
Future Generation Computer Systems 100 (2019) 1017–1030

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Energy-Efficient IoT Service Composition for Concurrent Timed
Applications
Mengyu Sun a, Zhangbing Zhou a,d,∗, Junping Wang b, Chu Du c, Walid Gaaloul d
a School of Information Engineering, China University of Geosciences (Beijing), China
b Laboratory of Precision Sensing and Control Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
c The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang, China
d Computer Science Department, TELECOM SudParis, Evry, France

h i g h l i g h t s

• A CRIO mechanism is proposed to integrate common components with compatible temporal intervals in concurrent applications.
• IoT nodes are virtualized as service providers, where their functionalities are encapsulated and represented in terms of IoT services.
• Applications are instantiated as service compositions where spatial–temporal constraints and energy-efficiency are considered.

a r t i c l e i n f o

Article history:
Received 28 January 2019
Received in revised form 18 May 2019
Accepted 27 May 2019
Available online 4 June 2019

Keywords:
IoT service composition
Temporal constraints
Concurrent requests
Energy efficiency

a b s t r a c t

The Internet of Things (IoT) paradigm has established an efficient platform to enable the collaboration
and cooperation of self-configurable and energy-aware IoT nodes for supporting complex applications.
Heterogeneous IoT nodes provide various kinds of functionalities, which can be encapsulated and
represented as IoT services. These services can be composed to provide value-added services, while
spatial–temporal constraints of IoT services should be satisfied, and energy consumption of IoT nodes
should be balanced to prolong the network lifetime. Given a set of concurrent service requests, a
challenge is to recommend efficient service compositions.

To address this challenge, this paper proposes to identify and share common functional compo-
nents, and thus, to integrate and optimize concurrent requests, where a component corresponds to a
snippet of IoT service compositions. Shared components in different requests should not violate their
temporal dependencies and thus improving resource utilization. Consequently, composing IoT services
with respect to concurrent requests can be reduced to a constrained multi-objective optimization prob-
lem, which can be solved by heuristic algorithms. Experimental evaluation has been performed with
respect to the state-of-art’s algorithms, and the results demonstrate the efficiency and performance of
this technique, especially when IoT nodes are relatively large in number and their functionalities are
highly overlapped with each other.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The Internet of Things (IoT) has extensively developed and
widely-adopted in domain applications, and promotes the inter-
connection of distributed devices with sensing capabilities. These
connected devices, also known as IoT nodes, achieve their collab-
oration and cooperation through integrating the functionalities
of contiguous IoT nodes. Along with this trend, large-scale IoT

∗ Corresponding author at: School of Information Engineering, China
University of Geosciences (Beijing), China.

E-mail addresses: sunmengyu.cugb@gmail.com (M. Sun),
zbzhou@cugb.edu.cn (Z. Zhou), wangjunping@bupt.edu.cn (J. Wang),
duchu2017@126.com (C. Du), walid.gaaloul@mines-telecom.fr (W. Gaaloul).

sensing networks have been emerging, and they have become the
infrastructure to support applications in various domains [1,2].
Similar as sensor nodes in W ireless Sensor Networks (WSN),
IoT nodes are mostly battery-powered, and their energy may
hardly be replenished in most environments, although energy
harvesting techniques [3,4] have been developed and could al-
leviate the energy consumption somehow in certain situations.
In this setting, energy efficiency is an essential ingredient to be
considered, especially when concurrent applications is relatively
large in number.

With increasing complexity of requirements of domain appli-
cations, an application, also known as a service request, should
be achieved through assembling the functionalities provided by
multiple IoT nodes, which may exceed the capability of any

https://doi.org/10.1016/j.future.2019.05.070
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.05.070
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.05.070&domain=pdf
mailto:sunmengyu.cugb@gmail.com
mailto:zbzhou@cugb.edu.cn
mailto:wangjunping@bupt.edu.cn
mailto:duchu2017@126.com
mailto:walid.gaaloul@mines-telecom.fr
https://doi.org/10.1016/j.future.2019.05.070

1018 M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030

Fig. 1. The framework of IoT sensing networks includes a Central Control Layer
and an IoT Nodes Layer, where the IoT Nodes Layer is a three-tier subframe
including the tiers of IoT Nodes, IoT Services, and Service Classes.

single IoT node. To promote this procedure leveraging Service-
Oriented Architecture (SOA) [5], the functionalities provided by
IoT nodes are encapsulated and represented in terms of respec-
tive IoT services, where an IoT node may co-host one or multiple
IoT services [6]. Consequently, the task of assembling the func-
tionalities of IoT nodes is reduced to the composition of corre-
sponding IoT services. Besides functional requirements, temporal
constraints of functional components are usually specified upon
and mandated to be satisfied in real-world applications. Hence
the temporal consistency should be examined when composing
timed IoT services. It is worth emphasizing that an IoT sens-
ing network should support concurrent applications. Intuitively,
these applications can be processed independently. However,
considering the fact that there may exist common components in
concurrent applications, which may be processed once to satisfy
some sub-requirements in multiple applications. Therefore, the
strategy that common components used in a shared manner
among concurrent service requests should be appropriate to pro-
mote the decreasing of energy consumption of IoT nodes and
the network traffic. For instance, concurrent processing technol-
ogy with temporal constraints is applied in distributed real-time
monitoring systems and information audit systems by an integra-
tion and assignment of tasks to optimize system structure and
improve resource utilization.

In this setting, composing timed IoT services which share com-
mon components to support concurrent requests is a promising
research challenge. As a specific example of IoT sensing networks,
WSN can be shared by sensor middlewares or architectures to
ensure the network which can support multi-application simul-
taneously [7,8], wherein sensor nodes and network resources are
shared to provide value-added services for responding to concur-
rent applications. Data sharing techniques have been developed
and applied to support the processing of multiple applications
through integrating sampling temporal intervals by reasonably
planning tasks [9]. Generally, these techniques mostly target at
the concurrent-execution of multiple applications. From the tem-
poral aspect, task allocation with overlapping temporal intervals
is performed in order to promote the sharing of common sub-
requirements in concurrent applications. However, temporal con-
straints for separate functional components should be explored
extensively to guarantee temporal consistency for optimizing IoT
service compositions.

To address this challenge, this paper proposes a service-
oriented framework for IoT sensing networks as illustrated by
Fig. 1, where IoT nodes are virtualized as service providers,
which encapsulate and represent their functionalities in terms
of IoT services. According to the similarity of their functionali-
ties, IoT services are categorized into respective service classes.

Fig. 2. A sample of several concurrent service requests, which have specific
functional components and concrete temporal constraints, where several kinds
of functional components are distinguished by different colors.

Consequently, service requests are achieved through linking ser-
vice classes with temporal dependencies, where a Concurrent
Requests Integration Optimization (CRIO) mechanism is devel-
oped to implement the optimization model in the concurrent
fashion for guaranteeing temporal consistency of these requests.
Extensive experiments are conducted for evaluating the feasi-
bility and performance of our CRIO mechanism, and exploring
the influence of various experimental parameters upon this tech-
nique. The result shows that our technique performs better than
the state of art’s ones in the energy efficiency, especially when IoT
nodes are relatively large in number and are largely overlapped
in their functionalities. Our contributions are summarized as
follows:

• We propose the CRIO mechanism to optimize shared func-
tionalities among concurrent requests.
• We explore spatial–temporal constraints and energy-

efficiency when composing IoT services.
• We conduct comprehensive experiments and evaluations to

validate the feasibility and performance of our technique.

The rest of this paper is organized as follows. Section 2 in-
troduces correlation definitions and energy model. Section 3 in-
troduces the CRIO mechanism for concurrent service requests.
Section 4 presents IoT service composition for optimal solution
which mainly concerns about spatial constraints, temporal rele-
vancy and energy constraints. Experimental results are presented
at Section 5 and Section 6 reviews and compares our approach
with relevant works. Section 7 concludes our work.

2. Preliminaries

This section presents relevant concepts and the energy model
for supporting the composition of concurrent application requests
in the following sections.

2.1. Concept definition

Definition 1 (IoT Node). An IoT Node ndIoT is a tuple (id, SvI , spt ,
eng), where:

• id is the unique identifier of this IoT node ndIoT .
• SvI is a set of IoT services co-hosted by ndIoT .
• spt is the spatial constraint specified upon ndIoT .
• eng is the remaining energy of ndIoT .

