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Abstract

Word embeddings are the semantic representations of the words. They are derived from large corpus and work well on
many natural language tasks, with one downside of costing large memory space. In this paper, we propose binary word
embedding models based on inspirations from biological neuron coding mechanisms, converting the spike timing of neurons
during specific time intervals into binary codes, reducing the space and speeding up computation. We build three types
of models to post-process the original dense word embeddings, namely, the homogeneous Poission processing-based rate
coding model, the leaky integrate-and-fire neuron-based model, and the Izhikevich’s neuron-based model. We test our binary
embedding models on word similarity and text classification tasks of five public datasets. The experimental results show that
the brain-inspired binary word embeddings (which reduce approximately 68.75% of the space) get similar results to original
embeddings for word similarity task while better performance than traditional binary embeddings on text classification task.

Keywords Word embeddings - Neuron coding - Spiking neural networks

Introduction

Word embeddings models can convert both semantic and
syntactic information of words into dense vectors, for
example, Word2Vec [1] and GloVe [2]. Recently, they
attract a lot of attention due to their good performances in
various natural language processing tasks, such as language
modeling [3], parsing [4], sentence classification [5], and
machine translation [6].

However, these dense representations are mostly derived
from statistical property of large corpus while are lack of
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interpretability in each dimension of the word vectors. Sev-
eral works have tried to transform dense word embeddings
into sparse ones to improve the interpretability. Murphy
et al. introduced a matrix factorization algorithm named
non-negative sparse embeddings (NNSE) on co-occurrence
matrix to get sparse, effective and interpretable embed-
dings [7]. Faruqui et al. defined a L regularized objective
function and proposed an post-process optimization algo-
rithm to convert original dense embeddings into sparse
or binary embeddings. They call them sparse or binary
overcomplete word vector [8]. Sun et al. introduced an algo-
rithm to get sparse embeddings during training Word2Vec
model through L regularizer on cost function and regular-
ized dual averaging optimization algorithm [9]. For binary
word embeddings, there are also some rounding algorithms
on converting dense vectors into discrete integer values
to reduce memory. Ling et al. proposed post-processing
rounding, stochastic rounding, and auxiliary update vec-
tors algorithms for word embeddings with limited mem-
ory, which is named as truncated word embeddings [10].
The interpretability issue in these works is mentioned
but not demonstrated clearly. In this paper, we want to
improve it via a brain-inspired approach, explaining each
dimension of word embeddings based on neuron coding
models.

In biological brains, the encoding of information in the
areas such as inferior temporal visual cortex, hippocampus,
orbitofrontal cortex and insula is with sparse distributed
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representation [11]. Many experimental evidences have
indicated that biological neural systems use the timing of
spikes to encode information [12-14]. The spike trains of
cell activities during information transition inspire us to
combine traditional word embeddings and neuron coding
models into binary embeddings. In this paper, we perform
post-process operations on original dense word embeddings
to get binary ones with inspirations from biological neuron
coding models, and the proposed binary embeddings are
with less space occupation and with better interpretability
than previous models.

Related Works
Neuron Coding

Neuron coding is concerned with describing the relationship
between the stimulus and the neuronal responses [15].
A great many efforts have been dedicated to developing
techniques to enable the recording of the brain’s electrical
activity at different spatial scales, such as single cell
spike train recording, local field potential (LFP), and
electroencephalogram (EEG) [16]. Neuron coding models
mainly concern how neurons encode, transmit, and decode
information, and their main focus is to understand how
neurons respond to a wide variety of stimuli, and to
construct models that attempt to predict responses to other
stimuli.

Neurons propagate signals by generating electrical pulses
called action potentials: voltage spikes that can travel down
nerve fibers. For example, sensory neurons change their
activities by firing sequences of action potentials in various
temporal patterns, with the presence of external sensory
stimuli, such as light, sound, taste, smell and touch [16]. It
is known that information about the stimulus is encoded in
action potentials and transmitted through connected neurons
in our brains.

There are various kinds of hypotheses on neuron coding
based on recent neurophysiological findings on biological
nervous system, mainly including spike rate coding and
spike time coding. For spike rate coding, only the firing
rate in an interval is concerned as a measurement for
information carried. Rate coding is firstly motivated by the
observation of the frog cutaneous receptors by Adrian et
al. in 1926 that physiological neurons tend to fire more
often for stronger stimuli [17]. Spike rate coding has been
the main paradigm in artificial neural networks, such as
sigmoidal neurons. Meanwhile, the Poisson-like rate coding
is widely used by physiologists to describe how the neurons
transmit information. Recently, some neurophysiological
results show that efficient processing of information is more
likely based on precise timing of action potentials rather
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than firing rate in some biological neural systems [18-20].
For timing coding hypotheses [21], they mostly concentrate
on the timing of individual spikes and the typical ones are
the time to first spike [22, 23], rank order coding [20, 24],
latency coding [25], and phase coding [26].

