
Vis Comput (2013) 29:861–870
DOI 10.1007/s00371-013-0847-8

O R I G I NA L A RT I C L E

SimLocator: robust locator of similar objects in images

Yan Kong · Weiming Dong · Xing Mei ·
Xiaopeng Zhang · Jean-Claude Paul

Published online: 11 June 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Similar objects commonly appear in natural im-
ages, and locating and cutting out these objects can be te-
dious when using classical interactive image segmentation
methods. In this paper, we propose SimLocator, a robust
method oriented to locate and cut out similar objects with
minimum user interaction. After extracting an arbitrary ob-
ject template from the input image, candidate locations of
similar objects are roughly detected by distinguishing the
shape and color features of each image. A novel optimiza-
tion method is then introduced to select accurate locations
from the two sets of candidates. Additionally, a matting-
based method is used to improve the results and to ensure
that all similar objects are located in the image. Finally,
a method based on alpha matting is utilized to extract the
precise object contours. To ensure the performance of the
matting operation, this work has developed a new method
for foreground extraction. Experiments show that SimLoca-
tor is more robust and more convenient to use compared to
other more advanced repetition detection and interactive im-
age segmentation methods, in terms of locating similar ob-
jects in images.

Keywords Similar objects · Object descriptor · Object
matching · Stable locations · Contour extraction

Y. Kong · W. Dong (�) · X. Mei · X. Zhang
LIAMA-NLPR, Institute of Automation, Chinese Academy of
Sciences, Beijing, China
e-mail: wmdong@nlpr.ia.ac.cn

X. Mei
e-mail: xmei@nlpr.ia.ac.cn

X. Zhang
e-mail: xpzhang@nlpr.ia.ac.cn

J.-C. Paul
Project CAD, INRIA, Paris, France

1 Introduction

Similar image elements commonly appear in both natural
and artificial scenes, which provide multiple and non-local
records of the same data. These similar objects may be ran-
domly scattered in an image, and their spatial distribution
and appearance variance reinforce the image’s visual effect.
Moreover, using identical or similar objects that are repeated
in a pattern is a standard graphic design concept [13], be-
ing a prominent compositional feature in many photographs.
Therefore, locating similar objects in an image is useful in
understanding the aesthetics and mechanism of a particular
scene in the real world [23]. Locating and extracting such
kind of redundancy accurately and efficiently can also be ex-
ploited to consolidate image edits in a non-local fashion [7].

Previous repeated elements locating or cutout methods
used solely geometric [7] or color [10] similarity as criteria
for matching. However, these methods fail to detect accu-
rately similar objects with obvious variance in illumination,
outer shape, inner textures, or colors (e.g., Fig. 1). Inter-
active image segmentation systems, such as GrabCut [21],
Lazy Snapping [16] and Paint Selection [17], are also not
suitable for segmenting similar objects because excessive
manual operations may be needed when the number of ob-
jects is large, or when these objects overlap each other.

In this paper, we present a new method, namely, SimLo-
cator, to analyze similar patterns in an image. After seg-
menting an object from the input interactively, we incor-
porate the shape and color features into a template match-
ing framework to identify possible similar object locations
within the scene. We then develop a joint searching scheme
to determine high confidence locations within the two can-
didate sets, and utilize this information to calculate the final
object locations. In some cases, the result can be improved
further by a matting-based method to obtain a more com-
plete locating result. After obtaining the object locations,

mailto:wmdong@nlpr.ia.ac.cn
mailto:xmei@nlpr.ia.ac.cn
mailto:xpzhang@nlpr.ia.ac.cn


862 Y. Kong et al.

Fig. 1 Comparison of different methods. Results show that the Sim-
Locator method outperforms RepFinder and Dual-Bound in both accu-
racy (detecting the correct object locations) and completeness (finding

all objects). RepSnapping can cut out the foreground from the scene,
but cannot find the location and contour of each pomegranate

a new method to obtain the precise object regions is utilized
to refine the contours of the objects and cut them out from
the scene. Thus, our algorithm can locate similar objects that
may be dramatically different in colors, textures, or even
shapes, rather than the very approximately same patterns in
RepFinder [7].

