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Abstract
This paper investigates the distributed leaderless consensus problem of networked Markov jump multi-agent systems with
mode-dependent switching topologies. Specifically, a novel mode-dependent sampling and event-triggered communication
strategy is proposed to reduce the network burden with less conservatism. Based on model transformation and constructing
the mode-dependent Lyapunov-Krasovskii functional, sufficient consensus criteria are first established. Then, the desired
event triggering function parameters and the controller gains are designed in terms of linear matrix inequalities (LMIs). In
the end, an illustrative example is provided to verify the effectiveness of our proposed consensus method.

Keywords Distributed consensus · Markov jump multi-agent systems · Mode-dependent event-triggered communication ·
Mode-dependent switching topologies

1 Introduction

The past decade has witnessed a huge development on the
multi-agent systems (MASs) due to their theoretical signif-
icance and potential applications. Well-known real-world
examples can be found in the unmanned vehicles, sensor
networks, power systems and so on [1–6]. As a funda-
mental issue, the distributed consensus problem has been
a focal topic, which means that the group of agents can
achieve an agreement via local communications network
[7–9]. Distinguish advantages can be obtained by distributed
communication strategy including higher communication
efficiency and lower energy consumption [10, 11]. It should
be pointed out that the communication network plays
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a significant role for the MASs with the information
exchanges, where the communication topology structure
is a key factor affecting the consensus performance of
the MASs. In particular, the communication topologies
are always with active or passive switches due to net-
work environment or agent dynamics, which brings more
difficultites during the analysis and synthesis of MASs. For-
tunately, fruitful consensus research results of MASs with
switching topologies have been developed [12–15]. Further-
more, since the Markov jump systems can well describe
the switching or jumping features of dynamical systems,
the Markov jump MASs (MJMASs) have been receiving
increasing attention [16–19]. Some remarkable results can
be found in the literature and the references therein [20–22].

On the other hand, a lot of efforts have been devoted
to the researches on networked control systems (NCSs)
and cyber-physical systems (CPSs) [23–26]. With the rapid
developments of communication network, it is practical and
urgent to apply more flexible and efficient communication
strategies in the real-world network. With this index, one of
the most effective methods is the so-called event-triggered
strategy. For the MASs with event-triggered communi-
cations, the agent states are sampled and information is
exchanged only when specified conditions can be satisfied.
This is more applicable in practical applications since it can
considerably save the communication resources and reduce
the communication frequency [27–30]. Although some
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attempts have been made towards the MASs with Markov
jump topologies [31–33], it is worth mentioning that few
concern has been addressed for the mode-dependent sam-
pling and event-triggered communication strategy for the
MJMASs despite its practical importance, which motivates
us for this study.

Based on the aforementioned discussions, in this paper,
the distributed consensus problem of networked MJMASs
with mode-dependent event-triggered communications and
switching topologies is studied. As compared to the
relevant literature, main contributions of this paper can
be summarized as two-fold. 1) A novel mode-dependent
asynchronous event-triggered communication strategy for
MJMASs is developed for the first time based on the mode-
dependent sampling periods, such that less conservative
triggering functions can be designed by detected system
modes. 2) By constructing appropriate mode-dependent
Lyapunov-Krasovskii functional, sufficient conditions are
derived to ensure that the leaderless consensus can be
reached in the mean-square sense and the agent controller
gains can be designed with LMIs accordingly.

The rest of this paper is arranged as follows. In Section 2,
some preliminaries are introduced and consensus problem
to be investigated is formulated. Section 3 presents the main
theoretical results with details. In Section 4, a numerical
example is given to demonstrate the effectiveness of our
obtained results. Section 5 concludes the paper and gives
our future work.

Notation: R
n and R

m×n denote the n dimensional
Euclidean space and the space of m × n real matrices,
respectively. A − B � 0 (A − B ≺ 0) denotes that A − B

is positive definite (negative definite). A ⊗ B stands for
the Kronecker product. (�,F,P) denotes a probability
space, where � is the sample space, F is the σ -algebra of
subsets of the sample space andP is the probability measure
on F . E{·} represents the mathematics expectation of a
stochastic process. * in symmetric block matrices means
an ellipsis for the symmetry terms. diag{· · · } denotes a
block-diagonal matrix. All matrices are supposed to have
compatible dimensions if not explicitly states.

