖∗ :=
∑
i σi(X) is

the matrix nuclear norm, where σi(X) denotes the i-th largest
singular value of a matrix. The bold calligraphy letters are
denoted for tensors (i.e., Z ∈ Rn1×n2×n3 is a three-order
tensor, where order means the number of ways of the tensor
and is fixed at 3 in this paper). For a three-order tensor X , the
2D section X (i, :, :), X (:, i, :) and X (:, :, i) (Matlab notation
is used for better understanding) denote the ith horizontal,
lateral and frontal slices. Analogously, the 1D section X (i, j, :
), X (i, :, j) and X (:, i, j) are the mode-1, mode-2 and mode-3
fibers of tensor, as shown in Fig. 2. Specially, X (k) is used
to represent kth Frontal Slice X (:, :, k) for convenience. And
X f denotes the tensor that we apply Fourier transform to X
along the third dimension.

Mode-1 
Fiber

Mode-1 
Fiber

Mode-2 
Fiber

Mode-3
Fiber

( , ,:)i j( , ,:)i j(:, , )i j(:, , )i j ( ,:, )i j( ,:, )i j

Frontal 
Slices

Lateral 
Slices

Horizontal 
Slices

(:, ,:)i(:, ,:)i(:,:, )i(:,:, )i ( ,:,:)i( ,:,:)i

Fig. 2. The 1D section and 2D section of a 3-order tensor.
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B. t-SVD framework and key results

Before we introduce the t-SVD based tensor nuclear norm
(TNN-norm), there is a need to give some pre-definitions
about the new computational framework [24], [44] for a better
interpretation.

Definition 1 (t-product). Let X ∈ Rn1×n2×n3 and Y ∈
Rn2×n4×n3 be tensors. Then the t-product M = X ∗Y is an
n1 × n4 × n3 tensor defined as

M(1)

M(2)

...
M(n3)

 =


X (1) X (n3) · · · X (2)

X (2) X (1) · · · X (3)

...
. . .

. . .
...

X (n3) X (n3−1) · · · X (1)

 ·

Y(1)

Y(2)

...
Y(n3)


(1)

where · is the standard matrix multiplication.

Definition 2 (Transpose). If X ∈ Rn1×n2×n3 , then the XT

is an n2×n1×n3 tensor by transposing each frontal slice of
X and reversing the order of the transposed frontal slices 2
through n3.

Definition 3 (Orthogonal). A tensor Q ∈ Rn1×n1×n3 is
orthogonal if

QT ∗Q = Q ∗QT = I, (2)

where I ∈ Rn1×n1×n3 is the identity tensor whose first frontal
slice is the identity matrix and other frontal slices are zero.

Based on the above definitions, it is easy to obtain that t-
product can be transformed to matrix multiplication of frontal
slices in the Fourier domain. Formally Eq. (1) equals to:

M(k)
f = X (k)

f Y(k)
f , k = 1, . . . , n3, (3)

Thus t-product can be calculated efficiently via Fourier trans-
form. And more importantly, an important theoretical resulting
property [24] can be concluded from the t-product framework,
which is similar to matrix case.

Theorem 1 (t-SVD). Let X ∈ Rn1×n2×n3 be a real-valued
tensor. Then X can be decomposed as

X = U ∗ S ∗ VT, (4)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal
tensors. S is an n1 × n2 × n3 tensor whose each frontal slices
is diagonal matrix.

Theorem 1 tells us that any real-valued tensor can be written
as the t-product of tensors, which is analogous to matrix SVD.
Meanwhile, its derived equivalence Eq. (4) in the Fourier
domain can be given as :

X (1)
f

. . .
X (n3)
f

 =


U (1)
f

. . .
U (n3)
f

 ·

S(1)
f

. . .
S(n3)
f

 ·

V(1)
f

. . .
V(n3)
f


T

,

(5)

where X (i)
f = U (i)

f S(i)
f (V(i)

f )T, i = 1, . . . , n3 are standard
matrix SVD. Thus the t-SVD based tensor nuclear norm [43]
is given as

||X ||~ :=

min(n1,n2)∑
i=1

n3∑
k=1

|Sf (i, i, k)|. (6)

Due to the fact that the diagonal block matrix in Fourier
domain can be reversed to cyclic matrix in origin domain [24],
t-SVD based tensor nuclear norm can be also given as:

||X ||~ = ‖


X (1) X (n3) · · · X (2)

X (2) X (1) · · · X (n3)

...
. . . . . .