2 Related work

Various object detection methods that utilize color-, texture-,
or shape-based features have been previously presented. Le-
ung and Malik [14] proposed a graph-based algorithm to ex-
tract repeated units by growing elements using a graph. Berg
et al. [5] achieved recognition by means of deformable shape
matching and identification of correspondences among fea-
ture points. Ahuja and Todorovic [2] detected natural tex-
els by searching within a segmentation tree. Unfortunately,
this method is too slow for interactive applications, and
is limited to examples imaged from a viewing direction,
which is nearly along the surface normal. Usually, local
feature descriptors, such as shape contexts [4], SIFT [18]
and SURF [3], are used for object detection, and these fac-
tors can reliably match different views of an object or a
scene, but cannot capture high-level scene structure. Pauly
et al. [20] presented a method to discover regular or re-
peated geometric structures in 3D shapes. Automatic color-
based affine covariant region detectors, such as MSCR [9],
are suitable for detecting simple objects located in a smooth
background. However, stochastic object distributions, over-
lapping, or subtle shape and color variations render the
above methods unsuitable.

Given that the same or similar objects appear in a set
of images, co-segmentation methods can segment a partic-
ular object from the set of images simultaneously. Joulin
et al. [11] combined bottom-up image segmentation tools
within a discriminative clustering framework to assign all

images with the labels of either foreground or background.
Meng et al. [19] formulated the co-segmentation problem
as the shortest path problem based on local region sim-
ilarities and saliency models. Kim et al. [12] solved the
co-segmentation problem by using hierarchical clustering.
Rather than segmenting similar objects from multiple im-
ages, the method presented in the current paper focuses on
locating similar elements in a single image.

Only a few studies have focused on the detection of gen-
eral repeated or similar objects. Cheng et al. [7] presented
a user-assisted approach in identifying approximately re-
peated scene elements in an image. Using boundary band
matching to locate possible elements and employing ac-
tive contours to obtain object boundaries, this efficient sys-
tem is convenient for reconstructing scene structures. Nev-
ertheless, as their method relies on similarity of bound-
ary maps, illumination and inner pattern variations limit
the accuracy of their results. On the other hand, the pre-
requirement of foreground matting also limits the practical
usage of RepFinder, as separating the foreground from the
image through simple user interactions can be difficult in
many cases. Schweitzer et al. [22] presented a fast template
matching technique that uses both lower and upper bounds
on the match measure to compute for the K best matches.
However, their method, which employs the Walsh transform
based matching algorithm that is very sensitive to inner tex-
ture and illumination variations, is not fit for the detection
of similar objects in a natural image. Moreover, the require-
ment of user-indicated number of objects also limits the ap-
plication of this method. Huang et al. [10] presented a graph-
based method to cut out repeated elements from a scene. The
limitation of their method is its strong dependence on very
similar colors of objects. Furthermore, their method experi-
ences difficulties in detecting accurate location and contours
of each object, especially for partially occluded objects. To
the best of our knowledge, a fully automatic method that can
detect similar arbitrary objects from a single natural image
has not been proposed.



SimLocator: robust locator of similar objects in images 863

Fig. 2 Algorithm workflow. User scribbles indicate an object tem-
plate. We use Histogram of Oriented Gradients (HOG) as the shape
feature descriptor and SLIC (Simple Linear Iterative Clustering) to
generate the color feature descriptor (histogram-based). Similar object

instances are located by our joint features matching method. Matting-
based methods are developed to improve the locating result further and
extract precise object contours

Fig. 3 We separately use HOG and color descriptor to locate the objects, and then find stable locations for the final result

3 Overview

Our method employs an interactive framework to extract
similar objects in a particular image. The algorithm work-
flow is shown in Fig. 2.

