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In the skeleton-based action recognition, mining information from the joints and limbs of human skele- 

tons plays a key role. Previous studies treated the skeleton data as vectors and could not explicitly cap- 

ture the joint interactions (e.g., RNN-based methods), or modeled the joint interactions in a local manner 

and may lose important cues without global response mapping (e.g., CNN and GCN (Graph Convolution 

Network) based methods). In this work, we address these problems by considering the potential rela- 

tions of all the node pairs and edge pairs on the skeleton graphs. A dilation group-specific convolution 

module is proposed to aggregate relation messages of all the unit pairs on the skeleton graphs. By enu- 

merating all the pair relations, the joint interactions could be learned explicitly and globally. It is then 

enhanced by introducing the attention pooling including temporal attention, spatial attention and chan- 

nel attention. By stacking such several blocks, the relation messages of the node pairs are augmented 

by multi-layer propagation. Finally, the late fusion of four streams is used to combine the predictions 

of different inputs including node pairs, edge pairs and corresponding frame differences. The proposed 

method, termed conv-relation network, achieves competitive performance on two large scale datasets, 

NTU RGB + D and Kinetics. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Recent years have witnessed deep learning [1] being widely

opular in the vision community, e.g., image classification [1] , ob-

ect detection [2] , video classification [3] , pose recovery [4] , stereo

atching [5] , image ranking [6] and visual question answering [7] .

articularly, human action recognition has received increasing at-

ention due to potential applications in human–robot interaction,

ehavior analysis and surveillance. According to the types of in-

ut data, human action recognition can be categorized into RGB-

ased [3,8–12] and skeleton-based approaches [13–21] . Compared

ith RGB images, skeleton data has the merits of being lightweight

nd robust against background noise. 

In this paper, we focus on the problem of skeleton-based hu-

an action recognition. The interactions of skeleton joints play a

ey role in characterizing an action. Traditional methods [13–15]

esign hand-crafted features to extract co-occurrence patterns

rom skeleton sequences. With the resurgence of neural networks,

ecurrent Neural Networks (RNN) and Convolution Neural Net-
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orks (CNN) have been widely used in the skeleton-based action

ecognition [16–20] . The RNN based methods [16–18] transform

he skeleton data into a joint coordinates vector and then capture

he sequence information of skeleton. Compared with RNN, CNN

as good parallel ability and can benefit from pretraining on the

arge scale datasets. CNN-based methods [19,20] primarily repre-

ent a skeleton sequence as a pseudo-image and recognize the un-

erlying action in the same way as image classification. However,

ocal convolution cannot learn the global joint interactions effi-

iently and the underlying assumption of the joints being adjacent

patially in the input tensor may introduce unreliable prior. Re-

ently, graph convolution networks (GCN) based methods [21] have

een used to capture joint interactions on the skeleton graphs, ex-

licitly considering the adjacent relationship between joints in a

on-Euclidean space. Nevertheless, the skeleton graphs and their

anually designed convolution kernels also limit joint interaction

o being learned in a local manner. This motivates us to design a

odel which can break the limit of local convolution and learn the

oint interactions explicitly and globally. 

In this paper, this problem is solved by considering the poten-

ial relations of all the node pairs and edge pairs on the skele-

on graphs. Firstly, a dilation group-specific convolution module

s proposed to compute the interactions of all the node pairs on

he skeleton graphs. By using this module, convolutions can be
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Fig. 1. Convolutional relation network for skeleton-based action recognition. The relations of node pairs, edge pairs and corresponding frame differences on the skeleton 

graphs are explicitly modeled respectively. Due to the space limit, we only show one building block of our model in the top, middle figure. The details of this block are given 

in Fig. 2 . The late fusion of four streams is used to get the final prediction. 
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explicitly performed on all the node pairs. In this way, joint in-

teractions are completely captured by pair interactions in a dense

convolutional manner. Secondly, the attention pooling operations,

including temporal attention, spatial attention and channel atten-

tion, are used to enhance the module. Finally, the late fusion of

four streams is used to combine the predictions of different in-

puts including node pairs, edge pairs and corresponding frame dif-

ferences. The proposed method, termed conv-relation network, is

shown in Fig. 1 . 