...
X (n3) X (n3−1) · · · X (1)

 ‖∗ (7)

Different from the tensor nuclear norm (sum the matrix nuclear
norm of unfolding matrix of tensor) defined in [42], TNN-
norm measures the tensor rank by comparing every row and
every column of each frontal slices, which is the tightest
convex approximation to l1 norm of tensor multi-rank proved
by [43].

IV. THE PROPOSED METHODS

Multi-index fusion is a technique for implicitly conducting
feature fusion on index level, where we can only keep one
visual index for both effect and efficient image retrieval.
Suppose we have V types of feature indexes denoted as
X1,X2, . . . ,XV ∈ Rdv×N , whose column is a feature vector
(e.g., BOW based histograms), dv is the dimension of v-
th visual representation, and N is the image number in the
database.

Previous multi-index fusion strategies [45], [46] mainly
consider propagating similarity via the neighbor structure
through different indexes. As suggested in [46], feature fusion
on index level can be formulated as:

X̃1 = X1 + α · g(X1)�X1Φ2, (8)

X̃2 = X2 + β · g(X2)�X2Φ1,

where α and β are constant factors, g(·) is a zero-indicator
function equaling 1 if the element is zero. And � denotes the
element-wise multiplication operator. The Φm, m = 1, 2 is
defined as:{

Φm(k, i) = 1, if k 6= i,xk ∈ Rm(xi)

Φm(k, i) = 0, otherwise
(9)

where Rm(xi), m = 1, 2 denote the neighbor sets of image i
in feature index m. Eq. (8) and Eq. (9) assume that the neigh-
bor information in one feature space need to be embedded into
the updated feature vector in another feature space, such that
the distance between similar images will be reduced. However
this method can only handle two feature fusion problem.

To keep their own characteristics of each visual index, we
learn a index-specific functional matrix for updating the index
matrices instead. We formulate the index updating scheme as:

X∗v = Xv(I + Zv), v = 1, 2, . . . , V (10)
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Fig. 3. The construction of tensor Z and its derived cyclic matrix.

where I is the identity matrix, Zv ∈ RN×N is named as func-
tional matrix and optimized in the unified tensor space in this
paper, whose element zv(i, j) is greater than 0, meaning that
image i and image j should be pushed closer. Flowchart 3 to 5
of Fig. 1 show the learning procedure. This fusion procedure
can be regarded as an ”off-line” query-expansion. Given the
functional matrices, the similarities in different visual indexes
can be propagated through different visual representations,
such that the index matrices can achieve a refinement with
much more discriminative power. In the following, we will
introduce the new scheme to obtain the functional matrix Zv .

A. Motivation

There are two basic assumptions in this work, which clearly
illustrates our motivation. One is assuming that the related
images can be interpreted as a special subspace structure by
regarding the gallery as the whole space. This assumption is
based on the observation that the corresponding feature vectors
of related images are similar to each other, which is analogous
to subspace structure. We call this assumption as sample-
specific dependence. The another is the index-specific depen-
dence, which assumes that the similarities between images
measured in different feature space are highly dependent. As
discussed above, different visual representations hold distinct
merits and thus their search results differ a lot, but that does
not mean they have nothing in common. To put it simply,
related images are still close among most feature spaces, even
if they may not be the nearest neighbors in minority indexes.
That is to say, what we need to learn is the consistency rather
than the diversity.

B. multi-linear based multi-index fusion

In this paper, we utilize a multilinear based optimization
to model both dependence. Specially, we consider the self-
representation based method [22], [23]. Formally, we present
our model as follow:

min
Zv,E

λ‖E‖2,1 + ‖Z‖~ + σ
∑
v

‖Zv‖1 (11)

s.t. Xv = XvZv + Ev, v = 1, 2, . . . , V,

where σ and λ are constant parameters to control the recon-
struction errors and the sparseness of functional matrix, respec-
tively. Xv ∈ Rd×N denotes the v-th index matrix, and d is

the dimension of feature vector, Zv ∈ RN×N denotes the v-th
index-specific functional matrix. Z = Φ(Z1,Z2, . . . ,ZV ) ∈
RN×V×N is a tensor by merging different Zv to a 3-
order tensor and then shifting illustrated in Fig. 3, E =
[E1,E2, . . . ,EV ] is the error matrix, ‖ ·‖~ denotes the t-SVD
based tensor nuclear norm.