M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030 1019

As shown in Fig. 1(b1), an IoT node ndIoT may co-host multiple
IoT services. Due to the scarceness of computational and energy
resources, most IoT nodes could hardly activate multiple IoT
services concurrently. Note that IoT nodes are assumed to have
no temporal constraints in this paper, since IoT nodes, which are
deployed for supporting domain applications like environmental
monitoring and event detection, may be in the status of active
during their lifetime. Without loss of generality and for simplicity,
we assume that an IoT node can support the operation of only
one IoT service at a certain time duration. spt is defined by the
physical attribution in terms of a circular region specified by a
center and a communication radius.

Definition 2 (IoT Service). An IoT Service svI hosted by an IoT
node ndIoT is a tuple (id, nm, dsc , ndIoT), where:

• id is the unique identifier of svI .
• nm is the name of svI .
• dsc is the short-text description of svI .
• ndiIoT represents the set of IoT nodes which host svI .

Note that IoT services and IoT nodes may have a many-to-
many relationship. To be specific, a certain kind of IoT services
may be hosted by one or multiple IoT nodes, and a certain IoT
node can host one or multiple kinds of IoT services. For instance,
an IoT service svI with an id as 325 as shown in Table 3 is
represented as follows:

• svI.nm: ‘‘Relative humidity monitor sensing service’’
• svI.dsc: ‘‘Measures the relative ambient humidity in percent

(%). Common use is for monitoring dewpoint, absolute, and
relative humidity.’’
• svI.ndiIoT : nd

1
IoT

As shown by Fig. 1(b2), multiple IoT services hosted by various
IoT nodes may be similar in their functionality. The concept of
service class is adopted to represent these IoT services sharing a
certain functionality [6].

Definition 3 (Service Class). A service class clS is a tuple (id, nm,
dsc , SvIclS), where id, nm and dsc are the identifier, name, and text
description of clS, and SvIclS is a set of IoT services belonging to
clS and hosted by different IoT nodes.

As shown in Fig. 1(b3), a service class takes the functional
aspect of IoT services into concern, while their spatial constraints
and energy consumption are not the focuses. Consequently, a
service request is defined as follows:

Definition 4 (Service Request). A service request rq is a tuple (id,
CLS, LNKTpCt , SpCt), where:

• id is the unique identifier of this service request rq.
• CLS is a set of preferring service classes according to the

requirement.
• LNKTpCt is a set of temporal links between adjacent service

classes.
• SpCt is the spatial constraints specified upon rq.

Generally, a service request should prescribe the preferring
composition of service classes, and this composition can be dis-
covered and generated through traditional Web service compo-
sition techniques [10,11]. These service classes are linked ac-
cording to their functional dependency relations [12]. Temporal
constraints denoted as the tuple (T, C) are specified in terms of
the rules in Simple Temporal Networks (STN) [13], where (i) T is
a set of time point variables, which correspond to the completion
time of service classes, and (ii) C is a finite set of binary con-
straints specified upon these time point variables. The completion

time of service classes as temporal objects are constrained by
temporal statements such as points and intervals. We adopt the
interval algebra [14] to define qualitative statements for relative
temporal constraints of adjacent service classes, which is denoted
as [T1, T2] to represent the alternative time interval of this service
class with respect to the previous one. To avoid the issue of cyclic
temporal dependencies between service classes, a service request
is assumed not containing cyclic structures. For a given service
request, a reasonable solution is a complete set of IoT services
assignments that satisfies all constraints.

2.2. Energy model

The first order radio model proposed at [15] is adopted to
calculate the energy consumption in WSNs. Since IoT nodes can
be regarded as a certain kind of sensor nodes inWSN, we calibrate
the first order radio model to support the IoT sensing network,
which enhances the model for adapting to the architecture. The
energy consumption for transmitting and receiving a k bit data
packet within the distance d are denoted as ETx(k, d) and ERx(k)
respectively, and the formulas are presented as follows:

ETx(k, d) = Eelec × k+ ϵamp × k× dp (1)

ERx(k) = Eelec × k (2)

where Eelec is the energy consumption constant of the transmis-
sion and receiver electronics, ϵamp is the energy consumption
constant of the transmission amplifier, and the parameter p refers
to the attenuation index of transmission, which is influenced by
surrounding environments. Generally, if IoT nodes are barrier-
free when forwarding data packets, p is set to 2. Otherwise, p is
set to a value between 3 to 5. Therefore, the energy consumed
when transmitting a packet of k bits data packet from an IoT node
ndiIoT to one of its neighbors ndjIoT (denoted as Eij(k)), where the
formula is presented as follows:

Eij(k) = ETx(k, d)+ ERx(k) (3)

Note that Backbone Nodes (denoted BN) in IoT sensing net-
works are assumed to have unlimited energy, since energy har-
vesting techniques can be adopted to replenish their energy.
The cost of transmitting a data packet from an IoT node to a
neighboring IoT node or to a BN is different. Besides, the cost
of receiving a data packet by BN is not taken into consideration.
Therefore, Eij(k) is calculated as follows:

Eij(k) =
{
Eelec × k+ ϵamp × k× dp if j is BN
2× Eelec × k+ ϵamp × k× dp otherwise

(4)

Assume that the energy consumed to transmit a data packet
from ndiIoT to ndjIoT is the same as that needed to transmit from
ndjIoT to ndiIoT . Parameters in the energy model we used are shown
in Table 1.

3. Concurrent service requests integration

Given a set of concurrent service requests, there exists a set
of common components in terms of functionality perspective.
Except for that, the spatial and temporal factors are conditions
that cannot be ignored for the integration in the concurrent
fashion. In this setting, components with common functionali-
ties can be shared which have compatible spatial regions and
temporal intervals. The satisfaction of relevant service requests
can be guaranteed by arranging reasonable schedule that do not
violate any constraints. Sample concurrent service requests are
shown as Fig. 2, and they have the same initial time point but
not necessarily the same ending time. In the specification level,
each component is represented as a service class and temporal

1020 M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030

Table 1
Parameters in the energy model.
Parameters name Description

ETx(k, d) The energy consumed to transmit a k bit data packet within a distance d.
ERx(k) The energy consumed to receive a k bit data packet.
Eij(k) Energy consumption for transmitting a k bit data packet from an IoT node ndiIoT to a neighboring IoT node ndjIoT .
Einv(ndiIoT .svIm) Energy consumption for activating an instantiation of an IoT service svIm in an IoT node ndiIoT .
Eelec Energy consumption constant of electronics.
ϵamp Energy consumption constant of the transmit amplifier.
k The number of bits in one data packet.
d The transmission distance of two nodes.
p The attenuation index of transmissions.
r The communication radius of IoT nodes.

dependencies between these components are specified by di-
rected timed edges that denote the temporal constraints between
the completion of the previous component and the latter one.
Additional temporal constraints on each edge are represented as
a relative temporal interval which are transformed into abso-
lute temporal constraints based on links between service classes.
Consequently, service compositions may be optimized through
considering them in an integrated fashion, in order to reduce
the energy consumption collectively. To solve this problem, our
CRIO mechanism is presented by Algorithm 1 to recommend IoT
services for concurrent service requests.

Algorithm 1 CRIO: Concurrent Requests Integration Optimization
Mechanism
Require:

- RQcon : concurrent service requests with same initial time
Ensure:

- CLScon : a set of service classes shared by different requests
- RQcls : a set of service requests with shared service classes

1: CLSmed ← ∅; RQmed ← ∅; CLScon ← ∅; RQcls ← ∅
2: for all rqu , rqv ∈ RQcon where u, v ∈ [1, |RQcon|] do
3: if ∃ clSp where clSp ∈ rqu.CLS and clSp ∈ rqv .CLS then
4: CLSmed ← CLSmed ∪ {clSp}
5: end if
6: end for
7: for all clSp ∈ CLSmed where p ∈ [1, |CLSmed|] do
8: if clSp ∈ rqu.CLS where i ∈ [1, |rqu.CLS| then
9: RQmed ← RQmed ∪ {rqu}
10: end if
11: if ∃ rqu and rqv ∈ RQmed where u, v ∈ [1, |RQmed|] then
12: Intv(rqu.CLS(clSp)) ← ConvertAbsoluteInterval(rqu , clSp)
13: Intv(rqv .CLS(clSp)) ← ConvertAbsoluteInterval(rqv , clSp)
14: if Intv(rqu.CLS(clSp)) ∩ Intv(rqv .CLS(clSp)) ̸= ∅ then
15: CLScon ← CLScon ∪ {clSp}
16: RQcls ← RQcls ∪ {rqu, rqv}

17: end if
18: end if
19: end for

RQcon in Algorithm 1 represents a set of concurrent service
requests, CLSmed and RQmed are the intermediate sets that store
the common service classes and service requests to which they
belong, respectively. CLScon represents service classes which can
be shared by different service requests RQcls. For an arbitrary
service request contained in RQcon, if there exists a service class
clSp which is a common component of any two different service
requests rqu and rqv , clSp is inserted into CLSmed as a candidate
service class (line 4).

