
ORIGINAL RESEARCH

Multiparametric MRI-Based Radiomics
for Prostate Cancer Screening With PSA
in 4–10 ng/mL to Reduce Unnecessary

Biopsies
Yafei Qi, MM,1 Shuaitong Zhang, PhD,2,3 Jingwei Wei, PhD,2,3 Gumuyang Zhang, MD,1

Jing Lei, MD,1 Weigang Yan, MD,4 Yu Xiao, MD,5 Shuang Yan, MD,1 Huadan Xue, MD,1

Feng Feng, MD,1 Hao Sun, MD,1* Jie Tian, PhD,2,6,7* and Zhengyu Jin, MD1*

Background: Whether men with a prostate-specific antigen (PSA) level of 4–10 ng/mL should be recommended for a
biopsy is clinically challenging.
Purpose: To develop and validate a radiomics model based on multiparametric MRI (mp-MRI) in patients with PSA levels
of 4–10 ng/mL to predict prostate cancer (PCa) preoperatively and reduce unnecessary biopsies.
Study Type: Retrospective.
Subjects: In all, 199 patients with PSA levels of 4–10 ng/mL.
Field Strength/Sequence: 3T, T2-weighted, diffusion-weighted, and dynamic contrast-enhanced MRI.
Assessment: Lesion regions of interest (ROIs) from T2-weighted, diffusion-weighted, and dynamic contrast-enhanced
MRI were annotated by two radiologists. A total of 2104 radiomic features were extracted from the ROI of each patient.
A random forest classifier was used to build the radiomics model for PCa in the primary cohort. A combined model was
constructed using multivariate logistic regression by incorporating the radiomics signature and clinical-radiological risk
factors.
Statistical Tests: For continuous variables, variance equality was assessed by Levene’s test and Student’s t-test, and
Welch’s t-test was used to assess between-group differences. For categorical variables, Pearson’s chi-square test, Fisher’s
exact test, or the approximate chi-square test was used to assess between-group differences. P < 0.05 was considered sta-
tistically significant.
Results: The combined model incorporating the multi-imaging fusion model, age, PSA density (PSAD), and the PI-RADS
v2 score yielded area under the curve (AUC) values of 0.956 and 0.933 on the primary (n = 133) and validation (n = 66)
cohorts, respectively. Compared with the clinical-radiological model, the combined model performed better on both the
primary and validation cohorts (P < 0.05). Furthermore, the use of the combined model to predict PCa could identify more
negative PCa patients than the use of the clinical-radiological model by 18.4%.
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Data Conclusion: The combined model was developed and validated to provide potential preoperative prediction of PCa
in men with PSA levels of 4–10 ng/mL and might aid in treatment decision-making and reduce unnecessary biopsies.
Level of Evidence: 3
Technical Efficacy Stage: 3

J. MAGN. RESON. IMAGING 2020;51:1890–1899.

PROSTATE CANCER (PCa) is the most common cancer
and the second most common cause of cancer-related death

in American men.1 Its increasing incidence and decreasing mor-
tality are attributed to early screening via prostate-specific antigen
(PSA) testing.2 Generally, patients with PSA levels greater than
the traditional cutoff of 4 ng/mL (not including 4 ng/mL) are
considered for a prostate biopsy. However, the clinical and finan-
cial costs of overdiagnosis and unnecessary biopsy procedures
resulting from false positives are high, especially in men with a
PSA level of 4–10 ng/mL.3 According to the National Compre-
hensive Cancer Network (NCCN), only ~18% of men with a
PSA level in the 4–10 ng/mL range will be diagnosed with can-
cer in the subsequent biopsy, which indicates that 82% of men
with a PSA level in this range have undergone an unnecessary
biopsy and therefore have suffered from postbiopsy complica-
tions, such as bleeding, infection, and urinary retention.4,5 Thus,
the prebiopsy prediction of PCa for individuals with PSA levels
of 4–10 ng/mL is clinically challenging.