2 Preliminaries and problem formulation

2.1 NetworkedMJMASs dynamics

Fixed (�,F,P) and consider the following group of N

MJMASs:

ẋi (t) = A(r(t))xi(t) + B(r(t))ui(t), i = 1, 2, . . . , N, (1)

where xi(t) ∈ R
n is the state vector of the ith agent,

ui(t) ∈ R
p is the control vector of the ith agent, r(t) is a

continuous-time discrete-state Markov process, A(r(t)) and
B(r(t)) are constant system matrices for each fixed mode
r(t). r(t) takes values in a finite set M = {1, . . . , M} and
the transition probability matrix � := (πkl) is defined by

Pr(r(t+�t) = l|r(t) = k) =
{

πkl�t + o(�t), k �= l,

1 + πkk�t + o(�t), k = l,

where lim(o(�t)/�t) = 0 and πkl ≥ 0, k �= l,∀k, l ∈ M
is the transition rate from mode k at time t to mode l at time
t + �t, satisfying

πkk = −
M∑

l=1, k �=l

πkl, ∀k ∈ M.

Without loss of generality, it is assumed that all possible
modes can be detected for the MJMASs.

The consensus is said to be achieved in the mean-square
sense if and only if it holds that:

lim
t→∞E{‖xi − xj‖} = 0, i, j = 1, 2, . . . , N .

Remark 1 It is noteworthy that the system modes have
played a significant role during the consensus procedure,
such that they are supposed to be synchronously detectable
for the MJMASs.

2.2 Graph theory

The directed graph G(r(t)) = {V(r(t)), E(r(t)),A(r(t))} is
utilized to describe the communication topology among the
MASs with a fixed mode r(t), where V(r(t)) represents
the sets of nodes, E(r(t)) is the sets of edges and
A(r(t)) = [aij (r(t))] ∈ R

N×N denotes the weighted
adjacency matrix, where

{
aij (r(t)) > 0, (vi(r(t)), vj (r(t))) ∈ E,

aij (r(t)) = 0, otherwise.

Accordingly, the Laplacian matrix L(r(t)) =
[lij (r(t))] ∈ R

N×N of G(r(t)) is defined by lii (r(t)) =∑N
j=1,j �=i aij (r(t)) and lij (r(t)) = −aij (r(t)), i �= j ,

which aims to describe the directed graph structure. If
G(r(t)) has a directed spanning tree, then L(r(t)) has a
simple zero eigenvalue and all the other eigenvalues are real
[1].

2.3 Mode-dependent event-triggered
communication scheme

The sampler of the ith agent is assumed to be time-
driven with a mode-dependent sampling period h (r(t)).
Each agent communicates with its neighboring agents
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and updates its own controller according to the following
asynchronous mode-dependent event triggering function:

t iσ+1h (r(t)) = t iσ h (r(t))

+min
κi≥1

{κih (r(t)) |χT
i (t iσ h

+κih (r(t)))W1 (r(t))

×χi(t
i
σ h (r(t)) + κih (r(t)))

≥ εκT
i (t iσ h (r(t))

+κih (r(t)))W2 (r(t))κi (t
i
σ h (r(t))

+κih (r(t)))}, (2)

where t iσ (r(t)) denotes the latest σ th triggering instant of
the ith agent, 0 < ε < 1 represents the triggering thresh-
old, W1 (r(t)) � 0 and W2 (r(t)) � 0 are the weighting
matrices, χi(t

i
σ h (r(t)) + κih (r(t))) := xi(t

i
σ h (r(t)) +

κih (r(t))) − xi(t
i
σ h (r(t))), κi (t

i
σ h (r(t)) + κih (r(t))) :=∑

j∈Ni
aij (r(t)) (xi(t

i
σ h (r(t))) − xj (t

i
σ ∗h (r(t)))) with

σ ∗ � argmin
{t iσ + κi − t
j

 |t iσ + κi > t

j

 , 
 ∈ N}.

Moreover, define

ei(κh (r(t))) � xi(κh (r(t)))−xi(t
i
σ h (r(t))), t iσ ≤κ <tiσ+1,

and divide t iσ ≤ κ < tiσ+1 into t iσ+1 − t iσ sampling intervals.
Then, it follows that

eT
i (κh (r(t)))W1 (r(t)) ei(κh (r(t)))

≤ εκ̄T
i (κh (r(t)))W2 (r(t)) κ̄i (κh (r(t))), κ ∈ N,

where

κ̄i (κih (r(t))) �
∑
j∈Ni

aij (r(t)) (xi(t
i
σi (κ)h (r(t)))

−xj (t
j

σj (κ)h (r(t)))),

and σi(κ) � argmin
{κ − t i
|κ > t
j

 , 
 ∈ N}.