Consequently, ‖E‖2,1 in Eq. (11) attempts to control the re-
construction errors, whose aim is to update the index matrices
mildly and keep the original representation of database images.
The t-SVD based norm ‖Z‖~ is used for exploring both
dependence by comparing every row (sample-specific) and
every column (index-specific) from Eq. (7). For the sample-
specific dependence, we assume each functional matrix Zv has
low rank property. While for the index-specific dependence,
we use the high correlations of the index-specific functional
matrices for a replacement, where we also assume the different
functional matrices share the low rank structure. As a result,
related images’ information can be embedded into the ”new”
feature vector via the updating scheme. Meanwhile, the sparse
constraint ‖Zv‖1 aims to embed the most significant relevant
images into the new index and keep the sparseness of the
updated indexes.

C. Optimization Procedure

We can use the Augmented Lagrange Multiplier (ALM) [26]
to solve this optimization problem efficiently. By introducing
the auxiliary tensor G and the auxiliary matrices Mv, v =
1, 2, . . . , V , the optimization problem can be transferred to:

L(Z1, . . . ,ZV ; E1, . . . ,EV ; M1, . . . ,MV ;G)

=
∑
v

(σ‖Mv‖1 + 〈Yv,Xv −XvZv −Ev〉

+
µ

2
||Xv −XvZv −Ev||2F+ 〈Nv,Zv −Mv〉

+
ξ

2
||Zv −Mv||2F ) + λ‖E‖2,1 + ‖G‖~

+ 〈W ,Z − G〉+
ρ

2
||Z − G||2F , (12)

where the matrix Nv ,Yv , and the tensor W are Lagrange mul-
tipliers. µ, ξ and ρ are the penalty parameters. An accurate and
joint optimization of Ev , Mv , Zv and G seems to be costly.
In contrast, we adopt an alternating scheme and partition the
unconstrained problem into four steps alternatingly.
Subproblem Zv: When the G, E, M are fixed, we will solve
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the following subproblem for updating the functional matrix
Zv:

min
Zv

〈Yv,Xv −XvZv −Ev〉+
µ

2
||Xv −XvZv

−Ev||2F + 〈Nv,Zv −Mv〉+
ξ

2
||Zv −Mv||2F 〉

+ 〈Wv,Zv −Gv〉+
ρ

2
||Zv −Gv||2F . (13)

It is easy to solve this optimization problem due to the closed-
form solution. We can obtain the solution by setting the
derivative to 0:

Z∗v =(Xv
TYv + µXv

TXv − µXv
TEv −Wv −Nv

+ ρGv + ξMv)/(ρ+ ξ)(I +
µ

ρ+ ξ
Xv

TXv)
−1. (14)

Subproblem Mv: When G, E, Z are fixed, solving Eq. (12)
is equal to minimize the following problem for updating the
auxiliary matrix Mv:

min
Mv

σ ‖Mv‖1 +
ξ

2
||Mv − (Zv +

1

ξ
Nv)||2F . (15)

We can use Soft Thresholding to solve Eq. (15).

M∗
v(i, j) =sign(Zv(i, j) +

1

ξ
Nv(i, j))·

max(|Zv(i, j) +
1

ξ
Nv(i, j)| −

σ

ξ
, 0). (16)

Subproblem Ev: For given G, Z, M , we can get:

E∗ = argmin
E

λ‖E‖2,1 +
µ

2
‖Xv −XvZv −Ev‖2F

+
∑
v

〈Yv,Xv −XvZv −Ev〉

= argmin
E

λ‖E‖2,1 +
1

2
‖E−D‖2F , (17)

where D is constructed by vertically concatenating the matri-
ces (Xv−XvZv + 1

µYv) . This subproblem can be solved by
[22].
Subproblem G: At last, when the E, Z, M are fixed, we will
solve the following subproblem for updating the tensor G,

G∗ = argmin
G
‖G‖~ +

ρ

2
‖G − (Z +

1

ρ
W)‖. (18)

When we transform the Eq. (18) to the Fourier domain, it can
be reformulated as:

G∗f = argmin
Gf

N∑
j=1

τ ′||G(j)
f ||∗ +

ρ

2
||G(j)

f − (Z +
1

ρ
W)

(j)
f ||

2
F .

(19)

Thus the tensor optimization can be divided into N inde-
pendent matrix subproblems in Fourier domain to solve. The
procedure in [23] can be applied to solve this subproblem.