The main contributions of this work can be summarized as fol-

lows: 

• A dilation group-specific convolution module is proposed for

aggregating dense relations of all the node pairs of the skeleton

graphs. Besides, three attention models (i.e., temporal, spatial

and channel attention) are proposed to enhance this convolu-

tion module. 

• Different inputs on the skeleton graphs, including node pairs,

edge pairs and their corresponding frame differences, are com-

bined by the late fusion to improve the effectiveness. 

• On two large scale datasets for skeleton-based action recogni-

tion, the proposed conv-relation network achieves competitive

performance. 

2. Related work 

2.1. Skeleton-based action recognition 

Hand-crafted features. Traditional methods designed handcrafted

features to capture the dynamics of joint motion. These could be

actionlet ensemble [13] , covariance matrices of joint trajectories

[14] , rotations and translations between body parts [15] , or tem-

poral order information [22] . 

Deep learning methods. With the resurgence of neural networks,

the long short term memory networks (LSTM) have been adopted

for feature learning from skeleton sequences due to its ability

of modeling long-term temporal dependency. In [17] , a spatial–

temporal LSTM model based on gating mechanism is proposed to

filter out unreliable input due to the occlusion and sensor noise.

[18] proposed an end-to-end fully connected deep LSTM network

to learn co-occurrence features from skeleton data. In [23] , a view-

adaptive LSTM was introduced to transform the skeleton data to

a suitable view adaptively for better action recognition. In recent

years, more and more literatures adopted CNN for skeleton fea-

ture learning, due to the benefits of transferring knowledge from

large scale image dataset. For example, [19] quantified the skele-

ton sequences into images and then fed them into CNN. In [24] ,

a view-adaptive CNN was introduced to deal with the view varia-
ion challenge. Because of the operation of local convolution, CNN-

ased methods cannot capture the global relationship of all joints

fficiently. Moreover, assuming the joints being adjacent in the Eu-

lidean space may introduce unreliable prior. Human skeletons in

ideos can be treated as a spatial-temporal graph. Recently, graph

onvolution neural networks have been used to learn the spatial

arts of human skeletons [21] , which explicitly considers the adja-

ent relationship between joints in a non-Euclidean space. Never-

heless, the skeleton graphs and their manually designed convolu-

ion kernels also limit joint interaction to being learned in a local

anner. 

.2. Video-based action recognition 

One important stream of action recognition is video-based ac-

ion recognition, where methods based on Deep CNN have dom-

nated. Two-stream ConvNet [3] employs RGB images and optical

ow stacks as the inputs of two networks and fuses their predic-

ions by late fusion. Temporal Segment Network (TSN) [8] improves

he performance of two-stream ConvNet by sparsely sampling

ideo frames and learning video-level predictions. In 2017, Deep-

ind released a large-scale video action datasets Kinetics [25] and

roposed Inflated 3D ConvNet (I3D). 

Few-shot learning based methods [26] for action recognition,

hich aim to relieve the need for large amount of annotated data

n the existing deep learning methods, have also developed rapidly.

n traditional methods, the training and testing sets involve the

ame classes of samples. In a few-shot recognition setting, the net-

ork needs to effectively learn classifiers for novel concepts from

nly a few examples. Unlike traditional models trained on many

ata samples, the model in a few-shot setting is trained to gener-

lize across different episodes. 

Numerous methods for temporal context modeling in videos are

lso proposed, such as [27,28] . In this paper, the context informa-

ion is obtained by the temporal convolution on the short clips,

ypically, less than 5 s. Note that this paper aims at exploring the

nformation among skeleton joints and limbs (spatial) and the tem-

oral context modeling is not the focus. 

.3. Relation reasoning 

A simple plug-and-play module, Relation Network (RN)

29] was proposed to equip CNN with relation reasoning ability in

everal tasks. Recurrent relational networks [30] increased its abil-

ty of solving the tasks that require an order of magnitude more

teps of relational reasoning. Non-local neural network [31] was

esigned to equip CNN with the ability of long range relation

easoning, including spatially in images and spatial–temporally in
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Fig. 2. The basic building block of convolutional relation module for feature extrac- 

tion. It mainly consists of dilation group-specific 1 × 2 conv, Temporal Convolution 

(TCN), attention models. 
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Table 1 

The structure of the conv-relation network. The number of 

input channels, output channels and the stride of each block 

are shown in the table. Data BN represents the data batch 

normalization layer. GAP represents the global average pool- 

ing layer. 