In the object detection stage, our system allows users to
select a sample of objects that have multiple instances in the
input image. Those objects may be subject to deformation,
overlap, illumination influence, and appearance variation.
Shape and color templates of user-selected object type(s)
are extracted automatically. Our system then uses template
matching to obtain two sets of candidate object instances by
separately using the shape and color descriptor. A joint op-
timization scheme is developed to decide the final locating
result.

In boundary extraction stage, we use alpha matting to ob-
tain a precise object region. Thus, in order to get a good
matting result, we introduce a trimap foreground extraction
algorithm to obtain better foreground.

4 Similar object locating

We use PaintSelection [17] on the input image to extract an
instance from the similar objects. In terms of the selection
of a feasible feature to use in the template matching pro-
cess, different types of features may achieve dramatically

different matching results (Fig. 3). Usually, building a stable
template matching system with a single feature for similar
object locating is difficult because of the objects’ vivid inner
textures, self-occlusion, or color/lighting variations. There-
fore, in order to make the object location more robust and
accurate, we use two features in the template matching pro-
cess and separately obtain candidate object locations for fur-
ther optimization.

4.1 Object feature descriptors

For its desirable performance in a variety of tasks, its speed,
robustness, adaptability to sliding window search, and pop-
ularity in the community, HOG template descriptor [8] is
integrated in the proposed method as a shape descriptor to
detect the possible similar object locations. For each image
window, the input image is divided into small spatial regions
(“cells”), and for each cell N -bins local 1-D HOG is accu-
mulated. In our experiments, we use NH

b = 9 bins and set
the cell size as 8×8. The orientation bins are spaced over 0◦
to 180◦. Each pixel in one cell is voted to its histogram based
on gradient direction and magnitude. However, in contrast
with the method in [8], a normalized local histogram is not
used over a larger spatial region (“block”) because normal-
ization will decrease the separating capacity of the HOG de-
scriptor in our template matching process. Figure 4(a) shows
an example of HOG features extracted from an input image.



864 Y. Kong et al.

Fig. 4 Shape (HOG) and color (super-pixel histogram) features used
in our template-matching algorithm

To enhance the robustness of our algorithm in complex
environments, a color feature descriptor is developed to per-
form a separate locating process. We first segment both the
template and the input image by SLIC [1]. Subsequently, we
use a three-channel color histogram to represent the distri-
bution of colors in each super-pixel. In our experiments, all
colors are represented in HSV color space, and each channel
is divided into NC

b = 32 bins. Figure 4(b) shows an image
segmentation example using SLIC method.

4.2 Object locating by matching

Similar objects are accurately located using object de-
scriptors. For template T, let T = {pm|m = 1, . . . ,NT}
denote the set of feature points (HOG or color) in the
template, where NT is the number of elements in T. To
find similar objects efficiently, the template in the input
image at each possible location is matched by scaling
and rotating the image according to pre-set discrete in-
tervals. In all our experiments, we pre-compute the ob-
ject template in the discrete space of seven discrete angles
{−120◦,−45◦,−10◦,0◦,10◦,45◦,120◦} and five scales
{0.4,0.8,1.0,1.2,1.6}. We mainly employ histogram inter-
section to calculate the matching scores at each candidate
location by separately using HOG and color descriptor. Two
score maps are used to record the HOG and color match-
ing scores at each location. Moreover, the feature point set
(HOG or color) of the current sub-window w is denoted as
W = {qn|n = 1, . . . ,Nw}, where Nw is the number of ele-
ments in w. Thus, for a rotated and scaled template Ti at
a candidate location j , we formulate equations to calculate
the HOG matching score SH and the color matching score
SC as:

SH (Ti,wj ) = 1

NH
Ti

∑

pm∈T H ,

qn∈W H

∑NH
b

k=1 min(T H
k,pm

,wH
k,qn

)

∑NH
b

k=1 wH
k,qn

(1)

SC(Ti,wj ) = 1

NC
Ti

∑

pm∈T C,

qn∈W C

∑NC
b

k=1 min(T C
k,pm

,wC
k,qn

)

∑NC
b

k=1 wC
k,qn

, (2)

where T H
k,pm

and SH
k,qn

are the corresponding HOG his-

tograms of points pm and qn, and T C
k,pm

and SC
k,qn

are the
corresponding color histograms, respectively. Both scores
are normalized to [0,1].