Algorithm 1: Multi-index fusion
Input: Index matrix Xv, v = 1, 2, . . . , V , λ > 0, σ > 0 ,

sparse threshold threshold, iters
Output: Fused index matrix X∗v, v = 1, 2, . . . , V

1 for iter=1:iters do
2 Initialized: Zv = Ev = Yv = Mv = Nv = 0;

G = W = 0; µ = 10−5, ρ = 10−5,ξ = 10−5,
η = 2, µmax = ρmax = ξmax = 1010, ε = 10−7;

3 while not converge do
4 Update Zv, v = 1, 2, . . . , V by using (14);
5 Update E by solving (17);
6 Update Mv, v = 1, 2, . . . , V by using (16);
7 Obtain Z = Φ(Z1,Z2, . . . ,ZV );
8 Update G via subproblem (19);
9 Update Lagrange multipliers

W ,Yv,Nv, v = 1, 2, · · · , V by using (20);
10 Update parameters µ, ξ and ρ:

µ = min(ηµ, µmax), ρ = min(ηρ, ρmax),
ξ = min(ηξ, ξmax);

11 (Z1, . . . ,ZV ) = Φ−1(Z),
(G1, . . . ,GV ) = Φ−1(G);

12 Check the convergence conditions:
13 ||Xv −XvZv −Ev||∞ < ε
14 ||Zv −Gv||∞ < ε;
15 ||Zv −Mv||∞ < ε;
16 end
17 Z∗v = sparse(Zv), v = 1, 2, . . . , V

Xi = Xi

∑V
v=1(Z∗v + Z∗vT ), i = 1, 2, . . . , V

18 λ = 10 · λ, σ = 10 · σ
19 end
20 X∗v = sparse(Xv), v = 1, 2, . . . , V
21 Return Fused index matrix X∗v, v = 1, 2, . . . , V .

In addition, the Lagrange multipliers are also need to be
updated as:

Y∗v = Yv + µ(Xv −XvZv −Ev),

W∗ = W + ρ(Z − G), (20)
N∗v = Nv + ξ(Zv −Nv).

The above four steps are repeated until the convergence
condition is satisfied. Although it is not easy to prove the
convergence of the algorithm theoretically, two sufficient con-
ditions suggested in [22] for our algorithm to converge are
easily to be met fortunately.

Finally, the small value of functional matrix may not affect
retrieval accuracy but will introduce the noise into the new
index. So we simply set the value which is below a certain
threshold θ1 to 0.

sparse(Z) =

{
0, |zij | < θ1
zij , |zij | ≥ θ1

(21)
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D. Index Updating and Online Query

In the fusion process, we update our index matrix as follows,

X∗v = Xv(I +
1

V

∑
v

(Zv + ZTv )), v = 1, 2, . . . V. (22)

We iteratively fuse indexes for T times until we obtain the best
retrieval accuracy. In each iteration, we execute normalization
on each new index and expand the parameter λ and σ tenfold
to guarantee the original representation of database images.
When the fusion is finished, only one index is selected
to be the final index for online retrieval. To leverage the
inverted index structure and reduce the cost in memory and
computation, we also set the elements of the final index below
the threshold θ2 to zero.

Given the query image q, in the online query stage, we
first extract only one type of visual feature xv(q) used in
our feature index. Then, we compute the consine similarity
between the query and each database image. It is worth
noting that we can make full use of the high sparseness of
feature indexes, i.e., hypercolomn index. The computational
complexity of calculating distance will be greatly reduced.
At last, we sort the similarity scores in descending order
and return the retrieval result. The entire fusion process is
summarized in Algorithm 1.

V. EXPERIMENT

In this section, we perform experiments to present a com-
prehensive evaluation of the proposed method. Two appli-
cations (i.e. image retrieval and person re-identification) are
tested, where we regard the person re-identification as a
special retrieval task. The retrieval accuracy and memory
consumption are evaluated for our approach in the retrieval
benchmark datasets, while only search accuracy is tested on
the Market-1501. Comparison is made to measure performance
improvement to the baseline methods and some other state-of-
the-art methods. All experiments are implemented in Matlab
on a workstation with Intel Xeon E5-2630 @ 2.30 GHz
CPU, 128GB RAM, and TITANX GPU (12GB caches). To
promote the culture of reproducible research, source codes and
experimental results accompanying this paper will be released
at https://www.researchgate.net/profile/Zhizhong Zhang5.