Concerning this issue, researchers have found that the PSA
density (PSAD), pro-PSA isoforms,6 PCa antigen 3,7 DNA in the
serum,8 and microRNAs in the urine9 are useful for PCa screen-
ing. Multiparametric magnetic resonance imaging (mpMRI) com-
bined with Prostate Imaging Reporting and Data System Version
2 (PI-RADS v2) is considered the most promising approach for
PCa screening because of its noninvasiveness and direct assess-
ment.10,11 Xu et al demonstrated that the optimal cutoff point for
the diagnosis of PCa in individuals with PSA levels of 4–10
ng/mL was a PI-RADS v2 score of 3, which yielded a negative
predictive value (NPV) of 85.1% but a low specificity of 62.1%,
resulting in a high percentage of false positives.12

Radiomic analysis extracts high-throughput and quantita-
tive image features from medical images and mines information
related to tumor pathophysiology using machine-learning algo-
rithms, which might contribute to medical decision-making and
improve diagnostic and predictive performance.13,14 One study
demonstrated good performance of lung cancer screening with
radiomic analysis based on low-dose chest computed tomogra-
phy.15 Therefore, we hypothesized that an mpMRI-based radio-
mics approach might improve the diagnostic performance of PCa
screening, which could reduce unnecessary biopsies.

Materials and Methods
Study Design
This retrospective study was approved by the Ethics Committee of our
institution, and the informed consent requirement was waived. The
study design is illustrated in Fig. 1. In all, 440 patients with elevated

PSA levels who were diagnosed between December 2015 and March
2018 were consecutively included in this study. The inclusion criteria
were as follows: 1) PSA level within 4–10 ng/mL; 2) mpMRI data
acquired according to the PI-RADS v2 criteria, including T2-weighted
imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic
contrast-enhanced (DCE) imaging, with an interval between PSA testing
and mpMRI of no more than 1 month; and 3) initial mpMRI per-
formed before the naïve prostate biopsy with an interval of less than
2 months. The exclusion criteria were as follows: i) lack of clinical data;
ii) lack of any T2W, DW, or DCE images; and iii) insufficient MRI
quality to diagnose or segment the disease (eg, due to motion artifacts
or catheter implantation). Finally, 199 patients were randomly assigned
to the primary or validation cohort at a 2:1 ratio. The primary cohort
was used to build the predictive model for PCa screening, and the vali-
dation cohort was completely held out; the validation cohort was not
used to optimize the prognostic model and was used only to test the
performance of the model built on the primary cohort.

MR Image Acquisition and Image Interpretation
MRI was performed with a 3.0T MR scanner (Discovery MR
750, GE Medical Systems, Milwaukee, WI). The mpMRI protocol

FIGURE 1: The flow diagram of this study.
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consisted of T2W, DW, or DCE images. The details of MR image
acquisition are provided in Supplement S1.

Two radiologists (Y.Q. with 1 year of experience in prostate
MRI, and G.Z. with 5 years of experience in prostate MRI) assessed
the images according to the PI-RADS v2 criteria but were blinded
to the histopathologic interpretation. In the case of disagreement
between the two radiologists, the final PI-PADS v2 score was dis-
cussed with a third radiologist (H.S. with 10 years of experience in
prostate MRI) to reach a consensus (Fig. 2a). The PI-RADS v2
scores were assessed on each of the T2WI, DWI, and DCE-MRI
sequences. If there were multiple lesions, the PI-RADS v2 score of
the index lesion demonstrating the largest size or the most aggressive
feature was assigned to the patient.

Prostate Biopsy
Patients underwent a 12-core systematic transperineal ultrasound-
guided prostate biopsy by a group of urinary specialists (one urinary
specialist with 13 years of experience in prostate biopsy, another uri-
nary specialist with 14 years of experience in prostate biopsy, and
W.Y. with 20 years of experience in prostate biopsy) (Fig. 2b). The
prostate gland was divided into 11 regions on ultrasound scans. At
least one additional targeted biopsy was performed; the cognitive
targeted biopsy using cognitive registration was based on zonal anat-
omy or imaging landmarks, such as remarkable nodules. The details
of the cognitive targeted biopsy are as follows: first, the urologist
reviewed the MRI results; and second, the urologist used the MRI
information to perform the targeted biopsy for the most remarkable
nodules guided by ultrasound images.