After scanning the entire input image with scale and rota-
tion variations, we choose the maximum score at each pos-
sible location as the final score and then record this value in
the score map. Then, in both score maps, each local max-
imum matching score that is larger than η = 0.5 is chosen
as a candidate object location. We ignore a local maximum
if another local maximum with a larger matching score is
seen within the distance threshold d . In our experiments,
we set d to half of the bounding box circumcircle radius
of the template. We take PH = {Xi |i = 1, . . . ,NH } to de-
note the set of candidate object locations acquired from the
HOG score map, and PC = {Yj |j = 1, . . . ,NC} to denote
the set acquired from the color score map. NH and NC are
the numbers of elements in PH and PC .

As shown in parts (a) and (b) of Fig. 3, the locating result
obtained by using the shape and color descriptors may be
evidently different due to the complex visual variations of
the objects. Different features are sensitive to different vari-
ations. Moreover, wrong locations may also be included in
the candidate sets because of the disturbance of the back-
ground ((a) and (b) of Fig. 3). Therefore, to obtain accu-
rate object locations, high-confidence locations must be de-
termined first. For the candidates in the two sets, we sep-
arately calculate the Euclidean distance of each candidate
pair (Xi, Yj ), and use the following metric to include the
feasible pairs (stable locations) into a new set PS , which is
formulated as follows:

PS =
{(

X′
i , Y

′
j

)|X′
i = arg min

i
D

(
Xi,Y

′
j

)
,

Y ′
j = arg min

j
D

(
X′

i , Yj

)
,

D
(
X′

i , Y
′
j

) ≤ Dmax

}
(3)

where D(Xi,Yj ) is the Euclidean distance between Xi and
Yj , Xi ∈ PH , Yj ∈ PC . We set Dmax to half of the bounding
box circumcircle radius of the template. If Np denotes the
number of stable locations in PS , we then define the stable
confidence values of HOG and color descriptors as cH =
Np

NH
and cC = Np

NC
, respectively. Thus, the coordinates of the

stable locations are calculated as follows:

Zk = β · X′
i + (1.0 − β) · Y ′

j , k = 1, . . . ,Np, (4)

where β = cH

cH +cC
. As shown in Fig. 3(c), we use the coor-



SimLocator: robust locator of similar objects in images 865

Fig. 5 Optimizing the locating result by stable locations and KNN matting. Wrong locations can be removed in this process

Fig. 6 Workflow of Algorithm 1. (a) Salpha is calculated from the KNN matting operation in Sect. 4.3. (b) Binary map generated from Salpha.
(c) Distance map Mapdist. (d) Contour map used for constructing a contour tree. (e) Green areas are the foreground areas found by Algorithm 1

dinates of the stable locations as the final location of similar
objects.

4.3 Result improvement by matting

In most cases in our experiments, all the similar objects can
be found accurately by using the above locating method.
However, a few objects may sometimes be lost during the
screening process of using the metric in Eq. (3). Certain ob-
jects may appear to have apparent shape or color differences
compared with the template (but still belong to the same
category) because of some environmental or artificial con-
ditions. Therefore, to enhance the effectiveness of our algo-
rithm, we combine the SH and SC as SCombine, and then use
KNN matting [6] to complete the result set. With PS , we can
use the score map, which is more similar to the template, as
the main component of SCombine and define it as follows:

αH = Np

NH

, αC = Np

NC

,

(5)

SCombine = αH ∗ SH + αC ∗ SC

αH + αC

,

where Np is the number of stable object locations in P .
Thus, we sample randomly around the locations of P as the
foreground locations, and likewise, sample randomly where
scores are lower than 0.1 as background locations. Using
this information, we can obtain an alpha score map Salpha by
KNN matting, which describes the confidence of each pixel.
Finally, for each local peak score in SCombine, we choose the

locations in which the local average alpha score is larger
than 0.9 as the final similar object locations. As shown in
Fig. 5, all the similar objects are located after the matting
process.