A. Experimental Setup

We evaluate the proposed algorithm on three public bench-
mark datasets i.e., UKBench [27], Holidays [28] and Market-
1501 [47], where Market-1501 is one of the biggest person re-
identification dataset. The UKBench dataset contains 10,200
images. All images in UKBench are taken as query and each
of which has 4 relevant images. We evaluate the retrieval
accuracy by N-S score, which is the average number of
relevant images of top 4 returned images. The Holidays dataset
consists of 1,491 images taken from personal holidays photos,
where 500 images are selected to be queries. Mean average
precision (mAP) is adopted to evaluate the retrieval accuracy.
The Market-1501 dataset is collected in front of a supermarket
in Tsinghua University. Overall, this dataset contains 32,668

annotated bounding boxes of 1,501 identities. There are 12,936
images used for training and other 19732 images for testing.
Both rank-1 error and mAP are adopted for evaluation. It is
worth noting that we only use the testing images for training
our multi-index fusion method.

TABLE I
COMPARISON OF RETRIEVAL ACCURACY AND MEMORY COST. THE
PERFORMANCE OF THE COMPARISON METHODS ARE TAKEN FROM

THOSE ORIGINAL PAPERS. THE AVERAGE SIFT FEATURES PER IMAGE
OF COMPARISON METHOD IS ASSUMED TO BE 2,000. OQMC MEANS

ONLINE QUERY MEMORY COST FOR EACH INDEXED IMAGE. MMF
MEANS THE INDEX AFTER OUR MULTI-INDEX FUSION. * MEANS THE

BASELINE METHOD

Methods UKBench(NS-score) Holiday(mAP) OQMC
SIFT Index* 3.03 31.8% 21.5KB
FC Index* 3.42 70.4% 5.1KB
HC Index* 3.28 74.3% 1.5KB
c-MI [12] 3.85 85.8% 13.5KB
QSF [5] 3.77 84.6% 20KB
QaLF [11] 3.84 88.0% 62KB
CIE [46] 3.86 89.2% 4KB
MFSMP [45] 3.78 78.8% 0.38KB
CoInd [34] 3.60 80.9% 24KB
MMF-SIFT 3.94 84.8% 10.1KB
MMF-FC 3.92 93.6% 2.8KB
MMF-HC 3.87 94.1% 1.2KB

B. Implementation Details
In this section, we introduce some experiments detail such

as the index building methods. On the UKBench and Holidays
datasets, we extract three types of features to build our indexes
separately. Specially, for SIFT index, we first extract the SIFT
features [1], [8] and transform each SIFT descriptor with root-
SIFT [10]. To avoid the loss in quantization, we assign each
descriptor to three nearby visual words [14] with a pre-trained
codebook[9]. Following the traditional Bag-of-Words method
[15], we represent each database image as a 20K sparse vector
in a TF-IDF manner [15]. For CNN fully-connected index
(FC index), we first resize each image to 224 × 224 and
then pass it through the deep convolutional network, i.e.,
AlexNet [17], which is pre-trained on ImageNet by Caffe
implementation [19]. The outputs of the fully connected layers
(FC6) are extracted and thus each dimension of feature vector
can be regarded as a visual word. For Hypercolumn index
(HC index), we use the VggNet [18], which is also pre-trained
on ImageNet by Caffe implementation, as our Hypercolumn
feature extractor. The feature maps of conv 5 4 layer are
extracted, whose size is 14×14×512. We take the activations
of all filters fh(m) ∈ R512,m = 1, 2, . . . , 196 as our
feature vector. Then similar to the strategy of standard vector
quantization, we quantize each fh(m) to three nearest visual
words of a pre-trained 10K codebook via TF-IDF weighting.
For Market-1501 dataset, we follow three baseline methods
proposed by [48], [47].

C. Experimental Results on Image Retrieval
For each image in the UKbench and Holidays datasets,

we extract the CNN feature and SIFT feature, then perform
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TABLE II
COMPARISON OF RETRIEVAL ACCURACY ON MRAKET-1501. RANK-1

ERROR AND MAP ARE USED FOR EVALUATION. * MEANS THE BASELINE
METHOD.