Remark 2 It should be pointed out that in our proposed
mode-dependent event-triggered communication scheme,
the sampled data of each agent is mode-dependent with
mode jumpings. This can bring less conservatism than the
common sampling schemes. In addition, since the event-
triggered function with W1 (r(t)) � 0 and W2 (r(t)) � 0 is
based on the detected system modes, further conservatism
can be obtained compared with mode-independent event-
triggered communication schemes.

Remark 3 Note that the triggering threshold ε and the
mode-dependent sampling period h (r(t)) are pre-given in
the event-triggered function. When choosing smaller values
of ε, more information will be exchanged among the agents.
Meanwhile, smaller values of h (r(t)) can also lead to more
effective event-triggered communications.

In order to achieve the consensus, the following mode-
dependent consensus controllers can be designed by

ui(t) = −K (r(t))
∑
j∈Ni

aij (r(t)) (xi(t
i
σ h (r(t)))

−xj (t
i
σ ∗h (r(t)))), t ∈ [t iσ h, t iσ+1h), (3)

where K (r(t)) ∈ R
m×n is the mode-dependent controller

gain to be determined. It can be found that the designed
controllers are in the distributed form with local information
exchanges.

As a result, by bringing the above control input into
each agent, the closed-loop dynamics of the MASs can be
obtained with the help of Kronecker product as follows

ẋ(t) = (IN ⊗ A (r(t)))x(t)

−(L (r(t)) ⊗ B (r(t)) K (r(t)))x(κh (r(t)))

+(L (r(t)) ⊗ B (r(t)) K (r(t)))e(κh (r(t))), (4)

where

x(t) := [xT
1 (t), xT

2 (t), . . . , xT
N (t)]T ,

e(κh (r(t))) := [eT
1 (κh (r(t))), eT

2 (κh (r(t))), . . . , eT
N (κh (r(t)))]T ,

For notational simplicity, each r(t) is denoted by the index
k. In addition, the following lemma is introduced for later
use.

Lemma 1 [34] For any positive symmetric constant matrix
R ∈ R

n×n, scalars h1, h2 satisfying h1 < h2, a vector
function φ : [h1, h2] → R

n, such that the integrations
concerned are well defined, then

(∫ h2

h1

φ(s)ds

)T

R
(∫ h2

h1

φ(s)ds

)

≤ (h2 − h1)

(∫ h2

h1

φT (s)Rφ(s)ds

)
.

3Main results

In this section, sufficient consensus conditions are derived
with details and the corresponding mode-dependent con-
troller gains are designed.

Theorem 1 With the designed event-triggered transmission
scheme (2) and given mode-dependent controller gains Kk ,
the multi-agent system (1) can achieve the consensus, if Gk

has a directed spanning tree and there exist mode-dependent
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matrices Pk � 0, W1k � 0, W2k � 0 and matrix Q � 0,
such that �̃k ≺ 0, where

�̃k : =
[

�̃k1 �̃k2
∗ �̃k3

]
,

�̃k1 : =
[

�̃k11 (L̃k ⊗ PkBkKk) − (L̃T
k L̃k ⊗ W2k)

∗ −(IN−1 ⊗ Q) + ε(L̃T
k L̃k ⊗ W2k)

]
,

�̃k2 : =
[

(L̃k ⊗ PkBkKk) L̃k((IN−1 ⊗ Ak) − (L̃T
k ⊗ KT

k BkQ))

0 τ̄k(L̃
T
k ⊗ KT

k BkQ)

]
,

�̃k3 : =
[

−(IN−1 ⊗ W1k) τ̄k(L̃
T
k ⊗ KT

k BkQ)
∗ −(IN−1 ⊗ Q)

]
,

�̃k11 = 2(IN−1 ⊗ PkAk) − 2(L̃k ⊗ PkBkKk) + ε(L̃T
k L̃k ⊗ W2k)

+
M∑
l=1

πkl(IN−1 ⊗ Pl).