5 Contour extraction

With the information on similar object locations, we can em-
ploy alpha matting [15] to obtain the precise region of each
location and then extract its outer contour. In using alpha
matting, we first need to construct a trimap for each object to
specify the foreground, background, and unknown regions.
However, alpha matting may not perform as desired if the
small area around the object location is used as foreground,
as such information is too limited to extract a precise object
region. A new method (Algorithm 1) solves this problem by
extracting the foreground area for an object trimap, as illus-
trated in Fig. 6. With the confidence score given by Salpha

(calculated from the KNN matting operation in Sect. 4.3),
we can estimate a foreground area around each object loca-
tion. Thus, we treated the area determined by Algorithm 1
as the foreground, the area out of the template window as
the background, and the area in the middle as the unknown
region.

However, if the background or the inner texture is com-
plex, alpha matting will fail to extract precise object con-
tours. Stmpl denotes the area covered by the template con-
tour in one object location, and Amatting, the area extracted

by alpha matting. If
‖Amatting−Atmpl‖

Atmpl
> 0.3, we use an active



866 Y. Kong et al.

Algorithm 1: Trimap Foreground Extract
Input: Salpha, template area Atmpl, candidate locations

set P

Output: Foreground area of each candidate location
1. Convert Salpha to a binaries map Balpha using
threshold 0.8, then dilate Balpha using 3 × 3 template in
order to fill small holes;
2. Calculate a distance map Mapdist;
for each pixel p in Balpha do

Mapdist[p] = the Euclidean distance between p

and the nearest zero pixel;
3. Build a contour tree of Mapdist. Set the lower
contour as the root and the higher contour as the leaf;
4. Let Larea as candidate foreground area;
for each local maximum point p in Mapdist do

a. Find the local maximum point q which the
Euclidean distance between p and q is smaller
than

√
Atmpl, put p into set Q;

b. R is a contour;
if Q == ∅ then

Let R as the largest contour which
area(R) < Atmpl and p in the area of R;

else
Let R = largest contour;
for each point q in set Q do

(1) Let F as the lowest common ancestor
between p and q in contour tree;
(2) Let U as the largest contour which
smaller than Stmpl and contain p;
(3) Let R = U ;

Add R to Larea;
5. For the candidate locations p, the foreground area is
Larea ∩ TemplateWindow(p);

contour-based model in [7] to refine the object contour fur-
ther. In most cases, the contour extracted by alpha matting
is sufficient, and is usually better than that by pure active
contour method for the final object segmentation. As shown
in Fig. 7, the object contours extracted by our method are
more precise and smooth than the ones by only using active
contour method.

6 Results and discussion

Our interactive system is targeted toward high level im-
age pattern analysis. In the entire workflow, the cutout of
the template is the only manual operation. We have imple-
mented our algorithm in C++ on a computer with Intel Core
i7 CPU at 3.9 GHz, 8 GB RAM, and Geforce GTX 670.
Our CUDA-accelerated template matching plus the search-
ing of stable locations typically takes 0.6 seconds to process

Fig. 7 Object contour extraction. (a) Object contour is extracted only
using active contour. (b) Object contour is extracted using our method.
The two leftmost occluded pandas are extracted through active contour,
whereas the others are extracted by alpha matting

a 900 × 900 image under seven rotations and five scalings.
For our locating improvement and automatic object contour
refinement through matting, the computation time depends
on the image size, but usually consumes 2.0 to 4.5 seconds,
thereby guaranteeing that the entire workflow of the system
runs at interactive rates.