Method
Single Query Multiple Query

Rank-1 mAP Rank-1 mAP

BOW*[47] 35.84% 14.75% 44.36% 19.41%
CaffeNet*[48] 49.36% 32.10% 66.63% 41.25%
ResNet50*[48] 74.02% 49.36% 81.26% 59.10%

NULL[52] 61.02% 35.68% 71.56% 46.03%
Reranking[51] 77.11% 63.63% - -

LBA[49] 73.87% 47.89% 81.29% 56.98%
Gate-SCNN[54] 65.88% 39.55% 76.04% 48.45%

S-LSTM[53] - - 65.6% 35.31%
SCSP[55] 51.9% 26.35% - -
CIE[46] 73.77% 57.55% 79.39% 65.24%

SSDAL[56] 39.40% 19.60% 49.00% 25.80%

MMF-BOW 55.73% 37.64% 63.81% 44.37%
MMF-CaffeNet 69.63% 53.93% 76.93% 61.79%
MMF-ResNet50 77.11% 62.39% 82.51% 69.58%

the feature transform as aforementioned in section V-B. As
shown in Table I, our approach significantly outperforms the
baseline methods on both UKBench and Holidays datasets.
On UKBench dataset, we get the N-S score of 3.94, 3.92
and 3.87, which achieves absolute gain of 30.3%, 14.6% and
18.0%, respectively. For Holidays dataset, we increase the
mAP of the baseline from 31.8% to 84.8% for SIFT index,
from 70.4% to 93.6% for FC index and from 74.3% to 94.1%
for HC index. It indicates that our MMF method could capture
the complementarity between the SIFT feature and CNN
feature, and elevate the performance to a higher level. More
importantly, our approach shows the robustness for degenerate
visual representation such as the SIFT index on Holidays. It is
also worth noting that the baseline method have a great impact
on the fusion result such as the high-dimensional MMF-
SIFT index outperforms the other indexes on UKbench, while
MMF-HC index achieves the best performance on Holiday.
The reason for this phenomenon is that the two datasets vary
greatly i.e., Holidays includes a very large variety of scene
types, UKbench is a set of images containing relatively simple
objects, which causes the performance of SIFT baseline on
UKbench is much better than it on Holidays.

Moreover, our approach significantly outperforms the state-
of-the-art feature fusion methods [11], [5], [12] with less
online memory consumption. Although the proposed multi-
index fusion method [45] also provides comparable online
memory consumption, its search accuracy is much worse than
ours. Meanwhile, to achieve a accurate search result, the
proposed CIE [46] method requires elaborate baseline method
(i.e., N-S score of 3.53 and 3.33), which also demonstrates
the effectiveness of the proposed method.

In the online retrieval stage, the main memory cost of our
method is to store the MMF index files. We assume each
non-zero element of the feature vector in the index matrix
takes 8 bytes to store the weight and image ID with the
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Figure 4. Influence of iteration number on retrieval accuracy on UKBench
(a), Holiday (b) and Market-1501(c, d). CIE means the proposed Collaborative
Index Embedding [46]. Iteration 0 means the origin index.

inverted index structure. After applying the sparse operation,
our indexes require even less memory overhead than the origin
index files, while keeping the competitive retrieval result. The
online query computation complexity also gain the benefit
from the sparsity of index files, which greatly reduce the query
response time.

D. Experimental Results on Person Re-identification
Following the protocol in [48], [47], we extracted three

kinds of image features on Market-1501: the BOW feature, the
ResNet50 feature and the AlexNet feature (CaffeNet feature).
As shown in Table II, the proposed method also outperforms
baseline method on both single query and multiple query by
a large margin. Although the CaffeNet and the BOW model
obtain more improvement, the best Rank-1 error and mAP
are still achieved by the MMF-ResNet50, which is also the
best baseline method. However, the improvement of mAP is
much higher than the improvement of Rank-1 error. While
easy to understand, the proposed MMF can be regarded as
an ”off-line” query expansion or re-ranking technique, which
can not fundamentally improve the discrimination of visual
feature. The similar results are also presented by [51]. From
another perspective, if we can design more discriminative
visual features, our multi-index fusion scheme can further
improve its performance. Some representative retrieval results
are shown in Fig. 5, where the black bounding box means
the distractors or the images that come from the same cam-
era with the query, the red bounding box means the true
match persons and otherwise are wrong. The complement
information, such as the rank-1 and rank-2 images measured
in CaffeNet, which includes the same person with the query,
can be transferred through the different visual representations
(i.e., ResNet model).