Proof By applying the input-delay approach, system (4) can
be rewritten as follows:

ẋ(t) = (IN ⊗ Ak)x(t) − (Lk ⊗ BkKk)x(t − τk(t))

+(Lk ⊗ BkKk)e(t − τk(t)), (5)

where τk(t) = t − κhk, t ∈ [κhk, (κ + 1)hk) denotes the
virtual delay during the sampling period with 0 ≤ τk(t) <

τ̄k, τ̇ (t) = 1.
Consequently, it can be verified that when Gk has a

directed spanning tree, there exists a matrix Wk such that

W−1
k LkWk =

[
L̃k 0
0 0

]
,

where [1, 1, . . . , 1]T is the last column of Wk .
By denoting

x̂(t) = (W−1
k ⊗ I )x(t)

= [x̃T (t), x̄T (t)]T ,

ê(t − τk(t)) = (W−1
k ⊗ I )e(t − τk(t))

= [ẽ(t − τk(t), ē(t − τk(t)]T ,

it follows that

˙̂x(t) = (IN ⊗ Ak)x̂(t) − (W−1
k LkWk ⊗ BkKk)x̂(t − τk(t))

+(W−1
k Lk ⊗ BkKk)ê(t − τk(t)),

which yields that

˙̃x(t) = (IN−1 ⊗ Ak)x̃(t) − (L̃k ⊗ BkKk)x̃(t − τk(t))

+(L̃k ⊗ BkKk)ẽ(t − τk(t)),

and

˙̄x(t) = Akx̄(t).

Then, it can be verified that the consensus can be reached if
x̃(t) is mean-square asymptotically stable.

The following mode-dependent Lyapunov-Krasovskii
functional is selected for each mode k,

V (k, t) = V1(k, t) + V2(k, t),

where

V1(k, t) := x̃T (t)(IN−1 ⊗ Pk)x̃(t),

V2(k, t) := τ̄k

∫ 0

−τ̄k

∫ t

t+ϕ

˙̃xT (θ)(IN−1 ⊗ Q) ˙̃x(θ)dθdϕ.

Moreover, the weak infinitesimal operator L of V (k, t) is
defined by

LV (k, t) � lim
�→0

1

�
{E{V (r(t + �), t + �)|r(t) = k} − V (k, t)}.

As a result, it can be derived that

LV1(l, t) = ˙̃xT (t)(IN−1 ⊗ Pk)x̃(t)

+x̃T (t)(IN−1 ⊗ Pk)) ˙̃x(t)

+
M∑
l=1

πklx̃
T (t)(IN−1 ⊗ Pl)x̃(t)

= 2x̃T (t)(IN−1 ⊗ Pk)((IN−1 ⊗ Ak)x̃(t)

−(L̃k ⊗ BkKk)x̃(t − τk(t))

+(L̃k ⊗ BkKk)ẽ(t − τk(t)))

+
M∑
l=1

πklx̃
T (t)(IN−1 ⊗ Pl)x̃(t)

= 2x̃T (t)(IN−1 ⊗ Pk)((IN−1 ⊗ Ak)x̃(t)

−(L̃k ⊗ BkKk)(x̃(t) −
∫ t

t−τk(t)

˙̃x(θ)dθ)

+(L̃k ⊗ BkKk)ẽ(t − τk(t)))

+
M∑
l=1

πklx̃
T (t)(IN−1 ⊗ Pl)x̃(t)

and

LV2(l, t) = τ̄ 2k
˙̃xT (t)(IN−1 ⊗ Q) ˙̃x(t)

−τk

∫ t

t−τk

˙̃xT (ϕ)(IN−1 ⊗ Q) ˙̃x(ϕ)dϕ.

By lemma 1, one has

−τk

∫ t

t−τk

˙̃xT (ϕ)(IN−1 ⊗ Q) ˙̃x(ϕ)dϕ

≤ −
∫ t

t−τk

˙̃xT (ϕ)dϕ(IN−1 ⊗ Q)

∫ t

t−τk

˙̃x(ϕ)dϕ

≤ −
∫ t

t−τk(t)

˙̃xT (ϕ)dϕ(IN−1 ⊗ Q)

∫ t

t−τk(t)

˙̃x(ϕ)dϕ.