To validate the effectiveness of our SimLocator, we have
tested it on a variety of input images with similar scene el-
ements. Then, we discuss the experiments used to evaluate
the performance of SimLocator qualitatively and to draw a
comparison with other state-of-the-art repetition detection
methods. The key ingredients of SimLocator are the simi-
larity measurements SH (Eq. (1)) and SC (Eq. (2)), and the
stable location selection metric PS (Eq. (3)). In the experi-
ments conducted in this paper, we use both shape and color
information. More feature descriptors, such as Gabor texture
and SIFT/SURF descriptor, can also be incorporated into our
method.

6.1 Comparison

We compare SimLocator with the state-of-the-art inter-
active repetition detection methods RepFinder [7], Dual-
Bound [22] and RepSnapping [10]. To attain a fair compar-
ison, we also run RepFinder on the original image with-
out segmenting the entire foreground first, as in their pa-
per. In fact, for many examples, segmenting the foreground
by using a few strokes is difficult, and thus we treat this
pre-processing requirement as a strong limitation for a simi-
lar objects detection system. By contrast, our algorithm can
accurately and efficiently locate similar objects directly on
the original image, which allows for more practical uses
than RepFinder. Figure 8 shows the results of the compar-
ison. Our method is more robust than the other template-



SimLocator: robust locator of similar objects in images 867

Fig. 8 Comparison of different methods locating similar objects. Templates are shown in the leftmost column

matching-based methods RepFinder and Dual-Bound in
terms of finding object locations in a scene completely
and accurately. The shape matching algorithm used in
RepFinder is sensitive to the defocused effect (dandelions),
moderate shape changes (chocolate cakes and strawberries),
and complex textural backgrounds (green lanterns and pur-
ple flowers). In our algorithm, however, the integration of
the color feature and stable location searching scheme ef-
fectively solve those problems. On the other hand, Dual-
Bound is somewhat too accurate for a matching method. In
most cases in our experiments, Dual-Bound can only find
the template itself, which is not suitable for locating similar
objects in natural images. Finally, RepSnapping can simulta-
neously cut out almost all the repeated elements with limited
user interactions. However, the method is very sensitive to

color variations (green lanterns), and is also unable to ac-
quire information on individual object locations. Figure 9
illustrates more comparison results. SimLocator is more ro-
bust than RepFinder when the image has a perspective effect
(meatballs and strawberries), 3D transformation (flowers),
or severe shape deformation (fried balls and strawberries).

6.2 Template selection

In our experiments, the selection of template does not
largely affect the setting of parameters and the accuracy of
the detection result, if the user does not choose an object that
is too different from the other objects. As shown in Fig. 10,
our algorithm is robust when using variant templates. In this
respect, SimLocator outperforms RepFinder [7] for both lo-
cating operations.



868 Y. Kong et al.

Fig. 9 Comparison of our method with RepFinder. Templates are placed beside the image samples

Fig. 10 Our algorithm is robust when users choose two templates that have apparently different inner textures

6.3 Limitations

SimLocator provides an efficient computational framework
to locate similar elements in an image. Our algorithm is
robust to intra-class appearance variations, illumination
changes, and complex background, as well as certain lev-
els of deformations and occlusions. However, like all other
locating approaches, our algorithm fails in some cases, espe-
cially in images with 3D transformations, severe occlusion,
or dense clusters, which may lead to some errors, as shown
in the two examples of failed applications in Fig. 11. More-
over, the object contours may not be precise because of the
influence of background gradients. In these cases, we can
integrate more feature descriptors in template matching or

specify more strokes to classify the objects from the back-
ground manually.

7 Conclusion and future work

We have developed a novel framework called SimLocator
for locating and extracting similar elements in an image
scene with very little user interaction. Unlike previous meth-
ods that only considered single features in matching, we in-
corporate shape and color information in the computation of
our dense correspondences across objects, thus making our
method more robust than other state-of-the-art repeat/similar
pattern analysis systems.