Lesion Annotation on MRI and Segmentation
To accurately annotate the prostate lesion extent on MRI, the cor-
egistration of histopathologic specimens of the 12-core prostate
biopsy and MRI was performed through a systematic review by a

urinary pathologist (Y.X. with 5 years of experience in genitourinary
pathology) and two radiologists (Y.Q. and G.Z.) (Fig. 2c). All of the
histopathologic specimens were labeled as cancer or benign prostate
lesions using a combination of primary and secondary Gleason
grades by a pathologist (Y.X.) (Fig. 2d). Two radiologists (Y.Q. and
G.Z.) manually delineated the maximum extent of the visible lesion
using ITK-SNAP software with no prior knowledge of the histopath-
ological results (Fig. 2e). As shown in the flowchart illustrated in
Fig. 2, the PI-RADS reports, biopsy results, and radiologist’s seg-
mentations were matched for each patient.

Feature Extraction and Selection
Feature extraction was performed based on an open-source Python
package (Pyradiomics 2.0.1).16 Radiomic features indicating
suspected PCa phenotypes were extracted from regions of interest
(ROIs) on T2W, apparent diffusion coefficient (ADC), and DCE
map images according to 1) first-order statistics; 2) shape and size;
3) texture; 4) wavelet filter; and 5) Laplacian of Gaussian (LoG) fil-
ter features. Details of these features are shown in Supplement S2.

To select stable and reproducible features, both intra- and
interobserver stability analyses were performed, and intra- and inter-
observer correlation coefficients greater than 0.85 were included in
the subsequent analyses.17 To select features with the greatest diag-
nostic value for PCa, variance filter assessment, two-sample Student’s
t-tests and Pearson’s correlation coefficient analyses were performed
sequentially on T2W, ADC, and DCE MR images of the primary
cohort. Details of feature selection are shown in Supplement S3.

Development of the Clinical-Radiological Model
The clinical-radiological risk factors for PCa included age, the PSA
level, prostate volume, PSAD, location (transition zone [TZ] vs.
peripheral zone [PZ]), early enhancement (yes vs. no), and the PI-
RADS v2 score (1-2/3/4-5). A univariate analysis was conducted to

FIGURE 2: The flowchart for lesion coregistration of the histopathologic specimens and MRI. (a) Two radiologists (R1 and R2)
assessed the MR images according to the PI-RADS v2 criteria. In the case of disagreement between the two radiologists, the final PI-
PADS v2 score was discussed with a third radiologist (R3) to reach a consensus. (b) A group of urinary specialists (U1, U2, and U3)
performed a 12-core systematic transperineal ultrasound-guided prostate biopsy for patients. (c) The coregistration of the positions
of the 12-core prostate biopsy and MRI was performed through a histological-radiological correlative review by a urinary pathologist
(P1) and two radiologists (R1 and R2). (d) All of the histopathologic specimens were assigned by a pathologist (P1) as a combination
of the primary and secondary Gleason grades. (e) Two radiologists (R1 and R2) manually delineated the maximum extent of the
visible lesion using ITK-SNAP software for further analysis.
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analyze differences between patients with and without PCa for each
clinical-radiological factor. In the primary cohort, factors with P-
values less than 0.05 were used to build the clinical-radiological
model by multivariate logistic regression, in which backward step-
wise selection was conducted with the Akaike information criterion
as the stopping rule. Because volume and PSAD are highly corre-
lated, we could not include both in the predictive model. In this
study, we included PSAD in the multivariate logistic regression
analysis.

Development of the Radiomics and Combined
Models
Based on the selected radiomic features, a random forest classifier
was used to build the predictive models for PCa in the primary
cohort using T2W, ADC, and DCE MR images. The details of the
model are shown in Supplement S4.

To explore the advantage of combining T2W, ADC, and
DCE MR images, a multi-imaging fusion model was built based on
the mean of the predictive probability of the T2W, ADC, and DCE
imaging models in the primary cohort, which could reduce
overfitting.