All shared service classes candidates are found which can be
used to retrieve the corresponding set of service requests RQmed
(line 9). For each clSp in CLSmed, the absolute temporal intervals
for rqu and rqv are calculated through Algorithm 2 (lines 12–
13). If the available temporal interval of a common service class
clSp in different rqu and rqv has a coincident duration, clSp is
verified which can be shared by rqu and rqv to optimize energy

consumption (line 14). clSp is inserted into CLScon (line 15), besides
corresponding rqu and rqv are inserted into RQcls (line 16), which
are used in Section 4. For instance, as shown in Fig. 2, all colored
service classes are stored into CLSmed and these corresponding
service requests to which they belong are deposited into RQmed.
Take clS4 as an example, clS4 appears in over one service requests,
which can be inserted as an element to the candidate set CLSmed
and those service requests to which it belongs are stored in RQmed.
The validity of elements in candidate sets are verified by temporal
constraints. The absolute intervals for rq1 and rq2 are [0, 7] and [0,
6] respectively. As for clS4 in rqn, the absolute temporal interval
of clS4 is affected by its previous service class clS7, which can be
explicated through Algorithm 2. There is a common overlap time
duration between these three service requests for a certain clS4,
so clS4 is one of concurrent service classes in CLScon and rq1, rq2
and rqn are the corresponding service requests confirmed in RQcls.

Algorithm 2 ConvertAbsoluteInterval
Require:

- RQmed : service requests corresponding to common service classes
generated by Algorithm 1
- CLSmed : common service classes generated by Algorithm 1

Ensure:
- Intv(rqu.CLS(clSp)) : the absolute temporal interval for a certain clSp in a
certain rqu

1: ˜clS0 ← get the virtual initial vertex
2: t0 ← get the initial time point
3: for rqu ∈ RQmed where u ∈ [1, |RQmed|] do
4: while ∃ clSp ∈ CLSmed where p ∈ [1, |CLSmed|] do
5: LNKtmp{{ ˜clS0, . . . , clSp}, . . . , {{ ˜clS0, . . . , clSp}} ← extract all links con-

necting ˜clS0 to clSp
6: for lnki ∈ LNKtmp where i = |LNKtmp| do
7: Intvi ← get absolute temporal intervals related to the initial time

point t0 of ˜clS0
8: INTVtmp ← INTVtmp ∪ {Intvi}

9: end for
10: INTVtmp{Intv1, . . . , Intv|LNKtmp |} ← get all absolute temporal intervals
11: for all Intvi ∈ INTVtmp where i = |INTVtmp| do
12: Intv(rqu.CLS(clSp)) ← Intv1 ∩ · · · ∩ Intvi
13: end for
14: end while
15: end for

Algorithm 2 is presented to convert temporal intervals related
to adjacent structure into absolute temporal intervals. A virtual
initial vertex ˜clS0 is generated to connect these service classes
without preorder vertexes (line 1), and the initial time point
t0 is obtained (line 2). We extract all links LNKtmp from ˜clS0 to
each clSp in CLSmed for different service requests (line 5). At least
one connection path is found in each rqu for each clSp. Absolute
temporal intervals are acquired according to relative intervals
on corresponding connection paths (line 7). Therefore, INTVtmp is
the set containing possible absolute temporal intervals relative
to t0 calculated according to the specification of service requests,

M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030 1021

and its corresponding relative temporal intervals based on ad-
jacent service classes (line 10). An absolute temporal interval
Intv(rqu.CLS(clSp)) for a certain clSp in rqu is acquired through
adopting the intersection of each Intvi in INTVtmp (line 13). As
shown in Fig. 2 and taking clS6 in rqn for an example, where
two links included in INTVtmp consist of { ˜clS0, clS7, clS4, clS6} and
{ ˜clS0, clS14, clS1, clS6}. According to the link of {clS0, clS7, clS4,
clS6}, the absolute temporal interval is [6, 14] based on math-
ematical operation of lower bound and upper bound of pre-
order vertexes. Thereafter, the absolute temporal interval for
{ ˜clS0, clS14, clS1, clS6} is set to [3, 9]. Hence, the definitized abso-
lute temporal interval of Intv(rqn.CLS(clS4)) is set to [6, 9] which
is the intersection of two intervals as mentioned above.

4. IoT service composition

This section presents IoT service composition technique for
concurrent service requests and recommends optimal solutions,
where spatial constraints, temporal relevancy and energy effi-
ciency are taken into consideration.

4.1. Constraints of IoT service composition

4.1.1. Spatial constraints
IoT nodes should be prescribed spatial constraints since they

can only work well within a certain range of areas. Generally,
the spatial constraint of an IoT node ndIoT and a certain service
request rq are specified according to their geographical positions
and communication radius, which can be represented as follows:

spt(ndIoT) = (pndIoT , rndIoT) (5)

spt(rq) = (prq, rrq) (6)

where pndIoT and prq are the geographical coordinates in terms of
their latitude and longitude, rndIoT (or rrq) describes the commu-
nication distance of an IoT node (or the radius of rq interesting
in). It means that the spatial constraint corresponds to a circular
region where the center and radius of the circle are pndIoT (or prq)
and rndIoT (or rrq) respectively. Therefore, we propose to calculate
the spatial relevancy between rq and ndIoT as follows:

spt(rq, ndIoT) = (spt(rq) ∩ spt(ndiIoT))÷ spt(rq) (7)

where spt(rq, ndIoT) represents the proportion of spatial coin-
cidence with respect to rq and ndIoT . The larger the value of
spt(rq, ndIoT), the larger the overlap for rq and ndIoT is. We do
not consider IoT nodes that are beyond the scope of the service
request.

From the perspective of multiple fashion, IoT service compo-
sitions for concurrent requests are represented by comp(allrq),
and the spatial constraint of involved IoT nodes with respect to
service requests is calculated as follows:

spt(comp(allrq)) =
1
j

v∑
u=1

j∑
i=1

spt(rqu, ndiIoT) (8)

Note that the variable v represents the number of concur-
rent service requests and j denotes the number of IoT nodes
instantiated in all service compositions comp(allrq).

4.1.2. Temporal relevancy of common components with respect to
various service requests

There exists common components in concurrent service re-
quests, which may be processed once to satisfy these require-
ments. These components, as individual elements, connect with
others in terms of the sequential logical structure of require-
ments. And the temporal intervals as constraints are additional

conditions for satisfying connections. Temporal intervals are rel-
ative based on the contiguity constraints of two adjacent service
classes. However, relative intervals are not fully aware of the
temporal relation of the common components in different service
requests. Therefore, it is necessary to convert relative temporal
intervals into an uniform standard in each service requests. Based
on the initial time point, each relative interval is transformed into
an absolute constraint shown as Algorithm 2, which is adopted
to calculating the temporal coincidence of intervals for common
service classes in different service requests. Therefore, for each
clSp in CLScon and its corresponding rqu and rqv in RQcls, the
temporal relevancy is computed as follows:

tpr(clSp) =
Intv(rqu.CLS(clSp)) ∩ Intv(rqv.CLS(clSp))
Intv(rqu.CLS(clSp)) ∪ Intv(rqv.CLS(clSp))

(9)

The temporal relevancy is calculated through the upper
bounds and lower bounds of these intervals. Intuitively, the larger
the value of tpr(clSp) is, the larger the overlap interval of two
service requests for this certain service class is. Therefore, com-
mon service classes in concurrent service requests have certain
possibilities instantiated as the same IoT service and executed
only once based on tpr(clSp), for reducing its energy consumption
by activating a minimum number of IoT nodes. For concurrent
service requests, the temporal relevancy of service compositions
tpr(comp(allrq)) is affected by the proportion of relative coinci-
dence and calculated by the number of IoT nodes instantiated in
comp(allrq).