As demonstrated in Table II, the proposed approach
achieves the comparable (even better) results with the state-
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of-the-art competitors, including the Gated Siamese Convolu-
tional Neural Network(Gate-SCNN) [54], Discriminative Null
Space(NULL) [52], Spatially Constrained Similarity function
on Polynomial feature map(SCSP)[55], Siamese Long Short-
Term Memory (S-LSTM) [53], Looking Beyond Appear-
ances(LBA) [49], Deep attributes(SSDAL) [56], Re-ranking
[51] and the multi-index fusion method [46]. It is remarked
that our method utilize the complementary information among
different visual representation and perform at off-line stage,
while the re-ranking [51] method takes advantage of the probe
information and must perform at on-line stage.

E. Parameter Analysis

In this section, we discuss the impact of parameters for our
approach. Five key parameters influence the performance of
the retrieval system, including the parameter λ, σ in Eq. (11),
the threshold θ1 for functional matrix, the threshold θ2 for the
final index and the fusing iteration number T .

We first evaluate the impact of fusing iteration number T for
the search accuracy. As shown in Fig. 4, the retrieval accuracy
on both UKbench and Holidays first quickly rises to the peak
and then keep stable with the increase of fusing iterations. On
UKBench, we fuse 3 times until the MMF-SIFT index obtain
the best performance but there is still room for HC index to
improve. On Holidays, we fuse 4 times when the performance
of all the indexes are keeping stable. As for the Market-1501
dataset, the Rank-1 error of MMF ResNet slightly drops after
T = 2, which is even worse in [46]. But the mAP of all
the indexes keep improving due to the characteristic of the
multi-index fusion methods. We choose T = 4 for Market-
1501 for relatively stable performance. Although the CIE
method achieves comparable result, by setting the parameter
α = β = 0.4, p = q = 9, m = 20 (with a simple grid
search), its performance of Rank1-error drops sharply after a
few iterations.

We then evaluate the impact of reconstruction error param-
eters λ and sparse parameters σ by using different values of
λ and σ. Although the parameter λ and σ play an important
role on performance, most results are still much better than the
baseline methods. As shown in Fig. 6, when the λ increases,
the retrieval accuracy firstly climbs to the peak point and then
slowly decreases on both datesets by fixing the σ = 0.001.
The reason for this phenomenon is that the larger λ is, the
less modification is made to the index. As λ decreases to 0,
the functional matrix is degenerated to identity matrix. The
influence of parameter σ shows similar performance as λ on
both datasets by fixing the λ = 0.005 and 0.015 respectively.
But when σ increases to a certain extent, all the values
of functional matrix have been suppressed due to excessive
sparsity constraints, which cause the retrieval accuracy, i.e.,
MMF-SIFT index drops sharply. For Market-1501 dataset, we
set λ = 0.010 and σ = 0.001 to obtain the best performance.
Empirically, λ is often locate at 0.005 to 0.015 and σ = 0.001
is suitable for most situations.

Fig. 7 shows the influence of threshold θ2 for final index
on the sparseness and retrieval accuracy of index matrix. We
can easily get that the larger fusing iteration number, the less

sparseness of the index structure, where this phenomenon is
also presented in [45], [46]. When the threshold increases,
it is observed that the sparseness of indexes drop sharply
while the retrieval accuracy keeps stable on both two datasets.
The situation on Holidays is slightly different from it on
UKBench, especially for the MMF-SIFT index due to the fact
that the larger fusing iteration number and the larger SIFT
descriptors number, which smooth the energy. The influence
of threshold θ1 for functional matrix will keep stable with a
little performance boosting when it varies from 0.005 to 0.02.
The detail analyse will be presented in section V-F.

In addition, our optimization method converges fast by
setting the parameter as Algorithm 1 states, which is illustrated
in Fig. 9. Three curves record the errors (defined in Eq. (23))
in each iteration step.

Err1 = ||Xv −XvZv −Ev||∞
Err2 = ||Zv −Gv||∞ (23)
Err3 = ||Zv −Mv||∞

F. Discussion and Analyses

We conduct further analyses and experiments to better
understand the characteristics of our Multi-index fusion
scheme.