Input channels Output channels stride 

Data BN 3 3 –

L1 3 72 1 

L2 72 72 1 

L3 72 72 1 

L4 72 144 2 

L5 144 144 1 

L6 144 144 1 

L7 144 288 2 

L8 288 288 1 

L9 288 288 1 

GAP – – –

softmax – – –
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ideos. Temporal relation reasoning neural network (TRN) [32] was

esigned to learn and reason about the temporal dependencies of

ideo frames at multiple time scales. The relations in these works

ere used to represent the underlying object interactions in spatial

omain [29,30] , temporal domain [32] , or spatial–temporal domain

31] . In this paper, the relations of the skeletons joints are realized

y 1 × 2 convolution in the spatial domain and the interactions in

emporal domain are realized by the temporal convolutions. 

. Convolutional relation network 

Fig. 2 shows the basic module of our conv-relation network. The

odule consists of 3 layers including dilation group-specific con-

olution with 1 × 2 kernel, temporal convolution with 9 × 1 ker-

el and attention pooling. A residual connection is added for each

lock. The dilation group-specific convolution module is designed

or unit pairs (i.e., nodes, edges on graphs) relation extraction. By

his module, the local feature aggregation of convolution is re-

laced by the global feature aggregation. The coordinates of dif-

erent skeleton joints are allowed to explicitly interact with each

ther from the low layers of network. The number of joints cap-

ured by sensors or estimated by algorithms for skeleton-based ac-

ion recognition is less than 30, e.g., 25 for NTU RGB + D, 18 for

inetics, thus enumerating all the pair relations is affordable. 

The conv-relation network is stacked with the blocks shown in

ig. 2 . As shown in Table 1 , there are 1 data batch normalization

ayer and 9 convolution relation modules. After that, global aver-

ge pooling is performed and the final output is sent to a SoftMax

lassifier. 

.1. Dilation group-specific 1 × 2 convolution 

As shown in Fig. 3 , several groups of convolutions are used to

numerate all the unit pairs and get their relations. Different di-

ations are set in the different groups of convolutions, from 1 to

 respectively. For the i th group of convolutions, its dilation is set

s i , where i = 1 , 2 , . . . , R . That is, each group of convolutions has

he same dilation as its group order. R denotes the number of

roups of convolutions. When the inputs are nodes and edges on

he skeleton graphs, the total number of groups of convolution R
quals to (V − 1) and (V − 2) respectively, where V is the num-

er of skeleton joints. 

Given an input tensor with the shape of N × C × T × V , it will

e convolved by (V − 1) groups of 1 × 2 convolution for (V − 1)

imes. Normally, the convolution output corresponding to the j th 
oint and the i th group can be represented as 

ut put i j = con v i ( j, ( j + i )% N) (1)

here conv i ( x, y ) denotes performing 1 × 2 convolution on the x th ,

 th spatial dimension of the input tensor with i th group convolu-

ion, and then the result is assigned to output ix . The modular op-

ration in Eq. (1) is implemented as padding the i th spatial dimen-

ion of the input tensor to the end of original input tensor incre-

entally before preforming the i th group convolution. When the i th 
roup convolution is finished, its final result is 

ut put i = concat(con v i ( j, ( j + i )% N)) , j = 1 , 2 , . . . , V (2)

hich is the convolution operation sliding on the spatial dimen-

ion of the input tensor. After finishing each group of 1 × 2 convo-

ution, all outputs are concatenated or summed along the channel

imension. 

ut put = f (out put i ) , i = 1 , 2 , . . . , V (3)

here f denotes concatenating or summing the list of input ten-

ors along the channel dimension. These two fusion methods have

he same output dimension in our implementation. In the case of

oncatenation fusion, each group of dilation group-specific convo-

utions has output channel M / D , where M is the predefined num-

er of output channel and D is the number of groups. So the to-

al number of output channel after concatenation is M/D ×D = M.

n the case of the summation fusion, each group of convolutions

as output channel M , so the total number of output channel after

ummation is M . Typical values of M and D are 72 and 24 respec-

ively, as shown in Table 1 , layer L1, L2 and L3 . 