4.1.3. Energy consumption of IoT service composition
Due to the limited amount of energy in IoT nodes, the energy

consumption of IoT service compositions for IoT nodes should
be minimized for prolonging the lifetime of the whole network.
Given service compositions comp(allrq) for concurrent requests,
the energy consumption for comp(allrq) can be calculated includ-
ing the following ingredients:

• Energy consumption for instantiating IoT services in an IoT
node ndiIoT is computed as follows:

Einv(svIm) = ti × Einv(svIm) (10)

Einv(ndiIoT) =
n∑

m=1

Einv(svIm) (11)

where ti is the invocation times for a certain IoT service
svIm, and Einv refers to the energy consumed for activating
svIm. Therefore, the energy consumption for an IoT node is
calculated includes all the IoT services hosted on it.
• Energy consumption for communication between IoT nodes

is calculated as follows:

Ecomm(ndiIoT) =
h∑

k=1

ETx(k, d)+
l∑

k=1

ERx(k) (12)

where i and j are the times of transmitting and receiving
data packets for ndiIoT . It is worth mentioning that when
ndIoT do not require to transmit any packet to other IoT
nodes, ETx(k, d) is set to 0, and the same situation holds
for ERx(k). The details about energy consumption for the
communication are presented in Section 2.2.
• Energy consumption of an IoT node is calculated as follows:

Ecst (ndiIoT) = Einv(ndiIoT)+ Ecomm(ndiIoT) (13)

Note that the energy consumption of an IoT nodes includes
instantiation and communication as presented in Formula
(11) and (12).

1022 M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030

Therefore, the energy consumption of service compositions
comp(allrq) for concurrent service requests is computed by all IoT
nodes as follows:

E(comp(allrq)) =
j∑

i=1

Ecst (ndiIoT) (14)

4.1.4. Residual energy constraint of IoT nodes
IoT nodes should be balanced by considering the load balanc-

ing and avoiding the excessive composition of any IoT node [16].
Given concurrent service requests which are divided into several
kinds of service classes, each of them has an alternative list of IoT
services. According to different IoT nodes they belong to, those
who with relatively large amounts of remaining energy can be
an instantiation. Formally, the IoT node ndIoT should have enough
residual energy (denoted Ersd) than required to be consumed
(denoted Ecst) for implementing a certain functionality:

Ecst (ndiIoT) ≤ Ersd(ndiIoT) (15)

To avoid the over-consumption of any IoT node, a load-
balancing factor is proposed to prevent IoT nodes with relatively
low residual energy from instantiating more IoT services, if there
are other candidate nodes. Formally,

lbf (ndiIoT) = (Ersd(ndiIoT)− Ecst (ndiIoT))÷ Ersd(ndiIoT) (16)

lbf (comp(allrq)) =
1
j

j∑
i=1

lbf (ndiIoT) (17)

Note that the lbf (ndiIoT) can avoid excessive energy consump-
tion effectively for any of IoT nodes, and thus, achieve the energy
load balancing in the whole network. This strategy avoids the
polarization of IoT nodes. When the value of lbf (comp(allrq)) is
relatively large, which indicates that the majority of IoT nodes, as
the instantiation of service classes contained in comp(allrq) have
relatively larger amount of remaining energy.

4.2. Service composition optimization of concurrent service requests

For multiple concurrent service requests with temporal con-
straints, a component expressed as a service class clS can be
instantiated by a set of candidate IoT service lists. In this setting,
selecting an appropriate IoT service composition for each service
request by composing corresponding IoT nodes, and thus, saving
the energy of the whole network is the challenge to be ad-
dressed. The problem is reduced to a constrained multi-objective
optimization problem, which is presented as follows:

• Input Parameters

1. RQcon = {rq1, . . . , rqu, . . . }: the set of concurrent service
requests with temporal constraints.

2. CLScon = {clS1, . . . , clSp, . . . }: the set of service classes
can be shared by different service requests.

3. spt(ndiIoT): the spatial constraint of ndiIoT .
4. spt(rqu): the spatial constraint of rqu.
5. tpr(clS): the temporal interval relevancy of a cer-

tain service class clS in multiple concurrent service
requests.

6. ti: the invocation times for a certain svIm.
7. Einv(svIm): the energy consumption of activating a

single IoT service svIm.
8. Ersd(ndiIoT): the residual energy of a certain IoT node

ndiIoT .
9. ETx(k, d): the energy consumption of transmitting a k

bit data packet within a distance d.

10. ERx(k): the energy consumed for receiving a k bit data
packet.

• Output Parameters

1. comp(allrq): the optimal IoT service compositions for
concurrent service requests which can fulfill all the
temporal constraints.

2. E(comp(allrq)): the sum of energy consumption of
concurrent service requests.

• Constraints

Ersd(ndiIoT) ≥ Ecst (ndiIoT) (18)

• Multi-objective Functions

1. Minimize

Zmin = E(comp(allrq)) (19)

2. Maximize:

Zmax = α · spt(comp(allrq))+ β · tpr(comp(allrq))
+γ · lbf (comp(allrq))

(20)

where the value of α, β and γ are positive constants, and α+β+

γ = 1. Intuitively, their specific values depend on the importance
of spt(comp(allrq)), tpr(comp(allrq)) and lbf (comp(allrq)).

Hence, the objective function is calculated as follows:

Fobj(comp(allrq)) = wmax · Zmax − wmin · Zmin =

wmax · (α · spt(comp(allrq))+ β · tpr(comp(allrq))
+γ · lbf (comp(allrq)))− wmin · E(comp(allrq))

(21)

where wmax and wmin are objective factors of Zmin and Zmax, and
wmax+wmin = 1. The value of objective function is the judgment
form of service composition. Under the circumstances, service
composition is an approximately optimal solution with relatively
large Fobj(comp(allrq)).

4.3. Optimization algorithms for concurrent service composition

Two heuristic algorithms, Particle Swarm Optimization (PSO)
and Grey Wolf Optimizer (GWO) are adopted in this paper, where
PSO shows more effective than other algorithms like genetic
algorithm in achieving optimal WSN service compositions in our
previous work [6]. GWO is a relatively novel intelligent algorithm
with fast convergence. Generally, GWO has fewer adjustable pa-
rameters, which can alleviate the impact of subjective param-
eter settings. These two algorithms are implemented to solve
this constrained multi-objective optimization problem proposed
aforementioned.

4.3.1. Particle swarm optimization (PSO)
PSO is an evolutionary algorithm which inspired by the reg-

ularity of the movement of birds initially. Generally, PSO utilizes
the information shared by the individuals in the population to
make the whole population movement in the solution space
produce the evolution process from disorder to order so as to
obtain the optimal solution. In our context, the set of concurrent
service requests refers to a particle, and the service compositions
of them comp(allrq) correspond to a certain position of particles.
At each iteration, the position and velocity of particles are up-
dated by its most appropriate global position value of all the
particles (denoted as gbest) and the most appropriate individual
position value that each particle has acquired (denoted as pbest).

M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030 1023

Each particle pi updates its velocity and position according to the
following formulas:

vid(t + 1) = wvid(t)+ c1r1(pbestid(t)− xid(t))
+c2r2(gbestid(t)− xid(t))

(22)

xid(t + 1) = xid(t)+ vid(t) (23)

where d is the number of service classes in comp(allrq), w refers
to an inertia weight factor which represents the effect of the
current velocity value on the next iteration. c1 and c2 represent
acceleration coefficients which are positive constant variables, r1
and r2 are random variables. The position of particles change
when an IoT service are substituted by another in comp(allrq).

4.3.2. Grey wolf optimizer (GWO)
GWO is a kind of swarm intelligence optimization method

which imitates the social hierarchy and hunting mechanism of
wolves in nature [17]. Generally, the wolf populations are divided
into four levels following their social status from high-ranking
to low-ranking denoted as α wolf, β wolf, δ wolf and w wolves,
respectively. α, β and δ wolves are responsible for guiding the
entire swarm to catch the prey. In this setting, wolves refer to
concurrent service requests, and comp(allrq) represents the posi-
tion which is changed accordingly when services in the service
composition are replaced. α, β and δ wolves refer to the optimal
solution, suboptimal solution and the third optimal solution, of
a population of wolves, where the rest are w wolves. The gray
wolf population updates their position according to formulas as
follows:

Dα,β,δ =| 2r2 · Xα,β,δ(t)− X(t) | (24)

Xα,β,δ = Xα,β,δ(t)− (2a · r1 − a) · Dα,β,δ (25)

X(t + 1) =
∑

Xα,β,δ ÷ 3 (26)

where r1 and r2 are two random vectors, a is a linear decreasing
variable which is used to facilitate the update of the location for
wolves with the number of iterations. The rest of wolves update
their position according to the movement of α, β and δ wolves.