To explore the advantage of combining the radiomics and
clinical-radiological models, a combined model incorporating the
multi-imaging fusion model, age, PSAD, and the PI-RADS v2 score
was built with multivariate logistic regression.

Validation of the Predictive Models
The predictive models were first assessed in the primary cohort
(n = 133) and then validated in the validation cohort (n = 66).
Receiver operation characteristic (ROC) curve, area under the curve
(AUC), accuracy, sensitivity, specificity, positive predictive value
(PPV), and NPV analyses were used to assess the performance of
these models. In addition, the performance of these models in the
TZ was also evaluated. Notably, the specificity and NPV were rela-
tively important in this study. Relatively high specificity indicated a
low probability of misclassifying non-prostate cancer (non-PCa)
patients as positive and a low probability of overdiagnosis. In con-
trast, a relatively high NPV indicated a low probability of mis-
classifying PCa as non-PCa in negative patients and a high validity
of the model for the prediction of non-PCa. Calibration curves and
Hosmer–Lemeshow tests were conducted to assess the agreement
between the combined model-predicted and expected probabilities.
Decision curve analysis (DCA) was conducted to assess the clinical
usefulness and benefits of the combined model at different threshold
probabilities.

Statistical Analysis
Statistical analyses were conducted using R v. 3.3.4 and Python
v. 3.5. Continuous variables are shown as the mean � standard devi-
ation (SD) and categorical variables are shown as percentages. For
continuous variables, variance equality was assessed by Levene’s test
and Student’s t-test, and Welch’s t-test was used to assess between-
group differences. For categorical variables, Pearson’s chi-square test,
Fisher’s exact test, or the approximate chi-square test, if needed, was
used to assess between-group differences. Two-sided P-values less
than 0.05 were considered statistically significant.

Results
Study Population
No significant difference in age, the PSA level, prostate vol-
ume, PSAD, location, early enhancement, PI-RADS v2 score,
digital rectal examination (DRE), positive cores, or Gleason
score was observed between the primary and validation
cohorts (P = 0.106–0.728), while a significant difference in
early enhancement was found between the primary and vali-
dation cohorts (P < 0.001) (Supplement S5).

Development of the Clinical-Radiological Model
The univariate analysis of the clinical characteristics of PCa
and non-PCa patients in the primary and validation cohorts
is shown in Table 1. The results showed that age
(P = 0.002), volume (P = 0.001), PSAD (P = 0.002), early
enhancement (P < 0.001), PI-RADS v2 score (P < 0.001),
the DRE (P = 0.004), positive cores (P < 0.001), and Gleason
score (P < 0.001) were significantly different between PCa
and non-PCa patients in the primary cohort. Age
(P = 0.003), PSAD (P = 0.002), the DRE (P = 0.120), and
the PI-RADS v2 score (P = 0.002) were selected to develop
the clinical-radiological model by multivariate logistic
regression.

Feature Selection
After removing features with both intra- and interobserver
correlation coefficients less than 0.85, 438, 482, and
255 radiomic features remained for the ADC, T2W, and
DCE MR images, respectively. Finally, 34, 52, and 4 radiomic
features were included for the ADC, T2W, and DCE MR
images, respectively (Supplement S6). In Table 2, we list the
top ten features with the highest performance.

Validation of the Predictive Models
The ADC, T2W, and DCE imaging models yielded AUC
values of 0.910, 0.914, and 0.793, respectively, for the pri-
mary cohort and 0.853, 0.828, and 0.774, respectively, for
the validation cohort. In addition to assessing these three
models on the independent validation cohort, 10-fold cross-
validation was also performed, in which the range of AUC
values was 0.737–0.947 for the ADC imaging model,
0.750–0.954 for the T2WI model, and 0.670–0.926 for the
DCE imaging model. The multi-imaging fusion model per-
formed better than the models based on each single MR
image (AUC: 0.945 and 0.902 in the primary and validation
cohorts, respectively). Compared to the multi-imaging fusion
model, the performance of the clinical-radiological model
(AUC: 0.806 and 0.858 in the primary and validation
cohorts, respectively) was poorer.