Note that the above operations are performed on the V (spa-

ial) dimension of the input tensor and shared on its T (temporal)

imension. Meanwhile, the temporal convolution network (TCN)

ith 9 × 1 kernel is applied to the T dimension of the input tensor

nd shared on its V dimension. 

.2. Attention pooling 

Enumerating all the pair relations is likely to cause over-fitting

ue to the sensor noise of skeleton extraction. Furthermore, not all

odes and frames are needed to discriminate an action. Thus, three

ttention models are used to deal with such issues. A SE-block
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Fig. 3. An illustration of Dilation group-specific 1 × 2 convolution. In this example, there are 25 joints. Hence there are 24 groups of 1 × 2 convolution and each of them has 

dilation the same as its group order. The convolution outputs of all groups are concatenated or summed along the channel dimension to get the final output. 
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[33] is used to realize the attention module. SE-block is a bottle-

neck with 2 small fully connected layers whose final activation is

sigmoid. It is originally used to adaptively recalibrate channel-wise

feature responses. Here, it is employed to gate the channel, spa-

tial and temporal dimension of an input tensor with the shape of

C × T × V . Three attention models are shown in Fig. 4 , where C de-

notes the channel dimension, T denotes the temporal dimension

and V denotes the spatial dimension. 

The operations of attention models consist of four steps, re-

shaping the input tensor, global average pooling, forward passing

through two fully connected layers and channel-wise scaling. 

Basic parameters of these operations are listed in Table 2 . Take

the temporal attention for example, the input tensor is firstly re-

shaped to N × T × ( V × C ). Then the global average pooling is per-
 o  
ormed on the dimension of ( V × C ). The obtained tensor is with

he shape of N × T . The final gating output is with the shape of

 × T . It denotes that the temporal attention is sample (video) spe-

ific. The similar analysis can also be applied to the spatial atten-

ion and channel attention. 

Finally, the parallel multiplication is used to fuse these three at-

ention models. As shown in Fig. 5 , all attention weights are mul-

iplied with the input tensor in a parallel fashion. 

.3. Input modalities 

The main purpose of dilation group-specific convolution is to

btain all the joint interactions. However, the input information

nly relies on the single joint of skeletons. The natural connections
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Table 2 

Basic parameters of three attention models. 

Attention Reshape Global average pooling 

dimension 

Output shape Characteristics 

Temporal N × T × (V × C) (V × C) N × T sample specific 

Spatial (N × T) × V × C C (N × T) × V sample and temporal specific 

Channel (N × T × V) × C Without pooling (N × T × V) × C sample, temporal and spatial specific 

Conv Rela�on 
module

Temporal
a�en�on

Scale

X

X

Spa�al
a�en�on

Channel
a�en�on

Fig. 5. Parallel attention fusion. All the attention weights are multiplied with the 

input tensor channel-wisely. 
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n the skeleton graphs are neglected, which may be important for

apturing bone interactions. We also use the graph edges as the

nput of conv-relation network. Formally, each edge of the graph is

he concatenation of its two nodes along the channel dimension.

hen each edge is taken as the new spatial dimension of the input

ensor with the shape of N × 2 C × T × (V − 1) . Inspired from the

ptical flow stream in the two-stream networks [3] , the frame dif-

erences are also considered as the input of conv-relation network

o encode the explicit dynamics of skeletons. The frame differences

re applied both on the nodes and edges respectively. That is, four

inds of inputs of the skeleton graphs, nodes, edges, node differ-

nces and edge differences, are taken as the inputs of conv-relation

etwork. The final scores of four streams before softmax are aver-

ged to get the final prediction. 