In our study, we use Poisson-like coding for spike rate
coding and various spiking neuron models for time coding.
We try to apply these biological neuron coding hypotheses
to build binary word embedding models.

Spiking Neural Network Models

Spiking neural networks (SNNs), which are highly inspired
from recent advancement in neuroscience, are often
referred as the third generation neural network models
[27]. Different from traditional neural networks, SNNs
consider the timing of individual spikes as the means of
communication and neural computation [21].

Spiking neuron models are the basis of SNNs, which
describe the properties of certain cells in the nervous system
that generate spikes across their cell membrane. The most
well-known neuron model is Hodgkin-Huxley model (H-H
model). In 1952, Hodgkin and Huxley did experiments on
the giant axon of squid with the voltage clamp technique,
which punctured the cell membrane and allowed to force
a specific membrane voltage or current [28]. The model
was proposed by the recordings and fitting results, well
describing the change of ion channel and neuron behavior
after stimulation.

In the H-H model [29], the semipermeable cell mem-
brane separates the interior of the cell from the extra-
cellular liquid and acts as a capacitor. Because of the
active ion transportation through the cell membrane, the
ion concentration inside the cell is different from that in
the extracellular liquid. The Nernst potential generated by
the difference in ion concentration is represented by a
battery.

The model takes three types of channel into consid-
eration: a sodium channel, a potassium channel, and an
unspecific leakage channel with resistance R. From the def-
inition of a capacity C = Q/v where Q is a charge and v is
the voltage across the capacitor, thus:

C~%=—Zlk(t)+l(t) (1)
k
The leakage channel is described by a voltage-independent
conductance g = 1/R. For the sodium channel and
the potassium channel, if both of them are open, they
transmit currents with a maximum conductance gy, or
gk, respectively. However, the channels are not always
open; the probability that a channel is open is described by
additional variables m, n, and h. The combined action of m
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and h controls the Na™ channels while the K gates are
controlled by n.

> Ik = gnam h(v—Ena) +gkn* (v — Ex) +gL(v—EL)
k

(@)

The parameters En,, Ex, and E; are empirical parameters
and the gating variables m, n, and h are defined by
differential equations [28].

In addition to the H-H model, other types of spiking neu-
ron models have been proposed, such as integrate-and-fire
models and variants, Izhikevich’s neuron model, and spike
response model (SRM). Recently, SNN-based models have
been applied in variant Al applications, such as character
recognition [30, 31], object recognition [32], image segmen-
tation [33], speech recognition [34], robotics [35], knowl-
edge representation [36], and symbolic reasoning [37]. In
this paper, we will use leaky integrate-and-fire model and
Izhikevich’s neuron model to convert the word embeddings
into more explainable binary embeddings.

Word Embedding Models Based on
Inspirations from Biological Neuron Coding

The Framework

We build unsupervised models for post-processing binary
word embeddings based on two types of brain-inspired
models, homogeneous Poisson process and spiking neural
networks. Based on preprocessed word embeddings, such
as Word2Vec and GloVe, these models convert original
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dense embeddings into the form of binarization. Different
from traditional works on binary word representations, our
models are inspired by neuroscience which are biologically
plausible and more interpretable.

To mimic information transmission in biological brains,
we take temporal information into consideration. As
Fig. 1 shows, our models combine original dense word
embeddings and neural coding algorithms to get the spiking
times of neurons during a given period of time. We denote
the original dense word embeddings matrix as W, for each
element w;4, wherei = 1,2,--- ,|N|,d = 1,2,--- ,|D|,
| N| represents the total number of words and | D| represents
the dimensions of each word. For each word, we build a
neural model based on the value of each dimension. And
during a given time 7', we record the membrane potential for
each neuron per At, via neural coding algorithms which will
describe in “Homogeneous Poisson Process-Based Binary
Word Embeddings” and “Spiking Neural Networks Based
Binary Word Embeddings.” Then, spiking times matrix
S@, which contains all neurons’ spiking times for the
ith word, will be flattened as a vector f @ with each
row concatenated head to tail. The dimensions for @ is
|D| x (T/At). Finally, to make our model more robust, we
introduce the tolerance factor tol. We allow a window of
tol x At to generate a binary bit, and obtain the binary
word embeddings in the following way:

i) _ i) i) (i)
b = [T(f(lzl*ml))’T(fi*toHl:Z*tol)) T ’T(f(kfl)*tolJrl:k*tol))’

i)
’ T(fle\><(T/At)—tol:|D\x(T/At))] 3

The T (vector) operation means that if there are 1s in the
vector, then the bit is 1, otherwise it is 0.
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Fig.1 The framework of neuron coding-based binary embeddings
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Homogeneous Poisson Process-Based Binary Word
Embeddings

Poisson-like rate coding is a major algorithm to simulate
spiking response to stimuli. Biological recordings from
medial temporal [38, 39] and primary visual cortex [40] of
macaque monkeys have shown good evidence for Poisson
process-based coding.

For homogeneous Poisson process, it assumes that for
the current spike, there is no dependence at all on preceding
spikes and the instantaneous firing rate r is constant over
time. Consider that we are given a interval (0, 7) and we
place a single spike in it randomly. If we pick a subinterval
(t,t + Ar) of length Atr, the probability that the spike
occurred in the subinterval equals Az/T. When we place
k spikes in (0, T'), according to binomial formula, the
probability that n of them fall in (¢, t 4+ At) is:

P{n spikes during At)= ‘ '(At/T)”(l—At/T)k*"
n:

(k—n)
“

Keeping fire rate r = k/T constant, we increase k and T
synchronously. As k — oo, the probability becomes:

(rAD" —
n!

P{n spikes during At} = (5)

This is the probability density function for Poisson
distribution.

In our homogeneous Poisson process-based binary
word embeddings model, we consider each dimension
as an independent homogeneous Poisson process and the
normalized value of the dimension wf;rm“lized as the
constant firing rate. Following the spike generator within
the program, for each At in the interval (0, T'), we compare
wy rmalized . At \yith a random variable X,qngom. Then, we

can get the spiking time matrix in this way:

normalized ) = Xrandom fire a Spike
wle DAt = . (6)
< Xrandom nothing

Spiking Neural Networks Based Binary Word
Embeddings

The LIF-Based Binary Word Embedding Model The leaky
integrate-and-fire (LIF) neuron model, a simplified version
of H-H model, is one of the simplest spiking neuron models
[41]. LIF model is widely used because it is biologically
realistic and computationally simple to be analyzed and
simulated [31, 42, 43].

In the LIF model, as Eq. 7 shows, v is the membrane
potential, 7, is the membrane time constant, and R is the
membrane resistance, and for LIF-based word embeddings
model, we replace the input current / with the product of
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the dth dimension value of the ith word and current boost
factor Ippps:-

dv
Tmz = —v(t)+ R Ipoost - Wia, if v(t) > vep, v(E) < vy
@)

In our LIF-based binary word embedding model, we regard
the value Ipp0s5: - Wiq as the intensity of current for neurons,
and we get the spiking time matrix based on the record of
membrane potential v. In addition, we also try to add white
noise to the current to improve its robustness.

The lIzhikevich Neuron-Based Binary Word Embedding
Model The Izhikevich neuron model is not only capable of
producing rich firing patterns exhibited by real biological
neurons but also computationally simple [44]. The model
makes use of bifurcation methodologies [45] to reduce more
biophysically accurate H-H neuron model to a simple one
of the following form:

dv 2 du
I =0.04v(t)"+5v(t)+140—u(t)+1, o =a(bv(t)—u(t))
)

If v(t) > vy, thenv(t) < cand u(t) < u(t) +d.

In the Izhikevich neuron model, the meaning of v, v,
and v, are the same as in the LIF model, while u represents
the membrane recovery variable and a, b, ¢, and d are four
important hyper-parameters. The parameter a describes the
time scale of u, b describes the sensitivity of u to the
subthreshold fluctuations of v, and ¢ is used to describe
the after-spike reset value of v and is caused by fast high-
threshold K+ conductances. d is used to describe the after-
spike reset of u and is caused by slow high-threshold Na™
and K.