Furthermore, by the event triggering function, it holds that

−ẽT (t − τk(t))(IN−1 ⊗ W1k)ẽ(t − τk(t))

+ε(x̃T (t) −
∫ t

t−τk(t)

˙̃xT (ϕ)dϕ)(L̃T
k L̃k ⊗ W2k)(x̃

T (t)

−
∫ t

t−τk(t)

˙̃xT (ϕ)dϕ) ≥ 0.
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Thus, it can be obtained that

LV (k, t) = LV1(k, t) + LV2(k, t)

≤ 2x̃T (t)(IN−1 ⊗ PkAk)x̃(t)

−2x̃T (t)(L̃k ⊗ PkBkKk)x̃(t)

+2x̃T (t)(L̃k ⊗ PkBkKk)

∫ t

t−τk(t)

˙̃x(θ)dθ

+2x̃T (t)(L̃k ⊗ PkBkKk)ẽ(t − τk(t))

+
M∑
l=1

πkl x̃
T (t)(IN−1 ⊗ Pl)x̃(t)

+τ̄ 2k
˙̃xT (t)(IN−1 ⊗ Q) ˙̃x(t)

−
∫ t

t−τk(t)

˙̃xT (ϕ)dϕ(IN−1 ⊗ Q)

∫ t

t−τk(t)

˙̃x(ϕ)dϕ

−ẽT (t − τk(t))(IN−1 ⊗ W1k)ẽ(t − τk(t))

+ε(x̃T (t) −
∫ t

t−τk(t)

˙̃xT (ϕ)dϕ)(L̃T
k L̃k ⊗ W2k)(x̃

T (t)

−
∫ t

t−τk(t)

˙̃xT (ϕ)dϕ)

≤ ξT
k (t)�kξk(t) + τ̄ 2k

˙̃xT (t)(IN−1 ⊗ Q) ˙̃x(t),

where ξk(t) = [x̃T (t),
∫ t

t−τk(t)
˙̃xT (ϕ)dϕ, ẽT (t − τk(t))]T

and

�k =
⎡
⎣ �k1 (L̃k ⊗ PkBkKk) − ε(L̃T

k L̃k ⊗ W2k) (L̃k ⊗ PkBkKk)

∗ −(IN−1 ⊗ Q) + ε(L̃T
k L̃k ⊗ W2k) 0

∗ ∗ −(IN−1 ⊗ W1k)

⎤
⎦ ,

�k1 = 2(IN−1 ⊗ PkAk) − 2(L̃k ⊗ PkBkKk) + ε(L̃T
k L̃k ⊗ W2k)

+
M∑
l=1

πkl(IN−1 ⊗ Pl).

It follows by Schur complement that if �̃k ≺ 0 holds,
then system (5) is asymptotically stable in the mean-square
sense, which implies that the consensus can be achieved and
thus completes the proof.

Based on the derived results in Theorem 1, the controller
design procedure can be given in the following theorem.

Theorem 2 With the designed event-triggered transmission
scheme (2), the multi-agent system (1) can achieve the
consensus, if Gk has a directed spanning tree and there exist
mode-dependent matrices P̃k � 0, W̃1k � 0, W̃2k � 0 and
matrix Q̃ � 0, such that �̂k ≺ 0, where

�̂k : =
[

�̂k1 �̂k2

∗ �̂k3

]
,

�̂k1 : =
⎡
⎣ �̂k11 (L̃k ⊗ BkUk) − ε(L̃T

k L̃k ⊗ W̃2k) (L̃k ⊗ BkUk)

∗ (IN−1 ⊗ Q̃) − 2(IN−1 ⊗ P̃k) + ε(L̃T
k L̃k ⊗ W̃2k) 0

∗ ∗ −(IN−1 ⊗ W̃1k)

⎤
⎦ ,

�̂k2 : = [
�̂k21 �̂k22

]
,

�̂k21 : =
⎡
⎣ τ̄k((IN−1 ⊗ P̃kAk) − (L̃T ⊗ UT

k Bk)

τ̄k(L̃
T ⊗ UT

k Bk)

τ̄k(L̃
T ⊗ UT

k Bk)

⎤
⎦ ,

�̂k22 : =
⎡
⎣

√
πk1(IN−1 ⊗ P̃k), . . . ,

√
πkM(IN−1 ⊗ P̃k)

0
0

⎤
⎦ ,

�̂k3 : =
[ −(IN−1 ⊗ Q̃) 0

∗ −diag{(IN−1 ⊗ P̃1), . . . , (IN−1 ⊗ P̃M)}
]

,

�̂k11 = 2(IN−1 ⊗ AkP̃k) − 2(L̃k ⊗ BkUk) + ε(L̃T
k L̃k ⊗ W̃2k) + πkk(IN−1 ⊗ P̃k)

Moreover, the desired mode-dependent controller gains Kk

can be obtained by Kk = UkP̃
−1
k .