SimLocator: robust locator of similar objects in images 869

Fig. 11 Examples of failed runs. The school of fish in the left image
has a dense cluster and severe occlusion. One cup in the right image
suffers from 3D transformation and has a semantically different ap-
pearance from the template and the other objects

In the future, we plan to test more feature descriptors in
the matching process, for example using Gabor texture de-
scriptors to help to locate objects with similar inner textures
but different color patterns. Developing new applications
that can benefit from the information of images with simi-
lar content is another direction. Moreover, automatic similar
object detection and extraction remains a very challenging
research direction that merit further investigation.

Acknowledgements We thank anonymous reviewers for their valu-
able input. We thank Fuzhang Wu for making some Dual-Bound re-
sults. We thank the flickr members who kindly share their images
under Creative Commons License: Bestfriend (tea cups), RenateEu-
rope (purple flowers), acaffery (balloons), Luko Gecko (fish school),
Bold Huang (petunia), Swami Stream (chocolate cake). We thank the
users of 500px.com who have shared their images through public do-
main: Ricky Marek (pomegranates), Nitin Prabhudesai (dandelions),
Joram Huyben (green lanterns). We also thank the users of pinter-
est.com who have put the media in their spaces: Gus’s Mom (panda
cakes), Rhonda E. Peterson (meatballs), Cindy Loo (fried balls). The
two fruit cake images are borrowed from [10]. This work is supported
by National Natural Science Foundation of China under project Nos.
61172104, 61271430, 61201402 and 61202324, by Beijing Natural
Science Foundation (Content Aware Image Synthesis and its Appli-
cations, No. 4112061), and by SRF for ROCS, SEM.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk,
S.: SLIC superpixels compared to state-of-the-art superpixel meth-
ods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282
(2012)

2. Ahuja, N., Todorovic, S.: Extracting texels in 2.1d natural textures.
In: IEEE International Conference on Computer Vision, pp. 1–8.
IEEE Computer Society, Los Alamitos (2007)

3. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up ro-
bust features (surf). Comput. Vis. Image Underst. 110(3), 346–359
(2008)

4. Belongie, S., Malik, J., Puzicha, J.: Shape matching and ob-
ject recognition using shape contexts. IEEE Trans. Pattern Anal.
Mach. Intell. 24(4), 509–522 (2002)

5. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object
recognition using low distortion correspondences. In: Proceedings
of the 2005 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05), vol. 1, CVPR’05, pp.
26–33. IEEE Computer Society, Washington (2005)

6. Chen, Q., Li, D., Tang, C.K.: KNN matting. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 869–
876 (2012)

7. Cheng, M.M., Zhang, F.L., Mitra, N.J., Huang, X., Hu, S.M.:
RepFinder: finding approximately repeated scene elements for im-
age editing. ACM Trans. Graph. 29(4), 83:1–83:8 (2010)

8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human
detection. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893.
IEEE, New York (2005)

9. Forssén, P.E.: Maximally stable colour regions for recognition and
matching. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1–8 (2007)

10. Huang, H., Zhang, L., Zhang, H.C.: RepSnapping: efficient image
cutout for repeated scene elements. Comput. Graph. Forum 30(7),
2059–2066 (2011)

11. Joulin, A., Bach, F., Ponce, J.: Discriminative clustering for image
co-segmentation. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR2010), pp. 1943–1950 (2010)

12. Kim, E., Li, H., Huang, X.: A hierarchical image clustering coseg-
mentation framework. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 686–693 (2012)

13. Krages, B.: Photography: The Art of Composition. Allworth Press,
New York (2005)

14. Leung, T.K., Malik, J.: Detecting, localizing and grouping re-
peated scene elements from an image. In: Proceedings of the 4th
European Conference on Computer. ECCV’96, vol. I, pp. 546–
555. Springer, London (1996)

15. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to
natural image matting. IEEE Trans. Pattern Anal. Mach. Intell.
30(2), 228–242 (2008)

16. Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM
Trans. Graph. 23(3), 303–308 (2004)