As Izhikevich et al. [44] shows, different choices of these
four parameters can simulate different types of neurons
in the mammalian brains, such as excitatory cortical cells,
inhibitory cortical cells, thalamocortical cells, etc. In this
paper, we mainly focus on excitatory and inhibitory cortical
neurons. According to the intracellular recordings, cortical
cells can be divide into different types, for example, regular
spiking (RS), intrinsically bursting (IB), and chattering
(CH) for excitatory neurons while fast spiking (FS) and
low-threshold spiking (LTS) for inhibitory neurons.

In our Izhikevich neuron model-based binary word
embedding models, we make use of the combination of
excitatory and inhibitory neurons at the rate of 4:1, which
is motivated by the rate in mammalian cortex [44]. As
mentioned before, for each word, we set | D| neurons and
regard the product of the original word embeddings w;g4
and a factor Ip,ps; as the the current for the model. We
set each neuron to excitatory/inhibitory sub-models, and for
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Table 1 Results of word embeddings on the word similarity tasks

- GloVe Word2Vec Average

WordSim SimLex Rare Words WordSim SimLex Rare Words

Original 56.45 39.20 33.57 61.29 45.73 44.27 46.75
Overcomplete-B 53.23 41.21 38.90 41.94 42.71 33.97 41.99
Rude binarization 58.06 47.24 34.35 54.84 44.22 34.73 45.57
Poisson 30.16 £ 6.23 27.79 + 6.27 15.94 £ 4.02 29.03 +£9.20 27.64 +7.62 16.34 +4.05 24.48
LIF 66.13 42.21 31.69 62.90 55.28 59.16 52.90
LIF-noise 51.61 £ 6.31 35.80 £ 5.50 20.87 £ 4.58 50.81 £+ 2.80 49.50 + 3.78 16.79 £ 0.90 37.56
1zh-CH+FS 62.90 40.70 32.45 51.61 41.71 39.31 44.78
1zh-CH+LTS 62.90 42.71 33.59 45.16 39.20 37.40 43.49
1zh-IB+FS 66.13 40.20 31.69 51.61 40.20 32.44 43.71
1zh-IB+LTS 62.90 38.19 33.21 54.84 43.22 30.15 43.75
1zh-RS+FS 66.13 44.22 30.93 48.39 51.76 32.82 45.71
1zh-RS+LTS 62.90 41.71 30.55 48.39 44.72 38.93 44.53

different dimensions of each word, we get the spike times
according to its sub-models.

Experiment Validations
Validation Tasks and Datasets

We evaluate our binary embeddings on word similarity
and text classification tasks. The word similarity task
has been widely used to measure in which degree the
word embeddings can capture the similarity between two
words, while the text classification task is a traditional
NLP application. In our experiment, all the binary word
embedding models are based on two kinds of well-accepted
original word embeddings, namely, Word2Vec [1] and
GloVe [2].

For word similarity task, we find similar words via
Hamming distance, which will be faster than traditional
cosine distance for dense embeddings and we evaluate
embeddings on three public datasets: (1) WordSim-353,
it is the most widely used dataset for word similarity
test, consisting of 353 pairs of words [46]; (2) SimLex-
999, it consists of 999 pairs of words and provides a
way of measuring how well the word embeddings capture
similarity, rather than relatedness or association [47]; (3)
Rare Words, it consists of 2,034 word pairs proposed by
Luong et al. [48], focusing on rare words to complement
exiting ones. All these pairs of words are along with human-
assigned similarity scores and we check Spearman’s rank
correlation coefficient between word embeddings and the
human labeled ranks.

For the text classification task, we do OR operation on
binary embeddings to generate the representation for text
and use the k-nearest neighbors (kNN) classifier to measure
accuracy. We validate our algorithms on two public text
datasets: (1) Search Snippets, it is a short text dataset
collected by Phan et al. [50], which is selected from the
results of Web search transaction using predefined phrases
of 8 different domains; (2) Sentiment Analysis, it is
proposed by Socher et al. [49] and is a treebank of sentences
annotated with sentiment labels from movie reviews. The
sentences in the treebank were split into a train (8544), dev
(1101), and test splits (2210). We merge the train and dev
part for the kNN classifier and ignore neutral sentences,
analyzing performance on only positive and negative class.

