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Action Machine: Towards Person-Centric Action
Recognition in Videos

Jiagang Zhu, Wei Zou, Zheng Zhu, Liang Xu, Guan Huang

Abstract—Existing RGB and CNN-based methods in video
action recognition mostly do not distinguish human body from
the environment, thus easily overfit the scenes and objects of
training sets. In this work, we present a conceptually simple,
general and high-performance framework for action recognition
in videos, aiming at person-centric modeling. The method, called
Action Machine, is based on person bounding boxes for instance-
level action analysis. It extends the Inflated 3D ConvNet (I3D) by
adding a branch for human pose estimation and a 2D CNN for
pose-based action recognition. Action Machine can benefit from
the multi-task training of action recognition and pose estimation,
the fusion of predictions from RGB images and poses. Experi-
ments results are provided on trimmed video action datasets,
NTU RGB+D, Northwestern UCLA Multiview Action3D, MSR
Daily Activity3D. Action Machine achieves superior performance
and generalizes well across datasets.

Index Terms—Video action recognition, Deep learning, Pose
estimation.

I. INTRODUCTION

ITH the release of Kinetics dataset [1]], action recog-

nition in videos has shown similar trend as the object
recognition due to the ImageNet [2]. A variety of tasks
including trimmed video classification [3|], [4], temporal action
recognition in untrimmed videos [5], [6]], spatial-temporal
action detection [[7], have been quite popular in recent com-
petitions.

To some extent, advances in video action recognition are
hampered by the biases in datasets collection, lack of annota-
tions. For example, the videos in UCF-101 [§] and HMDB-
51 [9] are rich in scenes and objects, while missing person
bounding box annotations. Previous methods [1]], [10], [L1],
which do not directly distinguish human body from videos,
tend to predict an action according to the scenes and objects,
since convolutional neural networks (CNNs) make it easier
to classify the objects and things than human motions. The
trained models can easily be distracted by irrelevant cues of
videos when recognizing an action. For example, in Fig. [T(b),
the video frame with ground-truth class carry is predicted
as a wrong action drop trash by the baseline Inflated 3D
ConvNet (I3D) [1f]. Presumably, the model has learned that the
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Fig. 1. Visualizing the class-specific activation maps of Inflated 3D ConvNet
(I3D) [1] and our method with the Class Activation Mapping [12]. The
video frames of two action classes from Northwestern UCLA Multiview
Action3D [13]] are displayed, i.e., drop trash, carry, which are acted by a
man and a woman respectively. The results of our person-centric modeling
method (subfigure (c) and (d)) emphasize the body movements, while the
baseline 13D (subfigure (a) and (b)) overfits the trash can.

trash can and the action drop trash always appear in a video
together (Fig. [[(a)). This motivates us to design a model that
can explicitly capture human body movements from videos,
simultaneously follows the stream of RGB and CNN-based
methods in action recognition.

In this work, a person-centric modeling scheme for human
action recognition is proposed, called Action Machine, which
extends the Inflated 3D ConvNet (I3D) [[1] by adding a branch
for human pose estimation and a 2D CNN for pose-based
action recognition. In details, we use I3D for feature extraction
and crop the target persons by bounding boxes. For frame-wise
pose estimation, a 2D deconvolution head is added to the last
convolutional layer of I3D, in parallel with the existing head
for RGB-based action recognition. Following pose estimation,
a 2D CNN is applied to the pose sequences for pose-based
action recognition. At inference time, the predictions of two
classification heads are fused by summation. Some class-
specific activation maps of Action Machine are shown in
Fig. [I(c) and (d), indicating only the regions that really
correspond to the action are activated. The main contributions
of this work are summarized as follows:

1) We present a conceptually simple and general framework
for action recognition, called Action Machine, aiming at
person-centric modeling.

2) The proposed techniques of explicitly modeling human
body movements including person cropping, multi-task
training of action recognition and pose estimation, the
fusion of predictions from RGB images and poses can
help to improve the model performance.