. Experiments 

.1. Datasets 

NTU RGB + D [16] . This Kinect captured dataset is currently the

argest dataset with RGB + D videos and skeleton data for human

ction recognition, with 56,880 video samples. It contains 60 dif-

erent action classes including daily, mutual, and health-related

ctions. Each subject has 25 joints. The various setups of cam-

ras, capturing views, and different facing orientations of the sub-

ects, result in a great diversity of sample viewpoints. NTU con-

ains two standard evaluations: Cross-Subject (CS) and Cross-View

CV). Specifically, Cross-Subject (CS) consists of 40 subjects that are

andomly split into the training and the testing groups, while the

raining and the testing group of Cross-View (CV) come from the

amples of cameras 2, 3 and camera 1 respectively. It is a challeng-

ng dataset for action recognition because of the large amount of

ideos, various subjects, and the difference of camera views. The

op-1 recognition accuracy on both benchmarks is reported. 

Kinetics [25] . Kinetics is a large-scale human action dataset

hich contains 30 0,0 0 0 videos clips in 400 classes. The video clips

re sourced from YouTube videos. It only provides raw video clips

ithout skeleton data. [21] estimate the location of 18 joints on

very frame of the clips with the publicly available OpenPose tool-

ox [34] . Two persons are selected for multi-person clips based on
he average joint confidence. Our model is evaluated on their re-

eased data. The dataset is divided into training set (240,0 0 0 clips)

nd validation set (20,0 0 0 clips). The top-1 and top-5 accuracies

n the validation set are reported. 

.2. Experimental details 

In order to make the model being insensitive to the initial

osition of an action, for each sequence, skeletons are normalized

y subtracting the central joint of the first frame. The central joint

s the average of 3D coordinates of the hip center, hip left and

ip right. For the NTU RGB + D, average sequence length is about

0 and each sequence is divided into 32 segments. The number

f segments is obtained by evaluating the model performance on

 small validation set divided from training set. During training

hase, we randomly sample a number from the range index of

ach segments and do bilinear interpolation. During testing phase,

he center frame of each segment is sampled. For the Kinetics,

ts average sequence length is about 250. During training phase,

 subsequence with the length of 150 is randomly cropped from

he sequence. During testing phase, at most 2 subsequences are

ropped from a sequence, since a sequence has a length of less

han 300. The same bilinear interpolation is applied for Kinetics.

he batch size is set to 64 and 4 GPUs are used for data parallel.

he models are learned using stochastic gradient descent with an

nitial learning rate of 0.1. For the NTU RGB + D, the learning rate

s decayed by 0.1 according to a schedule of [15, 60] and the total

umber of epochs is 90. For the Kinetics, the base learning rate is

et to 0.2 and is decayed by 0.1 according to a schedule of [20, 50],

he total number of epochs is 60. All experiments are conducted

n PyTorch with 4 TITAN X GPUs. Code will be released. 

The random view data augmentation is employed at the se-

uence level. Specifically, the skeleton is rotated around the X, Y

nd Z axis by some degrees which are generated randomly from

10 to 10. The probability of doing random view augmentation

s 50%. 

.3. Ablation study 

In this section, we verify the effectiveness of the proposed com-

onents in convolution relation network by three experiments on

he cross view of NTU RGB + D dataset. 

.3.1. Convolutional relation module and Attention pooling 

Firstly, the necessity of convolution relation module on the

keleton graphs is evaluated, as shown in Table 3 . A baseline net-

ork is designed for comparison where all node interactions are

eplaced by 1 × 1 convolution, i.e. without joint interactions. For

he conv-relation network, concatenation is adopted for relation

hannel fusion, shown as Concat relation. Concat relation outper-

orms the Conv1 × 1 by more than 3% in accuracy. It demonstrates

hat modeling joint interactions is important for skeleton-based

ction recognition. In addition, attention pooling constantly im-

roves the performance of Concat relation and further parallel fu-

ion leads to better performance. The relation channel fusion using

ummation achieves comparable performance as Concat relation.
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Table 3 

Recognition accuracy of different configurations of conv- 

relation module on the NTU RGB + D (cross view) dataset. 

Top1 

Conv1 × 1 87.3% 

Concat relation 91.1% 

Concat relation, only with temporal attention 91.4% 

Concat relation, only with channel attention 91.3% 

Concat relation, only with spatial attention 91.5% 

Concat relation, with all attention 91.8% 

Sum relation, with attention 91.9% 

Table 4 

Recognition accuracy of conv-relation network 

with different inputs on the NTU RGB + D (cross 

view) dataset. 