5. Implementation and evaluation

A prototype has been implemented using Java program to
evaluate experimental results, and experiments have been con-
ducted on a desktop with an Intel i7-6700 CPU at 3.4 GHz, 8-GB of
memory and a 64-bit Windows 7 system. The experiment settings
and evaluation results are presented as follows.

5.1. Experiment settings

The parameter settings for our experiments are presented at
Table 2 detailedly. A network with 400 IoT services is deployed,
and these IoT services are assigned to IoT nodes randomly. The
number of IoT nodes ranging from 30 to 70 is generated and
distributed in a rectangle geographical region of 500 m × 500 m,
where these IoT nodes are deployed unevenly with the skewness
degree 0.4. Generally, the skewness degree (denoted sd) repre-
sents the unevenness of distribution of IoT nodes in the network,
and it is calculated by the formula: sd = (dn − sn) ÷ (dn + sn),
where dn and sn refer to the number of IoT nodes in dense and
sparse sub-region, respectively [18]. These IoT nodes are assumed
to have the same initial residual energy. We adopt 14 sensor
types supported by the Android platform as service classes as
mentioned in our previous work [6], and assign 400 IoT services
to respective service classes. Intuitively, an IoT service cannot
belong to two service classes, but a service class contains multiple

Table 2
Parameters settings in experiments.
Parameters name Value

Network region 500 m ×500 m
Number of IoT Services 400
Number of IoT Nodes 30 ∼ 70
Skewness degree (sd) 0.4
Attenuation index of transmission (n) 2
Number of service classes 14
Total number of iterations 100
Invocation times for a sensor node (ti) 1
Energy consumption constant for
electronics (Eelec) 50 nJ/bit
Energy consumption constant for
the transmit amplifier (ϵamp) 100 pJ/(bit× m2)

IoT services. In our experiments, an IoT node is assigned multiple
IoT services randomly with various functionalities and there is
no correspondence between IoT nodes and service classes. An
experimental example shown as Fig. 2, we determine the upper
and lower bounds of temporal interval between two adjacent
service classes by generating pairs of random numbers. Note that
the upper bound of temporal intervals must be larger than the
lower bound, because we only think about the positive duration
of functionalities.

Besides, the parameters for PSO are set as follows: (i) the
acceleration coefficient for velocity c1 = 2, (ii) the inertia weight
factor w = 0.5 which shows the impact of previous values of
velocity for the current values, and (iii) the acceleration coef-
ficient for the position c2 = 2. The parameters for GWO are
set as follows: (i) r1 and r2 are two random vectors between 0
and 1, (ii) a decreases from 2 to 0 linearly with the increasing
number of iterations. The number of iterations for PSO and GWO
is set to 100. And the parameters for the objective function as
specified at Formula (21) are set as follows: wmax = 0.5, wmin =

0.5, α = 0.2, β = 0.3, δ = 0.5. These parameters can be
set to other values of appropriate according to the requirement
of certain applications. Consequently, the emphasis of minimum
and maximize objection functions are considered equivalent, and
the load-balancing factor is more important in the maximize
function.

The following aspects have been considered for evaluating the
performance and parameters of our mechanism:

• The performance of algorithms. Two intelligent optimization
algorithms are adopted to solve this constrained multi-
objective optimization problem, and they are evaluated by
comparing the values of objective function, the minimum
residual energy and the variance of residual energy in the
whole network.
• The number of IoT nodes in the network. Intuitively, the num-

ber of IoT nodes deployed affects the experimental results to
some extent. The fewer the number of IoT nodes is deployed
in the network, the more IoT services are configured on each
node. And thus the energy consumption of communication
is economized in the network. In our experiments, the num-
ber of IoT nodes distributed in the network region is set to
a value ranging from 30 to 70.
• The number of functional-overlap in concurrent service re-

quests. In our experiments, the functional-coincidence is set
by adjusting the number of the shared functionalities that
satisfy temporal constraints in multiple service requests. The
number of overlapping service classes pairs ranging from 4
to 7 gradually to verify the impact of experiments.

1024 M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030

Table 3
The results of IoT service compositions by PSO.

clSid svIid ndidIoT
rq1 3 325 42

4 246 5
2 293 17
1 219 15
9 164 29

10 161 10

rq2 6 346 2
4 246 5
1 296 29
9 255 48

14 135 24
2 124 25
8 160 7

rq3 7 191 16
14 263 14
1 296 29
4 309 24
6 253 6

10 214 26

Table 4
The results of IoT service compositions by GWO.

clSid svIid ndidIoT
rq1 3 319 43

4 172 40
2 138 21
1 73 3
9 362 33

10 297 16

rq2 6 396 11
4 206 33
1 313 29
9 164 29

14 244 32
2 216 2
8 324 22

rq3 7 181 2
14 250 7
1 375 17
4 100 12
6 60 16

10 387 6

5.2. Experimental evaluation

5.2.1. Experimental result and impact of key parameters
According to the experimental sample mentioned in Sec-

tion 5.1, 400 IoT services are generated randomly, and their
names and descriptions are composed by semantic keywords
of these given service classes. The temporal constraints of con-
current service requests are represented as Fig. 2. Firstly, PSO
and GWO are adopted to compose services according to the
given temporal service request graphs. Results of IoT services
compositions and corresponding IoT nodes by PSO and GWO are
shown in Tables 3 and 4. According to Formula (21), the values
of objective function corresponding to service compositions gen-
erated by PSO and GWO are 0.372021 and 0.371511, respectively,
where the larger the value is, the better the composition is. The
results show that appropriately optimal service compositions for
concurrent service requests by adopting two heuristic algorithms
PSO and GWO are mostly similar. The difference between their
results is mainly due to the randomness of these experiments.
And two algorithms are adopted to show the impact of different
algorithms to our CRIO mechanism.

Fig. 3. The value of objective function for PSO and GWO when the algorithms
are executed in 50 contiguous times.

Fig. 4. The ratio of minimum residual energy of all IoT nodes for PSO and GWO
when the algorithms are executed in 50 contiguous times.

The variation tendency about the value of the objective func-
tion is shown in Fig. 3. Evolution has been executed 50 con-
tiguous times for reducing the impact of randomness. The figure
shows that the values of objective function of both algorithms are
around 0.37, they have slight variation and the results for PSO are
more stable comparing with GWO. Fig. 4 shows the ratio of mini-
mum residual energy of all IoT nodes for 50 contiguous time slots.
The curve for PSO is slightly smoother than GWO which decreases
quickly as shown in the figure. The initial energy of all IoT nodes
is set to the same amount in our experiments, and the ending of
the entire network lifecycle is identified when the first IoT node
exhausts its energy. As can be seen from the figure, PSO is more
effective in preserving the minimum residual energy by selecting
appropriate IoT services for instantiating service requests. Fig. 5
shows the variance of the residual energy of IoT nodes for 50
contiguous times when PSO and GWO are adopted. Generally, the
variance refers to the balance of energy consumption in the whole
network, and the more uneven of the energy consumption of IoT
nodes, the larger the value of variance is. The figure shows that
PSO outperforms GWO in balancing the energy consumption in
the network, thus extending the lifecycle of entire network.

Fig. 6 shows the comparison of energy consumption when the
number of IoT nodes ranges from 30 to 70. The other parameters
are the same setting for this experiment. This figure shows that
the energy consumption ascends gradually with the increasing
number of IoT nodes. Note that when two adjacent services are

M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030 1025

Fig. 5. The variance of minimum residual energy of all IoT nodes in the whole
network for PSO and GWO when the algorithms are executed in 50 contiguous
times.

Fig. 6. The energy consumption for IoT nodes ranging from 30 to 70 adopted
to PSO and GWO respectively.

configured on the same IoT node, the energy consumption of
transmitting and receiving data packets is saved in the network,
and which reduces the energy consumption of the whole network
whether PSO or GWO is adopted.

The impact of the number of functional-overlap service classes
in concurrent service requests on energy consumption for PSO
and GWO is shown in Fig. 7 and Fig. 8 respectively. Experi-
ments have been executed 10 times, which show that the energy
consumption is decreasing along with the increasing number of
functional-overlap in concurrent service requests. Generally, the
number of functional-overlap of service classes has a significant
impact on energy consumption regardless of which algorithm is
adopted, especially when the functional-overlap degree is rela-
tively large. The overlapping of functionalities increases the possi-
bility of service sharing to reduce energy consumption according
to temporal interval coincidence.