3) We showcase the generality of our framework via exten-
sive experiments. Action Machine achieves the state-of-
the-art performance on NTU RGB-D [14], Northwestern
UCLA Multiview Action3D [[13]]. In addition, we design
a cross-dataset recognition task, which is closer to the
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Fig. 2.
based action recognition. Then a 2D deconvolution head is added to the
last convolutional layer of I3D for frame-wise pose estimation. Third, the
estimated pose sequences are fed into a 2D CNN for pose-based action
recognition. The proposed method is trained in a multi-task manner. Finally,
the predictions of two heads for action recognition are fused by summation
at inference time.

Action Machine. First, the videos are fed into I3D for RGB-

practical situations where the models have to handle the
scenes largely different from the training sets. Action
Machine shows significant improvement over the strong
baseline 13D, by more than 7-10% in accuracy, demon-
strating the benefits of our person-centric modeling in
generalizing across different datasets.

There are also previous works which are related to ours.
As a representation typically designed for human pose, Po-
Tion [15] is complementary to standard appearance and
motion streams. Chained multi-stream network [16] unifies
three sources: RGB images, optical flow and body part mask
for action recognition and detection. In [17], Soft-argmax is
extended to regress 2D and 3D pose directly, leading to the
end-to-end training of pose estimation and action recognition.
Different from the above three works, Action Machine is based
on I3D, which is easy to train because of transferring pre-
trained weights from 2D CNN and does not need the costly
optical flow maps compared to two-stream ConvNet [10]. The
pose estimation method we use is detection-based, detecting
keypoint by regressing heatmap. It can get more accurate
pose than the regression-based pose estimation in [17] in
our experiments (about 5 AP). Moreover, our method can be
applied to multi-person cases because of using RolAlign [[18]].

II. ACTION MACHINE

Action Machine (Fig. [2) is a person-centric approach for
action recognition in videos. It has several key elements: per-
son detection, RGB-based action recognition, pose estimation
and pose-based recognition. The details are described next.

RGB-based action recognition. We use the I3D with
ResNet-50 [[19] as backbone. In order to estimate the pose
of each frame, we remove the temporal max pooling after
the first stage of I3D. The output feature of the backbone is
fed into RolAlign [18] layer to obtain a tensor with size of
2048 x8x7x7, used both by RGB-based action recognition
and pose estimation. As shown in Fig. global average
pooling is performed after the last convolutional layer of 13D
to get a 2048-d feature P,gp.

Consider a dataset of N videos with n categories
{(Xi,y:)}Y,, where y; € {1,...,n} is the label. Formally,
the prediction can be obtained directly

Y;"gb = (p(WcPrgb + bc); (D

where ¢ is the softmax operation, Y., € R"™. W, and
b. are the parameters of the fully connected layer. In the
training stage, combining with cross-entropy loss, the final
loss function is

N
L, =— Z IOg(Yrgb(yi))a ()
=1

where Y;.0,(y;) is the value of the y;-th dimension of Y.g,.

Pose estimation. Given the output features of 13D, the pose
estimation is performed on each time step. Inspired from Mask
R-CNN [[18], a 2D deconvolution head is added to the last
convolutional layer of I3D, as shown in Fig. 3] By default,
two deconvolutional layers with batch normalization [20] and
ReLU activation [21] are used. Each layer has 256 filters
with 4x4 kernel and the stride is 2. Following [22], a 1x1
convolutional layer is added at last to generate predicted
heatmaps for all K keypoints (one channel per keypoint) and
offsets (two channels per keypoint for the x and y-directions)
for a total of 3K output channels, where K = 17 is the number
of keypoints.

Given the image crop, let fx(x;) = 1 if the k-th keypoint
is located at position x; and 0 otherwise. Here k € 1,.... K
indexes the keypoint type and i € 1, ..., Q) indexes the pixel
locations on the image crop grid. For each position x; and
each keypoint k, we compute the probability hx(x;) = 1 if
[|z; — lg]| < M, which means the point z; is within a disk of
radius M from the location [; of the k-th keypoint. A typical
value of M is 25 in a 224x224 image. K such heatmaps
are trained by solving a binary classification problem for each
position and keypoint independently. For each position z; and
each keypoint &, we also predict the 2D offset vector Fy(z;) =
l, — x; from the pixel to the corresponding keypoint. K such
vector fields are trained by solving a 2D regression problem
for each position and keypoint independently.