Table 2 Summarized results of two tasks

Methods Word similarity ~ Text classification — Average
Overcomplete-B 41.99 57.19 49.59
Rude binarization  45.57 36.12 40.88
Poisson 24.48 46.72 35.60
LIF 52.90 46.79 49.84
LIF-noise 37.56 53.51 45.53
Izh-CH+FS 44.78 56.86 50.82
Izh-CH+LTS 43.49 57.87 50.68
Izh-IB+FS 4371 62.69 53.20
1zh-IB+LTS 43.75 63.83 53.79
Izh-RS+FS 4571 70.23 57.97
Izh-RS+LTS 44.53 69.68 57.11
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Fig.2 Results visualization for word similarity tasks. a spiking matrix of the word “people” in Poisson-based model with different random seeds;
b, ¢ spiking matrix and the 3rd neuron’s membrane potential of LIF model and Izh RS+FS model respectively
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Experiment Details and Results

In our experiment, we use the pre-trained GloVe' and
Word2Vec? embeddings, both of which are 300 dimen-
sions. We set three comparative experiments of original
embedings, binary embeddings, “Overcomplete-B” derives
from Faruqui’s work [8], and ‘“Rude Binarization” con-
vert original embeddings into binary ones via simple sign
function.

For all the biological neuron coding-inspired models, we
set the interval T = 10 ms and subinterval Ar = 0.1 ms.
We find the best hyper-parameter through grid-search on
word similarity tasks and apply these for both experiment
tasks. For Poisson, LIF, and LIF with noise-based model,
the tol is 5, while for other models, tol is 10. For LIF and
LIF with noise model, 7,, = 10 and v, = 15, while for
Izhikevich model, v;;, = 30, and other parameters follow
[44] for different sub-models. The Ij,,s; factors are 100 and
200 for GloVe and Word2Vec respectively. In Addition, for
Poisson coding and LIF with noise model, we do 10 times
for each, with different random seeds, and Table 1 shows
the average and their standard deviation results.

Result Analysis

Through analysis from the data shown in Tables 1 and 2
and Fig. 3, we can infer that: (1) We make an exploration
on how to generate binary embeddings via biological
neuron coding-inspired models (Figs. 2 and 3. The results
show that the SNN-based models show good performance
while the Poisson coding-based model reflected rate
coding’s weakness when transforming dense information
into binary bits. Which means, it cannot carry enough
information to represent stimuli or patterns. (2) For word
similarity task, binary word embeddings, especially rude

Thttps:/mlp.stanford.edu/projects/glove/
Zhttps://code.google.com/archive/p/word2vec/
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binarization, LIF-based, and Izhkevich-based models which
are transformed through dense word embeddings, can
get similar results to original ones. (3) The LIF-based
binary embeddings model performs well on word similarity
tasks while somehow bad on text classification task. This
may due to over simplified mechanism of LIF model,
making it robust to represent words while lost many
semantic information; LIF model with noise can improve
the performance of text classification task, while it is
unstable and can pull down the word similarity results. (4)
The Izhkevich neuron-based binary embedding model gets
excellent results on both tasks, especially the combination
of RS and FS neuron sub-models is the best one. The model
combines the excitatory and inhibitory neurons to mimic
the neurons in the biological brain, making a difference
when converting the original dense embeddings into binary
ones. (5) From the perspective of space occupation, for
database of 3 million words (such as the public pre-
training Word2Vec vectors) with 300 dimensions takes 3.6
GB in floating point while 1.125 GB as 3000-bit codes
(tol 10) for the Izh_RS+FS model, which reduced
approximately 68.75% space occupation. For neuron
coding-based binary embeddings models, the compression
ratio is mainly due to the run time and the tolerance
factor tol.

"B,

W &

M GloVe M word2vec

Conclusion

In this paper, we propose three kinds of biological neuron
coding-inspired models to generate binary word embed-
dings, which show better performance and interpretability
compared to existing works on word similarity evaluation
and text classification task. To the best of our knowledge,
this is the first attempt to convert the dense embeddings into
binary ones via spike timing, and we have proved its feasi-
bility on some natural language processing applications.
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Future Work

Due to the limitation on the performance of supervised
SNNs, in this paper, we do post-processing operations
on given word embeddings. However, we are looking
forward to build SNN-based language model to get brain-
inspired word embeddings from the raw corpus. We are
trying to adjust the cost function of supervised SNNs
and add several biological mechanisms such as STDP
to the model to get them. Furthermore, in contrast to
excitatory neocortical neurons, which have stereotypical
morphological and electrophysiological classes, inhibitory
neocortical interneurons have wildly diverse classes with
various firing patterns that cannot be classified as FS or
LTS [45]. In this paper, we focus on FS and LTS inhibitory
neurons for their parameters in Izhikevich’s neuron model
are easy to get. In the future, we will pay more attention to
more detailed types of inhibitory neuron models.
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