Scalability: Although the updating scheme seems costly, as
discussed above, the whole procedure only perform once at
off-line training time. Meanwhile, in Algorithm 1, the inverse
matrix can only be calculated once during the whole iteration
with proper parameter. The most time consuming part of
our method is to solve the subproblem Z , but it equals to
calculate (N−1)

2 matrix SVD, whose dimension is N×V . This
special structure can be easily parallelized and will be invested
in our future work. In summary, it takes O(2N2V log(N))
for calculating the FFT and its inverse. Take O(N2V 2) for
calculating the matrix SVD. As for the subproblem E and Mv ,
they take O(N2V ) in each iteration. Since log(N)� V , the
complexity of our MMF method is:

O(TK(2N2V log(N))), (24)

where K means the iteration number. In practice, T usually
locates at 3-4 and K locates at 30-50. More importantly, as
shown in Fig. 8, a block matrix structure is presented, which
clearly demonstrates the sample-dependence assumption. Thus
we can divide the dataset into image groups to further reduce
the computation and memory consumption without incurring
the performance lost. This will be invested in our future work.
Robust: We also extract GIST feature as the 4th index for
retrieval on UKbench and get a NS-score of 1.89. When we
iteratively fuse three times, its performance improve to 3.24.
While for the other indexes, we almost achieve the same result
with only 0.01 absolute N-S score reduction as shown in
Fig. 10. This phenomenon demonstrates the robustness of our
method and verify the index-specific dependence assumption
implicitly.
Analysis on functional matrix Z: To evaluate the effect
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Fig. 5. Representative retrieval results on the Market-1501 dataset. The black bounding box means the distractors or the images that come from the same
camera with the query. The red bounding box means the true match persons and otherwise are wrong.
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Figure 6. Influence of λ, σ on retrieval accuracy on UKBench (left) and
Holiday (right)

of sparsity of functional matrix in our model, we conduct
experiments with variants of our approach. On Market-1501,
we remove the sparse operation on the functional matrix,
it drops a almost 5% absolute reduction on Rank1-error. It
indicates that the sparsity of functional matrix not only play
an important role for scalability, but also the performance of
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Figure 7. Influence of threshold for final index on the sparseness and retrieval
accuracy on UKBench (left) and Holiday (right)

the multi-index fusion framework. In practice, the sparsity of
our learned functional matrix have been identified as shown
in Fig. 8. Experiments demonstrate almost 97% elements
of our learned functional matrix are zero on Market-1501,
which clearly reveals the subspace structure in the gallery.
Furthermore, only a few relevant images have been updated,
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Fig. 8. Representative functional matrix Z learned on the Holidays datasets.
Larger values indicate two images are more positively correlated.
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Fig. 9. Convergence curves on Holiday dataset.
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Fig. 10. Comparison between the original index and the proposed MMF inedx
in terms of accuracy on UKbench dataset.

which may slightly destroy the original visual representation.
Limitations and Future work: Although the proposed
method achieves impressive performances, there are still some

limitations in this work, which will be further invested in the
future work. First of all, without the ground-truth, it is hardly
to choose the final index, especially when we meet the poor
baseline method (e.g., GIST index). Second, the sparseness
of the visual index will not be guaranteed directly during the
iteration. The sparse operation will destroy the original image
representation and compel the related images to be the same.
For these limitations, we can use the priori knowledge and the
larger θ1 to solve, but need further investigation.

VI. CONCLUSION

In this paper, a t-SVD based tensor optimization is proposed
to tackle the multi-index fusion problem for image retrieval.
Our proposed technique, MMF, inherits the core idea of CIE
[46], that is, fuse different visual representations on index
level. Furthermore, MMF explores the high-order information
assumed by index-specific and sample-specific dependence to
capture the complementary shared by different visual feature.
Different from traditional multi-index fusion approach, the
proposed method find an optimal functional matrix, which is
optimized in a unified tensor space, to propagate similarities
and update the indexes with sparse constraint. Experimental
results reveal that our approach significantly outperforms
baseline methods and some other state-of-the-art methods in
retrieval accuracy, and with little additional memory cost in
online query stage. Future research will include the following:
1) the parallel computing for t-SVD; 2) the final index selec-
tion method; 3) the strategy of splitting images into groups
for scalable image retrieval.
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