The combined model incorporating the multi-imaging
fusion model, age, PSAD, DRE, and PI-RADS v2 score
exhibited the best performance (AUC: 0.956 and 0.933 in
the primary and validation cohorts, respectively).
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TABLE 1. Univariate Analysis of the Clinical Characteristics of Patients and Tumors in the Primary and Validation
Cohorts

Characteristic

Primary cohort (n = 133)

P-value

Validation cohort (n = 66)

P-value
PCa (n = 57) Non-PCa (n = 76) PCa (n = 28) Non-PCa (n = 38)

Age (yr,
mean � SD)

67.53 � 7.28 62.51�10.05 0.002a 66.39�8.09 61.82�7.32 0.021a

PSA (ng/mL,
mean � SD)

7.04�1.67 6.97�1.61 0.811 6.96�1.49 6.89�1.66 0.862

Prostate volume
(mL, mean �
SD)

40.32�20.21 53.33�24.01 0.001a 31.43�14.56 50.79�17.68 1.651E-05a

PSAD (ng/mL,
mean � SD)

0.22�0.0.11 0.16�0.09 0.002a 0.3�0.2 0.15�0.06 0.001a

Location (%) <0.001b 5.514E-06b

TZ 27 (47.4%) 60 (78.9%) 11 (39.3%) 35 (92.1%)

PZ 30 (52.6%) 16 (21.1%) 17 (60.7%) 3 (7.9%)

DCE type (%) <0.001b 0.745

Early
enhancement

14 (24.6%) 7 (9.2%) 12 (42.9%) 16 (42.1%)

Nonearly
enhancement

43 (75.4%) 69 (90.8%) 16 (57.1%) 22 (57.9%)

PI-RADS v2 grade
(%)

1E-05b 0.003b

≤2 6 (10.5%) 27 (35.5%) 5 (17.9%) 15 (39.5%)

3 2 (3.5%) 14 (18.4%) 0 6 (15.8%)

≥4 49 (86%) 35 (46.1%) 23 (82.1%) 17 (44.7%)

DRE 0.004b 0.011b

0 42 (73.7%) 70 (92.1%) 23 (82.1%) 38 (100.0%)

1 15 (26.3%) 6 (7.9%) 5 (17.9%) 0 (0.0%)

Positive cores <0.001b <0.001b

0 0 (0.0%) 76 (100.0%) 0 (0.0%) 38 (100.0%)

1-2 26 (43.9%) 0 (0.0%) 17 (60.7%) 0 (0.0%)

>2 31 (54.4%) 0 (0.0%) 11 (39.3%) 0 (0.0%)

Gleason score <0.001b <0.001b

0 0 (0.0%) 76 (100.0%) 0 (0.0%) 38 (100.0%)

Low (=6) 25 (43.9%) 0 (0.0%) 17 (60.7%) 0 (0.0%)

High (>6) 32 (56.1%) 0 (0.0%) 11 (39.3%) 0 (0.0%)

PCa, prostate cancer; Non-PCa, nonprostate cancer; PSA, prostate-specific antigen; PSAD, prostate-specific antigen density; TZ, transi-
tional zone; PZ, peripheral zone; early enhancement, DCE time curves type 1 (progressive); nonearly enhancement, DCE time curves
type 2 (plateau) or type 3 (washout); DRE, digital rectal examination; Gleason score, low (Gleason = 3 + 3) and high (Gleason >3 + 3).
A P-value <0.05 was considered a significant difference.
aStudent’s t-test.
bPearson’s test.
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Furthermore, the NPV and specificity of the combined model
were relatively higher than those of the clinical-radiological
model in the validation cohort (0.875 vs. 0.824 and 0.921
vs. 0.737). The performance of these models is shown in
Table 3, and the ROC curves of the clinical-radiological,
multi-imaging fusion, and combined model are shown in
Fig. 3a. The violin plots of the combined model are also
shown in Fig. 3b. The calibration curve showed good agree-
ment between the combined model predicted and expected
probabilities of PCa (P = 0.478 and 0.837 in the primary and
validation cohorts, respectively; Hosmer–Lemeshow test)
(Fig. 4a,b), and DCA showed that using the combined model
to predict PCa was more beneficial than using the clinical-
radiological model (Fig. 4c). Furthermore, the DeLong test
showed that the combined model performed better than the
clinical-radiological model on both the primary and validation
cohorts (P < 0.05, Table 4). The combined model also
exhibited good performance in screening for PCa in the TZ
(Table 5).