Input Top1 

Node 91.9% 

Edge 91.9% 

Node diff 92.1% 

Edge diff 92.2% 

Four Streams 94.5% 

Table 5 

Performance on the NTU RGB + D dataset. X-Sub and X-View 

are the cross subject split, cross view split of NTU RGB + D 

respectively. 

X-Sub X-View 

Lie Group [15] 50.1% 52.8% 

H-RNN [35] 59.1% 64.0% 

Deep LSTM [16] 60.7% 67.3% 

PA-LSTM [16] 62.9% 70.3% 

ST-LSTM + TS [17] 69.2% 77.7% 

Temporal Conv [36] 74.3% 83.1% 

C-CNN + MTLN [20] 79.6% 84.8% 

ST-GCN [21] 81.5% 88.3% 

Conv-Relation, node (ours) 82.5% 91.9% 

Conv-Relation, edge (ours) 83.5% 91.9% 

Conv-Relation, node, diff (ours) 82.3% 92.1% 

Conv-Relation, edge, diff (ours) 84.0% 92.2% 

Conv-Relation, Four Streams (ours) 86.2% 94.5% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Performance on the Kinetics dataset. 

Top1 Top5 

Feature Encoding [22] 14.9% 25.8% 

Deep LSTM [16] 16.4% 35.3% 

Temporal Conv [36] 20.3% 40.0% 

ST-GCN [21] 30.7% 52.8% 

Conv-Relation, node (ours) 30.7% 52.99% 

Conv-Relation, edge (ours) 31.5% 54.05% 

Conv-Relation, node, diff (ours) 27.1% 49.44% 

Conv-Relation, edge, diff (ours) 27.8% 50.1% 

Conv-Relation, Four Streams (ours) 33.1% 55.8% 

Fig. 6. Confusion matrix on Kinetics. 
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By default, Sum relation with three attentions is used in the fol-

lowing experiments, unless otherwise specified. 

4.3.2. Fusion of four streams 

Another important improvement is the utility of different in-

puts, as shown in Table 4 . The performances of using each kind of

input data alone are compared, shown as Node and Edge, and its

corresponding frame differences, shown as Node diff and Edge diff

respectively. The performance of combining four streams is shown

as Four streams. It demonstrates that combining the four kinds of

data as input outperforms one stream based methods, which ver-

ifies the importance of natural edge connection and frame differ-

ence information for skeleton based action recognition. 

4.4. Comparison with state-of-the-arts 

As shown in Table 5 , on NTU RGB + D dataset, our model is

compared with Lie Group [15] , Hierarchical RNN [35] , Deep LSTM

[16] , Part-Aware LSTM (PA-LSTM) [16] , Spatial Temporal LSTM with

Trust Gates (STLSTM + TS) [17] , Temporal Convolutional Neural Net-

works (Temporal Conv.) [36] , Clips CNN + Multi-task learning (C-

CNN + MTLN) [20] and ST-GCN [21] . Our conv-relation network with

single modality and four kinds of inputs as input outperforms pre-

vious state-of-the-art approaches on this dataset. Specifically, conv-

relation network with four streams late fusion outperforms ST-GCN
y more than 4% and 6% in top1 accuracy on cross subject and

ross view respectively. 

On Kinetics, we compare with four characteristic approaches for

keleton based action recognition. The first is the feature encoding

pproach on hand-crafted features [22] , referred to as Feature En-

oding in Table 6 . The second is based on LSTM, i.e. Deep LSTM

16] . The third one is based on CNN, i.e. Temporal ConvNet [36] .

he last one is based on GCN, i.e. ST-GCN [21] . In Table 6 , the conv-

elation network with single modality and four kinds of inputs as

nput outperforms previous representative approaches. Specifically,

onv-relation network with the late fusion of four streams outper-

orms ST-GCN by more than 2% on the metrics of top1 and top5

ccuracy. 