5.2.2. Comparison with CR for service composition
This section presents the comparison for our mechanism CRIO

and the strategy that implementing and instantiating these ser-
vice classes in concurrent service requests in an independent
fashion is denoted as CR. To reduce of the influence of different
algorithms on experimental results, PSO and GWO were used to
compare the performance of CRIO and CR, respectively. Fig. 9

Fig. 7. The energy consumption of different number of functional-overlap in
concurrent service requests when PSO is executed in 10 times.

Fig. 8. The energy consumption of different number of functional-overlap in
concurrent service requests when GWO is executed in 10 times.

shows that the CRIO optimization mechanism adopting these two
algorithms can reduce more energy consumption than CR. The
minimum residual energy ratio for CRIO and CR is presented as
Fig. 10. This figure shows that the minimum residual energy of IoT
nodes for CRIO is more than CR, which means that CRIO has better
results in preserving energy and our mechanism is effective.
Due to integration and sharing in common service classes, the
energy consumption of CRIO for concurrent service requests is
reduced comparing to the CR which executes each functionality
independently. Therefore, for CRIO, the minimum residual energy
ratio of the whole network is larger no matter what algorithm is
adopted.

5.2.3. Comparison with SSA [19] for service selection
This section presents the comparison of our mechanism CRIO

and the Service Selection Approach (denoted SSA) proposed in
[19]. As discussed in [19], SSA considers the best-fitted QoS and
makes efficient usage of services among multiple requests. The
approach concerns both functional and non-functional require-
ments, where selecting temporal availability, residual energy and
transmission distance as the QoS attributes to adapt to our ex-
perimental scenario. For minimized and maximized objective at-
tributes, they are processed so that they can be compared by the
same principle. Each QoS attribute value is regarded as a vector,
and the sum of vectors of all attributes for an IoT service is used as

1026 M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030

Fig. 9. The energy consumption for CRIO and CR adopted to PSO and GWO when
the algorithms are executed in 50 contiguous times.

Fig. 10. The ratio of minimum residual energy of IoT nodes in the whole
network for CRIO and CR with PSO and GWO when the algorithms are executed
in 50 contiguous times.

a standard to measure it. Load-balancing among these IoT nodes
should be fully considered to avoid being used excessively of any
one, where an IoT service with optimal QoS attributes is selected
in the candidate set.

Fig. 11 shows the energy consumption of our mechanism
compared with SSA for executing 50 contiguous times. Note that
CRIO-PSO (or CRIO-GWO) means that these two algorithms are
adopted and optimized by the CRIO mechanism, and SSA is the
approach designed by [19] according to our experimental sce-
nario. The energy consumption of the CRIOmechanism is between
450 nJ and 850 nJ, which the overall average energy consumption
is about 650 nJ excepting some maximum or minimum values
that occur in a few cases. And the energy consumption adopting
SSA is relatively stable which is about 1200 nJ. Fig. 11 shows
that energy consumption is much higher for SSA compared with
CRIO-PSO and CRIO-GWO. As presented by Algorithm 1, this mech-
anism considers service sharing in concurrent service requests
and proposes common component integration under conditions
that satisfy temporal constraints. As a result, some of the en-
ergy consumed to activate services is saved, which influences
the minimum residual energy in the whole network. Compared
with the CRIO mechanism, the minimum residual energy of SSA
decreases rapidly shown as Fig. 12, which means that CRIO is

Fig. 11. The energy consumption for CRIO adopted to PSO and GWO and SSA
when the algorithms are executed in 50 contiguous times.

Fig. 12. The ratio of minimum residual energy of all IoT nodes for CRIO adopted
to PSO and GWO and SSA when the algorithms are executed in 50 contiguous
times.

superior in reducing energy consumption and maintaining load
balancing throughout the network.

5.2.4. Comparison with MOEAQI [20] for service selection
This section presents the comparison for our mechanism CRIO

and the improved multi-objective evolutionary algorithmMOEAQI
proposed in [20], whereMOEAQI selects optimal solutions consid-
ering both QoS criteria and inter-service correlations. In order to
adapt to our experimental settings, we consider service selection
at build time in [20]. Temporal availability, residual energy and
transmission distance are chosen as the criterion to measure QoS.
Different from business processes in [20], inter-service correla-
tions are calculated based on the nodes hosting these IoT services,
where energy consumption by transmitting and receiving of
adjacent services is considered. The whole processes of MOEAQI
is designed including service pruning, nondominated sorting and
offspring generation. Both QoS constraints and inter-service cor-
relations are considered to compute the satisfaction degree when
a service composition is achieved. Classical crossover and mu-
tation operators are adopted to generate offsprings based on
evaluation strategy of service compositions. Pareto optimal ser-
vice compositions are acquired when the maximum iteration is
reached.

M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030 1027

Fig. 13. The energy consumption for CRIO adopted to PSO and GWO, and
MOEAQI, when both algorithms are executed in 50 contiguous times.

Fig. 14. The ratio of minimum residual energy of all IoT nodes for CRIO adopted
to PSO and GWO and MOEAQI when the algorithms are executed in 50 contiguous
times.

Fig. 13 illustrates the energy consumption of CRIO compared
with MOEAQI when both algorithms are executed in 50 con-
tiguous times. CRIO-PSO (or CRIO-GWO) means that the CRIO
mechanism adopted to PSO (or GWO), and MOEAQI is designed
by [20], where some adaptive changes have been made based on
our experimental environment settings. This figure shows that
energy consumption of MOEAQI is roughly between 900 nJ and
1200 nJ, which is much higher than CRIO-PSO (or CRIO-GWO).
Because the mechanism of MOEAQI does not allow for resource
sharing, and does not consider the concurrency of IoT nodes,
the optimization of concurrent services is not well addressed.
The ratio of minimum residual energy of IoT nodes is shown
by Fig. 14, where the proportion of remaining energy decreases
quickly due to the excessive consumption of energy in most
situations. However, compared with traditional service selection
methods, MOEAQI considers the relevance between consecutive
services, which reduces a certain amount of energy consumption
for sensory data transmission.

To summarize, it can be concluded that our CRIO mechanism
can be of significance for integrating concurrent users’ require-
ments with temporal constraints and thus forming relatively
optimized service compositions by comparing with the state-of-
art approaches including SSA and MOEAQI. Two swarm intelligent
algorithms, PSO and GWO show little difference in experimen-
tal results of the objective function and PSO performs slightly
better than GWO in minimum and variance of residual energy.

Meanwhile, the energy consumption relates to the number of
functional-overlap in concurrent service requests and the number
of IoT nodes throughout the network.

6. Related work and comparison

In this section, we classify related techniques and approaches
into the following three aspects: (i) energy-efficient service com-
position, (ii) multi-application sharing, and (iii) temporal con-
straints for service composition.

6.1. Energy-efficient service composition

With the development of service defined everything [21,22],
SOA is adopted to achieve higher levels of interoperability, and
related techniques are denoted as a component-based model
which interrelates various functional services. Due to the evo-
lution of Cloud computing, Edge computing and IoT, some tech-
niques explore service compositions based on diverse infrastruc-
ture platforms. A single intelligent node can hardly fulfill rela-
tively complex requirements. Consequently, the cooperation and
collaboration between nodes is essential [23–26]. These nodes
can be connected and composed through traditional service com-
position techniques. A composite service orchestrates a set of
atomic services to solve a relatively complex goal successfully in
a way that adds value to the delivered composite services [27].
It is worth noting that different from traditional service compo-
sition techniques, the physical characteristics of nodes should be
considered for ensuring the win–win result.

Besides, some techniques adopt software agents as potential
candidates for achieving the collaboration of services. Gener-
ally, software agents deployed in Cloud architecture are imple-
mented to fulfill requirements of applications. Energy-efficiency
is a promising research challenge in service composition of in-
frastructure. In [28], authors developed a novel multi-cloud IoT
service composition algorithm which is adopted to reduce a large
amount of data exchange and various other operations. They
created an energy-aware composition plan through discovering
and integrating the least possible number of IoT services in order
to fulfill certain requirements. A novel multi-agent approach to
perform Web service composition is proposed in [29], which ful-
fills compositions based on user’s requirements of either energy
efficiency or cost-effectiveness through adopting to the efficient
retrieval of distributed services and propagation of information
within the agent network for reducing the amount of brute-force
search. To select the most energy efficient service compositions
from cloud-based data centers, a novel bin-packing service broker
is proposed in [30] using integer linear programming named
Cloud-SEnergy. This technique matches the user’s needs and dis-
covers the least possible number of cloud services’ providers
in the multi-cloud environment to accomplish the objective of
energy efficiency.