Discussion
It is important to avoid unnecessary and invasive prostate
punctures and to subsequently curtail the overdiagnosis of
men with PSA levels of 4–10 ng/mL because the prevalence

of PCa and the positive rate of biopsies are both low. In this
study, an mpMRI-based radiomics approach was conducted
to develop and validate the predictive model for PCa screen-
ing. Compared to the clinical-radiological model and the PI-
RADS v2 score, the combined model incorporating the
clinical-radiological and radiomics models exhibited the best
performance. Furthermore, using the combined model to pre-
dict PCa could identify more negative PCa than using the
clinical-radiological model by 18.4%.

Several studies have investigated the diagnostic perfor-
mance of clinical indicators and genes. For example, the
AUC and specificity were 0.77–0.79 and 45–67.8%, respec-
tively, for the prostate health index,6,18 and those for DNA19

were 0.84 and 68%, respectively. These results show that
only 68% of non-PCa patients would avoid an unnecessary
biopsy. Moreover, the results based on the univariate logistic
regression analysis were not formally compared with PSA
levels.20 Schroder et al21 recommended prostate mpMRI as a
promising method to decrease overdiagnosis.

The PI-RADS v2 guidelines for mpMRI were published
in 2015 and thereby increased the sensitivity and specificity
for both small indolent tumors and large aggressive lesions.10

Liu et al evaluated the ability of the PI-RIDS v2 score to
detect PCa in patients with PSA levels of 4–10 ng/mL and

TABLE 2. Top Ten Features With the Highest Performance According to the Decrease in AUC for the Radiomics
Model

Feature Interpretation

Median (IQR)
P-
value AUC

PCA non-PCa

T2WI_LF_Maximum Grayscale/intensity 0.281 (–0.138, 1.125) –0.572 (–0.894, –0.066) <0.001 0.781

DCE_LLF_Minimum Grayscale/intensity –0.525 (–1.077, 0.108) 0.323 (–0.313, 0.966) <0.001 0.276

T2WI_WF_MAD Grayscale/intensity 0.121 (–0.346, 0.447) –0.447 (–0.646, –0.134) <0.001 0.721

T2WI_LG_DE Randomness/
variability

0.408 (–0.443, 0.799) –0.363 (–0.878, 0.092) <0.001 0.705

T2WI_WF_Maximum Grayscale/intensity 0.203 (–0.666, 1.145) –0.762 (–0.912, 0.181) <0.001 0.703

T2WI_LG_Contrast Intensity variation –0.005 (–0.313, 0.767) –0.481 (–0.813, 0.062) <0.001 0.700

T2WI_LG_JE Randomness/
variability

0.365 (–0.159, 0.962) –0.278 (–0.936, 0.373) <0.001 0.697

T2WI_LF_90Percentile Grayscale/intensity 0.308 (–0.363, 0.9) –0.381 (–0.829, –0.054) <0.001 0.696

T2WI_LG_LDE Textures –0.506 (–1.081, 0.254) 0.214 (–0.402, 1.145) <0.001 0.307

ADC_LG_LALGLE Textures –0.433 (–0.46, –0.254) –0.266 (–0.403, 0.206) <0.001 0.309

T2WI_LF_Maximum: T2WI_LoG-sigma-1-0-mm-3D_firstorder_Maximum; DCE_LLF_Minimum: DCE_LL_firstorder_Minimum; T2WI_
WF_MAD: T2WI_wavelet-HH_firstorder_MeanAbsoluteDeviation; T2WI_LG_DE: T2WI_log-sigma-1-0-mm-3D_glcm_DifferenceEntropy;
T2WI_WF_Maximum: T2WI_wavelet-HH_firstorder_Maximum; T2WI_LG_Contrast: T2WI_log-sigma-3-0-mm-3D_glcm_Contrast;
T2WI_LG_JE: T2WI_log-sigma-3-0-mm-3D_glcm_JointEntropy; T2WI_LF_90Percentile: T2WI_log-sigma-1-0-mm-
3D_firstorder_90Percentile; T2WI_LG_LDE: T2WI_log-sigma-3-0-3D_gldm_LargeDependeceEmphasis; ADC_LG_LALGLE: ADC_log-sigma-
3-0-mm-3D_glszm_LargeAreaLowGrayLevelEmphasis.
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found a specificity of 89.66% and an NPV of 92.86%.22