The output of the heatmap branch yields the heatmap
probabilities hy(z;) for each position x; and each keypoint
k. The training target for the heatmap branch hy(z;) is a
map of zeros and ones, with hy,(z;) = 1 if ||z; — lx]| < M
and 0 otherwise. The corresponding loss function L (6) is
the sum of smooth L; loss for each position and keypoint
independently

K
L) = % SO Bl ~ (), O
k=1 1

where R is the smooth L; loss.

For training the offset regression branch, the differences
between the predicted and ground truth offsets are penalized
by smooth L; loss. The offset loss is only computed for
positions z; within a disk of radius M from each keypoint.

K
Lo(e):%z Y R(Fu(@) - (k—)). @)

k=1 ||l —=|| <M



IEEE SIGNAL PROCESSING LETTERS, ACCEPTED SEPTEMBER 2019

RGBbased |
action recognition |
ave

|
Rol 204 2048 > class)

Heatmap

and 0’
|

Fig. 3. We extend I3D by adding a branch for human pose estimation and a 2D CNN for pose-based action recognition. Numbers denote spatial resolution
and channels. Arrows denote either conv, deconv, or fc layers as can be inferred from context (conv preserves spatial dimension while deconv increases it).
The output conv of heatmap and offsetmap is 1x 1, deconvs are 4x4 with stride 2. ‘res5’ denotes the fifth stage of I3D with ResNet-50. ‘8 X’ denotes the
shared operations of 2D pose estimation on the temporal dimension. In the last of pose estimation head, ‘(3x17)’ denotes the concatenation of 1-channel
heatmap and 2-channel offset for 17 keypoints. For the input tensor of pose-based action recognition CNN, ‘X3’ denotes the concatenation of 2-d coordinates

and 1-channel confidence.

The final loss function for pose estimation has the form

Lp == Lh(e) + LO(G)v (5)

At inference time, for the k-th keypoint, the argmax oper-
ation is performed on the k-th heatmap to yield the coarse
location

xp = arg max (hi(x;),i € 1,...,Q). (6)

The accurate coordinate of the k-th keypoint is obtained by
adding the corresponding offset Fy(xy) to xy.

Pose-based action recognition. The coordinates of 2D pose
can be transformed into a tensor of a size 2x7T x K [17]], where
T denotes the number of input frames. An extra confidence
channel, which is obtained by max pooling over the heatmap
and passed to the ReL.U activation, is added for each predicted
joint to get a 3xT x K tensor. Then the tensor is fed into a
modified ResNet-18 [[19] for pose-based action recognition,
as shown in Fig. [3| Due to the low spatial dimension of the
input pose sequences, all the pooling operations are removed
and all the stride 2 operations in the convolutional layers are
replaced with 1. Global average pooling is performed after the
last convolutional layer of ResNet-18 to get a 512-d feature.
The prediction of pose stream Y)qction 1 optimized with cross-
entropy loss

N
Lpaction = - Z log(ypaction (yl>) (7)
=1

Multi-task training. Action Machine has three tasks: RGB-
based action recognition, pose estimation and pose-based
action recognition. They are jointly optimized by the following
loss function:

L= LT + )\]_Lp + )\2Lpaction
=L, + )\1(Lh(9) + Lo(e)) + )\QLpaction

where A1 and A, are the loss weights of pose estimation
and pose-based action recognition respectively. When jointly
training pose estimation with action recognition, A; is set to
0.5 to not influence the main task. Because the gradients of
pose-based action recognition don’t back-propagate into the
pose estimation head, A5 is set to 1.0. They are determined
by cross-validation. Since the pose features cannot be used in
a fully differentiable way, the pose-based action recognition
task is trained sequentially.

®)

TABLE I
EXPERIMENTAL SETUP.

Clip length sampling stridle GPUs Clips per GPU optimizer
8 8 2 4 SGD
base Ir schedule epochs test crops evaluation metric
0.01 [42, 68] 85  three spatial crops, 10 times top-1 accuracy
TABLE 11

PERFORMANCE ON NTU RGB+D, ACCURACY(%).