Energy-aware service composition has been paid extensive
attention in WSN in recent years. Authors in [6] presented a
three-tier service-oriented framework, where sensor nodes are
encapsulated as WSN services, and they are classified as ser-
vice classes in terms of their similarity of functionalities. These
service classes are selected to construct chains for fulfilling the
requirements. In the process of instantiation, spatial and temporal
constraints and energy efficiency are taken into consideration to
select a service composition which has greater relevance and less
energy consumption. As a special architecture of WSN, physical
properties of IoT nodes, especially the energy consumption, is the
focus of current methodological studies. In [31], authors proposed
a situation-aware dynamic IoT services coordination approach,
which effectively integrates the advantages of service-oriented

1028 M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030

architecture and event driven architecture. Energy consumption
is the main challenge in composing the minimum service nodes
to preserve the energy and decrease the cost. In our approach,
service compositions are optimized through integrating common
functional components, where taking functionality properties as
the first class citizen. Besides, spatial constraints, temporal rele-
vancy and energy consumption are non-functional factors which
affect the result of service recommendation and composition.

6.2. Multi-application sharing

As the explosive growth of the network scale, both network
traffic and bandwidth are presented by unprecedented tendency.
Complex networks are adopted to fulfill more and more require-
ments, and the concurrency is one of the research topics of
network service that supporting multiple applications in vari-
ous domain. Generally, supporting concurrent applications is an
approach for maximizing the resource utilization and reducing
response time [32]. Several approaches have been developed for
managing the processing of multiple applications. Data sharing
technique amongst multiple applications efficiently reduces en-
ergy consumption and communication cost by decreasing the
number of data sampling. In [33], authors proposed a data shar-
ing approach to schedule sampling intervals in WSNs. This ap-
proach adopts jointly optimizing task allocation and sampling
interval scheduling to maximize data sharing. Authors in [9]
study data sharing for data collection and how to reduce the
overall length of data sampling intervals among multiple appli-
cations. This problem is formulated as a non-linear nonconvex
optimization problem, where a greedy approximation algorithm
is adopted to improve resource utilization.

With the increasing number of requirements, sequential pro-
cessing cannot satisfy efficiency demand for multiple time-
sensitive applications. There are obvious advantages where an
infrastructure can be shared across multiple applications. The
sharing of equipments and sensing architectures in the network
plays an important role in the optimization of multi-application.
A data aggregation architecture which optimizes the power con-
sumption of several applications deployed on the sensor nodes
is proposed in [34]. The architecture includes two layers, the
low layer is formed by the physical sensor nodes and the high
layer is constituted by agents which adopts a cooperative strategy
based on a single application. In [8], a platform that trans-
forms the sensor network into an open access infrastructure that
supports multiple collaborative applications is proposed, which
decouples between the infrastructures and applications. In this
platform, each application works in an isolated environment
which consisted by a hardware abstraction layer. The innovative
development can open new opportunities for efficient resource
utilization. Generally, these approaches are mainly designed for
the multi-application sharing technology, whereas the time at-
tribute of applications is not taken into account. Among the
interval data sampling techniques mentioned earlier, there is
a time interval involving data procurement, which have some
similarities with our paper to an extent. However, those methods
we mentioned do not involve temporal dependencies, which is
an emphasis of our approach to implement service sharing in
multiple application combinations.

6.3. Temporal constraints for service composition

Temporal property is an essential ingredient to guarantee the
timeliness of functionalities for each service to fulfill certain
requirements. As a critical non-functional indicator, temporal
attribute has not been studied extensively by most current re-
searches in service composition. Actually, each atomic service

in the composition should have its own temporal restriction. In
some scenarios, requirements are limited to a certain of global
temporal intervals, which can be satisfied only if all the service
providers in the composition apply themselves to satisfy their
own local temporal constraints. Usually, these services are en-
sured effectiveness, which are the antecedent conditions on the
occurrence of the following [35]. Therefore, it is important to
take the temporal constraints into consideration for IoT service
composition.

Due to the sequence and temporal factors, some papers focus
on the dynamic controllability in service composition. In [12], a
novel proactive dynamic service selection approach is proposed
to solve uncertainty during service execution. Several sudden
situations may occur at run-time because of the dynamic of
system. To do so, a set of thresholds is identified to characterize
the trigger dynamic selection mechanism and some alternative
services are set for each task, which are updated during exe-
cution based on the result of the already executed services to
meet the temporal constraints of users. In order to guarantee the
service processes successfully, it is important to optimize the ser-
vice dynamically for guaranteeing certain temporal constraints.
A two-stage approach based on dynamic optimization of service
processes is proposed in [36] based on temporal constraints.
Firstly, calculating the temporal constraints by considering both
the uncertainty of queue time and operation time of services
in processes. And the temporal adjustment model is adopted
to adjust optimal solution. Once potential temporal violations
are discovered, temporal adjustment is executed to fulfill the
requirement of temporal consistency.

Petri nets are widely used to model and analyze service com-
position technology. Petri net describes the functional transition
between activities through sequence and logical structure. Au-
thors in [37] proposed a Petri net-based algebra to model control
flows. They declared that the defined algebra is a good way to
represent dynamic and transient relationships among services.
Authors structured service composition based on workflow Petri
nets and discussed the compatibility and environments in that
technique. In [38], authors presented a Petri net-based method
to consider message mismatches, state–space explosion and ex-
ecution paths in a modular way. Petri net is used to formalize
services, which can express the temporal relation between ser-
vices clearly. As another canonical model, the temporal problems
addressed in the thesis are stated and analyzed based on simple
temporal networks [13]. The qualitative network model of inter-
val algebra is adopted to describe temporal constraints among the
tasks to which an agent has committed itself. Generally, these
approaches are mainly focus on absolute temporal relations in
service composition, whereas relative temporal dependency has
not been explored extensively. To remedy this issue, this paper
takes temporal dependency and service sharing into concern for
supporting concurrent applications, and hence, addressing the
energy efficiency throughout the network.

7. Conclusion

This paper proposes an energy-efficient mechanism to op-
timize IoT service compositions for supporting concurrent re-
quests. Specifically, an IoT node is encapsulated with multiple
IoT services which correspond to various functionalities hosted
by this IoT node. IoT services are classified into service classes
based on the similarity of their functionalities. The requests
are achieved by the composition of service classes with tem-
poral dependencies. Compositions of concurrent requests are
optimized through integrating common components. This IoT
service composition is reduced to the constrained multi-objective
optimization problem, where spatial–temporal relevancy, energy

M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030 1029

efficiency of IoT nodes are considered. Experimental results show
that this technique can improve the shareability of IoT services
among concurrent requests, and reduce the energy consumption
of the network. Note that IoT services and service classes may
be different in their granularity. Considering the impact of gran-
ularity to IoT service composition is one of our future research
challenges.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant no. 61772479 and 61662021).

Conflict of interest

None.

Declaration of competing interest

The authors declared that they had no conflicts of interest with
respect to their authorship or the publication of this article.

References

[1] S. Xiong, Q. Ni, X. Wang, Y. Su, A connectivity enhancement scheme based
on link transformation in IoT sensing networks, IEEE Internet Things J. 4
(6) (2017) 2297–2308.

[2] C. Zhu, J.J.P.C. Rodrigues, V.C.M. Leung, L. Shu, L.T. Yang, Trust-based
communication for the industrial internet of things, IEEE Commun. Mag.
56 (2) (2018) 16–22.

[3] K.S. Adu-Manu, N. Adam, C. Tapparello, H. Ayatollahi, W. Heinzelman,
Energy-Harvesting Wireless Sensor Networks, EH-WSNs : A review, ACM
Trans. Sensor Netw. 14 (2) (2018) http://dx.doi.org/10.1145/3183338.

[4] C. Wang, J. Li, Y. Yang, F. Ye, Combining solar energy harvesting with
wireless charging for hybrid wireless sensor networks, IEEE Trans. Mob.
Comput. 17 (3) (2018) 560–576.

[5] X. Xue, S. Wang, Z. Lejun, Z. Feng, Evaluating of dynamic service matching
strategy for social manufacturing in cloud environment, Future Gener.
Comput. Syst. 91 (2019) 311–326.

[6] Z. Zhou, D. Zhao, L. Liu, P.C.K. Hung, Energy-aware composition for wireless
sensor networks as a service, Future Gener. Comput. Syst. 80 (2018)
299–310.