Proof Let P̃k = P −1
k , Q̃ = Q−1, Uk = KkP̃k , P̃kW1kP̃k =

W̃1k , P̃kW2kP̃k = W̃2k and pre- and post-multiply both the
sides of � ≺ 0 by diag{IN−1 ⊗ P̃ , IN−1 ⊗ P̃ , IN−1 ⊗

P̃ , In(N−1), In(N−1), . . . , In(N−1)}. Then, the rest of the
proof can be directly obtained by Theorem 1.

4 Illustrative example

In this section, the simulation example is provided to vali-
date the effectiveness of our proposed method.
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Fig. 1 The communication topology with mode 1

Consider the following MJMASs with four agents and
two jumping modes, where the agent dynamics are given as

A1 =
[ −1.8 0.5

0 −3

]
, B1 =

[
0.2
0.4

]
,

and

A2 =
[ −1.5 0.4

0.3 −2.5

]
, B2 =

[
0.3
0.5

]
,

and the transition is supposed to be

� =
[ −0.6 0.6

0.4 −0.4

]
.

Fig. 2 The communication topology with mode 2

Fig. 3 Broadcasting instants and release intervals of agent 1

Moreover, the directed communication topologies are
shown in Figs. 1 and 2, respectively. The corresponding
Laplacian matrices are given by

L1 =

⎡
⎢⎢⎣

1 −1 0 0
−1 2 −1 0
0 −1 1 0
0 0 −1 1

⎤
⎥⎥⎦ ,

L2 =

⎡
⎢⎢⎣

1 0 −1 0
0 1 −1 0
0 −1 1 0

−1 0 −1 2

⎤
⎥⎥⎦ .

In the simulation, the mode-dependent sampling periods are
set as h1 = 0.05s and h2 = 0.1s. The event triggering
parameter is given as ε = 0.01. By solving the LMIs in

Fig. 4 Broadcasting instants and release intervals of agent 2
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Fig. 5 Broadcasting instants and release intervals of agent 3

theorem 2, the desired mode-dependent controller gains can
be obtained as follows:

K1 = [ −0.1597 −0.5800
]
,

K2 = [ −0.4052 −0.2635
]
.

Moreover, the weighting matrices W1k and W2k , k = 1, 2
can be obtained by

W11 =
[

1.0843 −0.3843
−0.3843 2.1244

]
,

W12 =
[

0.8798 −0.3580
−0.3580 1.8068

]
,

W21 =
[

1.0407 −0.3739
−0.3739 1.9235

]
,

W22 =
[

0.8516 −0.3515
−0.3515 1.7441

]
.

Fig. 6 Broadcasting instants and release intervals of agent 4

Fig. 7 State trajectories of the MJMASs

With the above parameters, Figs. 3, 4, 5, 6 and 7, depict the
information transmission instants with release intervals and
the state trajectories of the MJMASs, respectively.

It can be seen that different from time-triggered schemes,
the agents broadcast the information only when the event-
triggered function can be satisfied. Furthermore, since
the energy consumption issue is related with the wireless
broadcasting, the event-triggered communication scheme
can also save the agent energy accordingly. Hence, the
consensus can be well achieved in the mean-square sense
while the signal transmissions can be effectively decreased,
which supports our theoretical results.

5 Conclusion

This paper is concerned with the distributed consensus prob-
lem for networked MJMASs under leaderless framework.
Especially, the mode-dependent switching topologies are
considered and the mode-dependent event-triggered com-
munication strategy is proposed with mode-dependent sam-
pled data. By employing the mode-dependent Lyapunov-
Krasovskii functional method, sufficient consensus condi-
tions are developed, based on which the mode-dependent
controller gains are further designed accordingly. Numeri-
cal simulations are given to demonstrate the availability of
our theoretical results. Our future work will be extending
the results to the cases with more general mode infor-
mation such as time-varying or partially known transition
probabilities.
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