17. Liu, J., Sun, J., Shum, H.Y.: Paint selection. ACM Trans. Graph.
28(3), 69:1–69:7 (2009)

18. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 60, 91–110 (2004)

19. Meng, F., Li, H., Liu, G., Ngan, K.N.: Object co-segmentation
based on shortest path algorithm and saliency model. IEEE Trans.
Multimed. 14(5), 1429–1441 (2012)

20. Pauly, M., Mitra, N.J., Wallner, J., Pottmann, H., Guibas, L.J.: Dis-
covering structural regularity in 3d geometry. ACM Trans. Graph.
27(3), 43:1–43:11 (2008)

21. Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: interactive fore-
ground extraction using iterated graph cuts. ACM Trans. Graph.
23, 309–314 (2004)

22. Schweitzer, H., Deng, R., Anderson, R.F.: A dual-bound algorithm
for very fast and exact template matching. IEEE Trans. Pattern
Anal. Mach. Intell. 33(3), 459–470 (2011)

23. Thompson, D.W.: On Growth and Form. Cambridge University
Press, Cambridge (1992)

Yan Kong is a PhD candidate in the
Sino-French Laboratory (LIAMA)
and National Laboratory of Pattern
Recognition (NLPR) at Institute of
Automation, Chinese Academy of
Sciences. He received his BSc in
Computer Science in 2011 from
Beijing Jiaotong University, PR Chi-
na. His research interests include
image synthesis and image process-
ing.



870 Y. Kong et al.

Weiming Dong is an Associate Pro-
fessor in the Sino-French Labora-
tory (LIAMA) and National Labora-
tory of Pattern Recognition
(NLPR) at Institute of Automation,
Chinese Academy of Sciences. He
received his BSc and MSc degrees
in Computer Science in 2001 and
2004, both from Tsinghua Univer-
sity, PR China. He received his PhD
in Computer Science from the Uni-
versity of Henri Poincaré Nancy 1,
France, in 2007. His research inter-
ests include image synthesis and re-
alistic rendering. Weiming Dong is
a member of ACM and IEEE.

Xing Mei is an Assistant Profes-
sor in the Sino-French Laboratory
(LIAMA) and National Laboratory
of Pattern Recognition (NLPR) at
Institute of Automation, Chinese
Academy of Sciences (CASIA). He
received his BSc degree in Elec-
tronic Engineering in 2003 from the
University of Science and Technol-
ogy of China (USTC). He received
his PhD degree in 2009 from CA-
SIA. His research interests include
image processing, computer vision
and computer graphics. Xing Mei is
a member of IEEE.

Xiaopeng Zhang received his MSc
degree in Mathematics from North-
west University in 1987, and the
PhD degree in Computer Science
from Institute of Software, Chi-
nese Academy of Sciences (CAS),
in 1999. He is a Professor in the
Sino-French Laboratory (LIAMA)
and (National Laboratory of Pat-
tern Recognition) at Institute of Au-
tomation, CAS. His main research
interests are computer graphics and
pattern recognition. He received the
National Scientific and Technologi-
cal Progress Prize (Second Class) in

2004. Xiaopeng Zhang is a member of ACM and IEEE.

Jean-Claude Paul is a director of
research at INRIA and a profes-
sor at Tsinghua University, Beijing,
China. He received his PhD degree
in Mathematics from University of
Paris XI and graduated in architec-
ture design from the French Na-
tional School of Fine Arts (ENSBA)
in 1976. In 1995, he obtained the
Academie des Sciences Prize and
the Academie des Beaux Arts Prize,
for both his artistic and scientific
work. His research interests include
realistic rendering, geometry pro-
cessing and curves and surfaces the-
ory.


	SimLocator: robust locator of similar objects in images
	Abstract
	Introduction
	Related work
	Overview
	Similar object locating
	Object feature descriptors
	Object locating by matching
	Result improvement by matting

	Contour extraction
	Results and discussion
	Comparison
	Template selection
	Limitations

	Conclusion and future work
	Acknowledgements
	References