Pose RGB xview xsub

Lie Group [26] v - 528 50.1
H-RNN [27] v - 64.0 59.1
Deep LSTM |[14] v - 67.3 60.7
PA-LSTM [14 v - 703 629
ST-LSTM+TS 28 v - 777 69.2
Temporal Conv |29 v - 83.1 743
VA-LSTM 30| v - 87.6 794
ST-GCN |31 v - 883 815
SR-TSL [32] v - 924 8438
Chained [16] v - - 80.8
2D-3D-Softargmax [17] - v - 85.5
Glimpse Clouds [25] - v 932 866
PoseMap [24] v v 95.2 91.7
Action Machine (Ours) - v 97.2 943

Fusion of RGB and pose-based action recognition. In
order to combine the strengths of predictions from RGB
images and poses, the predicted probabilities of two heads
are fused by summation during inference. Other sophisticated
fusion methods (e.g., feature concatenation) can also be tried,
which is not the focus of this paper.

III. EXPERIMENTS
A. Datasets

The proposed method has been evaluated on video action
datasets: NTU RGB+D [14], Northwestern-UCLA Multiview
Action 3D (N-UCLA) [13]], MSR Daily Activity3D (MSR
Daily) [23]]. We follow the experimental setup in Table [T}

B. Experiments: Action recognition in videos

1) Comparison with state-of-the-art: In this section, Action
Machine is compared with other approaches on NTU RG-
B+D [14], N-UCLA [13]]. Results are shown in Table
where v* denotes that the corresponding modality is used as
the input of model in testing. On NTU RGB+D [14], Action
Machine outperforms previous state-of-the-art PoseMap [24]
by 2 and 2.6 points in top-1 accuracy on cross-view and cross-
subject respectively. On N-UCLA [13]], compared to Glimpse
Clouds [_25], Action Machine has a accuracy gain of 4.7 points
in average top-1 accuracy on cross-view.

2) Ablation study: There are four basic configurations,
detailed next:
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TABLE III
PERFORMANCE ON N-UCLA, ACCURACY(%).

Pose RGB xviewl xview2 xview3 Avg

Lie Group [26 v - - - - 742
H-RNN (27| v - - - 78.5
Enhanced viz. [33] v - - - 86.1
Ensemble TS-LSTM [34] v 89.2

83.4 89.5 90.1 87.6

89.6 90 943 913
88.3 922 965 923

Glimpse Clouds [25
Action Machine (Ours) -
Action Machine (Ours, NTU pre-training) -
TABLE IV
ABLATION STUDIES ON NTU RGB+D, ACCURACY(%). IN THE ROWS
WHICH HAVE SLASH /, THE NUMBER ON THE LEFT OF SLASH IS THE
ACCURACY OF POSE-BASED ACTION RECOGNITION, THE RIGHT IS THE
ACCURACY OF FUSION OF RGB AND POSE RESULTS.

ENENEN R

Xview xsub XView-s xsub-s
RGBACction r crop 97.2 92.3 94.3 61.2
RGBAction person crop 97.7 93.2 94.5 67.9
KPS RGBAction 973 93.8 95.0 712
KPS PoseAction RGBAction | o o7 1 g4 0/94 | 87,8959 62.9/72.7
(ResNet-18)
KPS PoseAction RGBAction | ) 3,975 g55/94.3 89.9/96.1 66.0/73.5
(ResNet-50)

RGBAction random crop. The baseline I3D model takes
as inputs the random crops of videos and performs action
recognition using RGB feature.

RGBACction person crop. The 13D model uses RolAlign to
obtain person features and performs action recognition using
RGB feature.

KPS RGBAction. The I3D model uses RolAlign to ob-
tain person features, performs action recognition using RGB
feature, and adds a head for pose estimation.

KPS PoseAction RGBAction. The I3D model uses
RolAlign to obtain person features, adds a head for pose
estimation, and performs action recognition using RGB and
pose feature. The model trained from KPS RGBAction is
used as the pre-trained model. We fix it and only train the
ResNet-18 or ResNet-50 for pose-based action recognition.
We report the results of pose-based action recognition and the
sum fusion of predictions from RGB images and poses.