.5. Confusion analysis on Kinetics 

Due to the low performance of our model on Kinetics, we

how the confusion matrix of our model (four stream) in Fig. 6 .

or better illustration, we show the top-10 error most classes

nd top-10 right classified classes in Table 7 and Table 8 respec-

ively. It can be observed from Tables 7 and 8 that our model be-

aves bad in classes which are full of scenes (e.g., sled_dog_racing,

leaning_pool), objects (e.g., counting_money, juggling_balls, play-

ng_monopoly), and much better in classes only involving
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Table 7 

Top-10 error most classes on the Kinetics dataset. Error rate, %. The numbers 

inside the brackets of the third column are the error rates of gt classes being 

mis-classified. 

GT classes Error rate Mis-classified most 

sled_dog_racing 100.0 washing_hair(8.0) 

cleaning_pool 100.0 flipping_pancake(10.0) 

counting_money 100.0 Squat(10.0) 

juggling_balls 100.0 baking_cookies(8.3) 

headbutting 100.0 catching_or_throwing_baseball(6.0) 

snatch_weight_lifting 100.0 long_jump(6.0) 

bobsledding 100.0 Squat(8.0) 

playing_monopoly 100.0 front_raises(12.5) 

tying_bow_tie 100.0 making_snowman(26.0) 

throwing_ball 100.0 catching_or_throwing_baseball(10.0) 

Table 8 

Top-10 right classified classes on the Kinetics 

dataset. Top1 accuracy, %. 

GT classes Top1 

somersaulting 94.0 

playing_cymbals 92.0 

jumping_into_pool 86.0 

eating_carrots 83.6 

knitting 83.6 

playing_poker 83.3 

drop_kicking 83.3 

jogging 82.0 

busking 80.0 

pushing_car 79.5 
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Fig. 7. Per-category change in accuracy of conv-relation over conv1x1 baseline on the NT

greater than 1% are shown. 
uman-centric action (e.g., somersaulting, drop_kicking, jogging). 

ecause the skeleton-based methods only use person-centric pose

or action recognition. In these cases, they are complementary to

hose video-based methods. 

.6. Timing 

Conv-relation network runs at ∼ 12 ms ( ∼ 80 fps) per clip (32

rames) on an Nvidia TitanX GPU. It is also fast to train. Training

n the cross-view of NTU RGB + D takes 15 h in our 4-GPU imple-

entation. Training on the Kinetics takes about 30 h. 

.7. Visualization 

For a detailed comparison, we further investigate the per cate-

ory change in accuracy. Fig. 7 shows the results, where the cat-

gories are sorted by accuracy gain. It is worth noting that the

erformance of most actions have been improved, especially for

hose involving joint interactions. For example, over 10% absolute

mprovement is observed for touch head, pointing to something

ith finger, making a phone call. Fig. 8 shows some example clips,

or which our model predictions are true, while the baseline model

conv1x1) fails. For the actions without obvious joint interaction

uch as shake head, pat on back of other person, the relation mes-

ages of joints are not critical. 
U RGB + D dataset in the cross-view setting. For clarity only categories with change 
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Fig. 8. Visualizing some example clips on NTU RGB + D cross-view, for which our model predictions are true, while the baseline model (conv1x1) fails. The clips of three 

action classes, i.e., touch head (headache), pointing to something with finger, making a phone call are shown from top to the bottom. The wrong predictions of the baseline 

model are touch neck (neckache), check time, drop , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

In this paper, a convolutional relation neural network is pro-

posed for skeleton-based action recognition. A convolutional-like

relation module called dilation group-specific convolution is de-

signed for modeling the potential relations of all the pairs of nodes

and edges of the skeleton graphs. Attention pooling is used to en-

hance the relation module. The final prediction is obtained by the

late fusion of four streams. Extensive experiments are conducted

to show the effectiveness of our model. On two large datasets,

Kinetics and NTU RGB + D, our method achieves competitive per-

formance. Future work would include extending deformable con-

volution kernel [37] into skeleton-based action, which is perhaps

a more efficient way of joints interaction modeling than conv-

relation network. Another direction is combining skeleton data

with RGB images in a multi-task manner, where the fine-grained

feature of skeleton data and appearance feature of RGB images

can complement each other. Moreover, combining the proposed

method with data selection methods such as active learning [38] ,

focal loss [39] , online hard negative mining [40] is also a direction.
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