However, this model, which was designed by a single radiolo-
gist, yielded a sensitivity of 60% and a PPV of 50%. Dwivedi
et al23 developed a combined model based on the PSA level,
ADC, and non-PI-RADS-related magnetic resonance spec-
troscopy (MRS) to predict the risk of PCa in 137 consecutive
men with PSA levels between 4 and 10 ng/mL. The authors
achieved a specificity and an NPV slightly lower than our
values, but the sensitivity and PPV of their model were obvi-
ously lower than those of our model. Our combined models
both reduced negative cases to acceptable levels to avoid
unnecessary biopsies and avoided missed diagnoses of positive
cases.

Some studies have applied radiomics or texture features
for PCa screening, but we were unable to find studies that
examined PCa screening in patients with PSA levels of 4–10
ng/mL. Litjens et al24 used five features to distinguish non-
PCa from PCa in 70 patients, resulting in an AUC of 0.62.
Sidhu et al25 applied texture analysis based on ADC kurtosis
(AUC = 0.78) and T1 entropy (AUC = 0.66) for PCa detec-
tion in 67 cases, resulting in an AUC of 0.83. However, no
independent validation cohort was included in these studies.
In our study, low ADC and T2WI values represented an

increased probability of PCa, possibly because variations in
cellularity in PCa result in normal gland loss,26 representing
enhanced signal reduction in the lesion. High values of
entropy and size zone nonuniformity (SZN), as well as low
values of large dependence emphasis (LDE), long run
emphasis (LRE), and large area emphasis (LAE), for the
ADC and T2W images reflected the heterogeneity of PCa,
which originates from angiogenesis and extravascular
extracellularity, representing heterogeneous signal intensity
in the lesion.27 A large distribution of gray scales, such as
the mean absolute deviation (MAD), maximum gray scales,
and range in the ADC and/or T2WI values indicate an
increased possibility of PCa. This may be due to signaling
changes caused by areas of hemorrhage and necrosis in
PCa.28 Low values of the minimum, 90th percentile, and
mean in the washout phase represent the probability of PCa,
possibly because of increasing tumor vascular permeability,
resulting in a rapid decline in DCE sequence features.29

PCa screening in the TZ is difficult due to confusion with
benign prostatic hyperplasia (BPH); therefore, we further
verified the performance of the models for PCa screening in
the TZ. Ginsburg et al30 utilized radiomic features to detect
PCa in the TZ with an AUC of 0.68, which is different

TABLE 3. Diagnostic Performance of the PI-RADS, Clinic-Radiological, ADC, T2FSE, DCE, Radiomics, and Combined
Models

Model Performance AUC (95% CI) ACC SEN SPE PPV NPV P-value

PI-RADS ≥4 Primary cohort 0.708 (0.694–0.722) 0.677 0.837 0.583 0.583 0.837 5.82 E-6

Validation cohort 0.726 (0.695–0.756) 0.667 0.808 0.575 0.575 0.808 6.54E-4

Clinical-
radiological

Primary cohort 0.806 (0.793–0.819) 0.714 0.754 0.684 0.641 0.798 1.75E-9

Validation cohort 0.858 (0.835–0.881) 0.758 0.786 0.737 0.688 0.824 1.42E-7

ADC Primary cohort 0.910 (0.902–0.918) 0.812 0.754 0.855 0.796 0.823 6.88E-16

Validation cohort 0.853 (0.829–0.878) 0.864 0.786 0.921 0.880 0.854 2.21E-7

T2WI Primary cohort 0.914 (0.906–0.922) 0.820 0.877 0.776 0.746 0.894 3.51E-16

Validation cohort 0.828 (0.804–0.852) 0.803 0.679 0.895 0.826 0.791 2.01E-6

DCE Primary cohort 0.793 (0.780–0.807) 0.677 0.877 0.526 0.581 0.851 7.81E-9

Validation cohort 0.774 (0.748–0.801) 0.682 0.821 0.579 0.590 0.815 1.55E-4

Radiomics Primary cohort 0.945 (0.939–0.951) 0.842 0.965 0.750 0.743 0.966 <2.2E-16