Results and Analysis. As shown in Table on the
cross-subject of NTU RGB+D, person cropping can improve
the model accuracy by 0.9 points over random crop. Our
full model outperforms the baseline RGBAction random
crop by 2 points. Due to the high accuracy of baseline, the
improvement on the cross-view is not obvious. Similar gain
potential can also be observed on the small subsets of NTU
RGB+D (xview-s, xsub-s), which are originally used for the
fast training and testing in our implementation.

As shown in Table on N-UCLA, Action Machine out-
performs the baseline I3D by a large margin. Specifically,
RGBACction person crop with the person cropping technique
can improve the accuracy by 1.6 and 4.3 points on xviewl
and xview3 over the baseline RGBAction random crop
respectively. Person cropping does not bring accuracy gain
on xview2, because the test crops of front view images on
this dataset are close to that cropped by person boxes. Jointly
training pose estimation and RGB-based action recognition,
ie., KPS RGBAction, can improve about 3 to 7 points.
Overall, using ResNet-18, our final model exceeds the baseline
by 7.2 points. By using a stronger backbone, i.e., ResNet-
50 for pose-based action recognition and NTU RGB+D pre-
training, the accuracies of our models, either solely by poses

TABLE V
ABLATION STUDIES ON N-UCLA, ACCURACY(%).
xviewl  xview2  xview3 Avg
RGBAction random crop 81.6 824 86.3 83.4
RGBACction person crop 83.2 82.4 90.6 85.4
KPS RGBAction 86.3 90 94.9 90.4

KPS PoseAction RGBAction
(ResNet-18)

KPS PoseAction RGBAction
(ResNet-50)

KPS PoseAction RGBAction

(ResNet-18, NTU pre-training)

KPS PoseAction RGBAction

(ResNet-50, NTU pre-training)

TABLE VI
CROSS-DATASET TESTING ON N-UCLA AND MSR DAILY, ACCURACY(%).

79.7/87.5 81/90.4 87.5/94.1 82.7/90.6

84.2/89.6 81.8/90 88.4/94.3 84.8/91.3

85.5/88.6 88.0/91.6 93.2/96.5 88.9/92.2

83.8/88.3 87.6/92.2 93.2/96.5 88.2/92.3

N-UCLA MSR Daily

RGBAction random crop 70.0 70.8
RGBAction person crop 70.0 78.4
KPS RGBAction 76.4 79.7

KPS PoseAction RGBAction
(ResNet-18)

KPS PoseAction RGBAction
(ResNet-50)

68.8/76.4 58.2/79.7

69.2/77.3  63.2/81.0

or the fusion of RGB images and poses, are further improved.

Cross-dataset recognition task. This task is designed to
imitate the challenge that the models have to handle the unseen
scenes when being deployed. The models are trained and tested
on different datasets. Specifically, we train our models on NTU
RGB+D cross-subject and test them on the test sets of the
smaller datasets, i.e., N-UCLA, MSR Daily respectively. We
report performance on the shared categories of these datasets.
Because of the different sources of videos, the scene contexts
and objects in training dataset are largely different from the
testing dataset. In this case, a model without capturing human
body motion will behave worse than that learns to focus on.
Results are shown in Table It is clearly observed that
our proposed person-centric modeling techniques including:
person cropping, multi-task training of action recognition and
pose estimation, the fusion of predictions from RGB images
and poses can help to improve the performance of baseline
model RGBAction random crop on different datasets. Our
method shows massive improvement over the baseline 13D, by
more than 7-10% in accuracy. This again indicates that our
method really learns to focus on human body movements in-
stead of overfitting the scenes and objects of specific datasets.
Though some existing methods based on RGB images may
have high performance on some datasets, they can easily be
distracted by the non-human stuff when facing new videos
with different context. In contrast, Action Machine is more
generalizable and extendable.

IV. CONCLUSIONS

In this work, we propose Action Machine for human ac-
tion recognition in videos. By using person bounding boxes
and human poses, Action Machine achieves competitive per-
formance compared with other approaches on video action
datasets [[13[], [[14], [23]. In experiments, we show that the
models trained based on the full contents of videos tend to
overfit the scenes and objects. Instead, Action Machine can
generalize well across different datasets by explicitly capturing
human body movements. We expect Action Machine be an
effective framework in video surveillance and other application
scenarios, which demand instance-level action analysis.
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