Validation cohort 0.902 (0.884–0.920) 0.803 0.786 0.816 0.759 0.838 1.26E-9

Combined Primary cohort 0.956 (0.951–0.961) 0.895 0.912 0.882 0.853 0.931 <2.2E-16

Validation cohort 0. 933 (0.918–0.948) 0.879 0.821 0.921 0.885 0.875 1.92E-11

AUC = area under the curve; ACC = accuracy; SEN = sensitivity; SPE = specificity; PPV = positive predictive value; NPV = negative
predictive value; ADC = apparent diffusion coefficient; T2WI = T2-weighted imaging; DCE = dynamic contrast-enhanced. The best
performance in the validation cohort is indicated in bold font. The cutoff values were calculated using the xtile function in R.
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from the result of our combined model. This may have
occurred because we obtained unified MR parameters using
the same MRI equipment and coil in one institution. In our
study, the radiomics model based on T2-weighted fast spin
echo (T2FSE) sequences exhibited a similar performance to DWI

sequences but a better performance than DCE sequences, which
was consistent with the results of Greer et al.31

There were several limitations to our study. First, the
sample size was limited. Although we utilized a validation
cohort to verify the reproducibility of our models, the results

FIGURE 3: (a) ROC curves of the clinical-radiological, multi-imaging fusion, and combined models. (b) Violin plots of the combined
model in the primary and validation cohorts.

FIGURE 4: Calibration curve of the combined model in the primary (a) and validation (b) cohorts. (c) DCA of the combined (red line)
and clinical-radiological (blue line) models.

TABLE 4. Pairwise Comparison Using the DeLong Test Among the Clinical-Radiological, Radiomics, and Combined
Models

DeLong test Clinical-radiological Radiomics Combined

Primary cohort Clinical-radiological — <0.001a <0.001a

Radiomics <0.001a — 0.102

Combined <0.001a 0.102 —

Validation cohort Clinical-radiological — 0.212 0.049a

Radiomics 0.212 — 0.041a

Combined 0.049a 0.041a —

aA P-value <0.05 was considered a significant difference.
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should be verified using a larger sample size. Second, MRI data
were collected from a single center. However, we set unified
MR scanning parameters according to the PI-RADS v2 criteria.
Therefore, the robustness of our models should be verified by
additional MRI data from multiple centers in future studies.
Third, the population distribution was unbalanced in our
study. PCa in the PZ is easily diagnosed and subsequently
treated in local hospitals. Our hospital, which is a referral cen-
ter in China, had more patients with PCa in the TZ than in
the PZ. However, the stratified analysis showed that the com-
bined model performed well among patients with lesions in
the TZ. We did not verify the performance of the models to
screen PCa occurring in the PZ because of the limited number
of patients. In the future, we will examine the performance of
our model in different zones to identify aggressive PCa.
Fourth, we used a biopsy as the reference test in some patients,
which resulted in the risk of mismatching some cancers. How-
ever, a systematic prostate biopsy is the recommended tech-
nique for a prostate biopsy according to the NCCN guidelines.
Additionally, we identified lesions by comparing biopsy tem-
plates with mpMRI results to reduce this risk.

In conclusion, we developed and validated a radiomics
model based on mpMRI, which possibly applies to predicting

PCa in men with PSA levels of 4–10 ng/mL prebiopsy. Fur-
thermore, the combined model incorporating the radiomics
model and clinical-radiological risk factors might aid clini-
cians with better clinical treatment decision-making and
reduce unnecessary prostate biopsies.
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