[7] J. Maerien, S. Michiels, D. Hughes, Christophe, Seclooci: A comprehensive
security middleware architecture for shared wireless sensor networks, Ad
Hoc Netw. 25 (A) (2015) 141–169.

[8] I. Leontiadis, C. Efstratiou, C. Mascolo, J. Crowcroft, Senshare: Transforming
sensor networks into multi-application sensing infrastructures, Wirel. Sens.
Netw. 7158 (2012) 65–81.

[9] H. Gao, X. Fang, J. Li, Y. Li, Data collection in multi-application sharing
wireless sensor networks, IEEE Trans. Parallel Distrib. Syst. 26 (2) (2015)
403–412.

[10] Z. Zhou, Z. Cheng, K. Ning, W. Li, L. Zhang, A sub-chain ranking and recom-
mendation mechanism for facilitating geospatial web service composition,
Int. J. Web Serv. Res. 11 (3) (2014) 52–75.

[11] T. Laleh, J. Paquet, S. Mokhov, Y. Yan, Constraint verification failure
recovery in web service composition, Future Gener. Comput. Syst. 89
(2018) 387–401.

[12] G. Ikbel, J.I. Al, G. Nawal, Dynamic selection for service composition based
on temporal and QoS constraints, in: IEEE International Conference on
Services Computing, 2016, pp. 267–274.

[13] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks, Artificial
Intelligence (1991) 61–95.

[14] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM
26 (1983) 832–843.

[15] W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient com-
munication protocol for wireless microsensor networks, in: 33rd Annual
Hawaii International Conference on System Sciences, 2000, pp. 1–10.

[16] Y. Yun, X. Ye, Maximizing the Lifetime of Wireless Sensor Networks with
Mobile Sink in Delay-Tolerant Applications, vol. 9, (9) IEEE Educational
Activities Department, 2010, pp. 1308–1318.

[17] H. Faris, I. Aljarah, M.A. Al-Betar, S. Mirjalili, Grey wolf optimizer: A review
of recent variants and applications, Neural Comput. Appl. 30 (2) (2018)
413–435.

[18] Z. Zhou, D.Z.L. Shu, H.-C. Chao, Efficient multi-attribute query processing in
heterogeneous wireless sensor networks, J. Internet Technol. 15 (5) (2014)
699–712.

[19] J.C. Lima, R.C.A. Rocha, F.M. Costa, An approach for QoS-aware selection of
shared services for multiple service choreographies, in: Service-Oriented
System Engineering, 2016, pp. 221–230.

[20] H. Liang, Y. Du, T. Jiang, F. Li, A comprehensive multi-objective approach
of service selection for service processes with twofold restrictions, Future
Gener. Comput. Syst. 92 (2019) 119–140.

[21] M. Ali, A. Benjamin, M. Adda, K.C. Heng, Optimisation methods for
fast restoration of software-defined networks, IEEE Access 5 (2017)
16111–16123.

[22] Y. Duan, W. Li, X. Fu, Y. Luo, L. Yang, A methodology for reliability of WSN
based on software defined network in adaptive industrial environment,
IEEE/CAA J. Autom. Sin. 5 (1) (2018) 74–82.

[23] I.R. Chen, J. Guo, F. Bao, Trust management for soa-based IoT and its
application to service composition, IEEE Trans. Serv. Comput. 9 (3) (2017)
482–495.

[24] K.I. Young, K.H. Gyu, M.A. Jimenez, K.J. Hyun, Soiot:Toward a user-centric
IoT-based service framework, ACM Trans. Internet Technol. 16 (2) (2016)
1–21.

[25] K. Eric, N. Amiya, Capability reconciliation for a csp approach to virtual
device composition, IEEE/ACM Trans. Netw. PP (99) (2012) 1.

[26] M. Asim, A. Yautsiukhin, A.D. Brucker, T. Baker, Q. Shi, B. Lempereur,
Security policy monitoring of BPMN-based service compositions, J. Softw.
: Evol. Process (2018) http://dx.doi.org/10.1002/smr.1944.

[27] P. Asghari, A.M. Rahmani, H.H.S. Javadi, Service composition approaches in
IoT: A systematic review, J. Netw. Comput. Appl. 120 (2018) 61–77.

[28] T. Baker, M. Asim, H. Tawfik, B. Aldawsari, R. Buyya, An energy-aware
service composition algorithm for multiple cloud-based IoT applications, J.
Netw. Comput. Appl. 89 (2017) 96–108.

[29] P. Kendrick, T. Baker, Z. Maamar, A. Hussain, R. Buyya, An efficient
multi-cloud service composition using a distributed multiagent-based
memory-driven approach, IEEE Trans. Sustain. Comput. (2018) http://dx.
doi.org/10.1109/TSUSC.2018.2881416.

[30] T. Baker, B. Aldawsari, M. Asim, H. Tawfik, A bin-packing based multi-
cloud service broker for energy efficient composition and execution of
data-intensive applications, Sustain. Comput. : Inform. Syst. (2018) http:
//dx.doi.org/10.1016/j.suscom.2018.05.011.

[31] B. Cheng, M. Wang, S. Zhao, Z. Zhai, D. Zhu, J. Chen, Situation-aware
dynamic service coordination in an IoT environment, IEEE/ACM Trans.
Netw. 25 (4) (2017) 2082–2095.

[32] J. Li, S. Cheng, H. Gao, Z. Cai, Approximate physical world reconstruction
algorithms in sensor networks, IEEE Trans. Parallel Distrib. Syst. 25 (12)
(2014) 3099–3110.

[33] Y. Zhao, D. Guo, J. Xu, P. Lv, T. Chen, J. Yin, Cats: Cooperative allocation of
tasks and scheduling of sampling intervals for maximizing data sharing in
WSNs, ACM Trans. Sensor Netw. 12 (4) (2016) http://dx.doi.org/10.1145/
2955102.

[34] A. Sardouk, R. Rahim-Amoud, L. Merghem-Boulahia, D. Ga?ti, Data aggre-
gation scheme for a multi-application WSN, Wired-Wirel. Multimed. Netw.
Serv. Manag. 5842 (2009) 183–188.

[35] X. Gao, S.P. Singh, Mining contracts for business events and temporal
constraints in service engagements, IEEE Trans. Serv. Comput. 7 (3) (2014)
427–439.

[36] H. Liang, Y. Du, Two-stage dynamic optimisation of service processes with
temporal constraints, Int. J. High Perform. Comput. Netw. 9 (1–2) (2016)
116–126.

[37] R. Hamadi, B. Benatallah, A petri net-based model for web service
composition, in: Australasian Database Conference, 2003, pp. 191–200.

[38] Y. Du, W. Tan, M. Zhou, Timed compatibility analysis of web service
composition: A modular approach based on petri nets, IEEE Trans. Autom.
Sci. Eng. 11 (2) (2014) 594–606.

Mengyu Sun is currently pursuing the Ph.D. degree
with the School of Information Engineering, China Uni-
versity of Geosciences (Beijing). Her research interests
include service computing and IoT sensing network.
Email: sunmengyu.cugb@gmail.com.

http://refhub.elsevier.com/S0167-739X(19)30227-4/sb1
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb1
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb1
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb1
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb1
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb2
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb2
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb2
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb2
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb2
http://dx.doi.org/10.1145/3183338
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb4
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb4
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb4
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb4
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb4
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb5
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb5
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb5
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb5
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb5
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb6
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb6
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb6
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb6
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb6
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb7
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb7
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb7
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb7
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb7
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb8
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb8
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb8
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb8
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb8
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb9
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb9
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb9
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb9
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb9
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb10
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb10
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb10
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb10
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb10
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb11
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb11
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb11
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb11
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb11
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb13
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb13
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb13
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb14
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb14
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb14
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb16
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb16
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb16
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb16
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb16
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb17
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb17
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb17
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb17
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb17
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb18
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb18
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb18
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb18
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb18
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb19
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb19
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb19
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb19
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb19
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb20
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb20
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb20
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb20
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb20
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb21
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb21
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb21
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb21
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb21
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb22
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb22
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb22
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb22
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb22
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb23
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb23
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb23
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb23
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb23
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb24
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb24
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb24
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb24
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb24
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb25
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb25
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb25
http://dx.doi.org/10.1002/smr.1944
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb27
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb27
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb27
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb28
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb28
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb28
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb28
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb28
http://dx.doi.org/10.1109/TSUSC.2018.2881416
http://dx.doi.org/10.1109/TSUSC.2018.2881416
http://dx.doi.org/10.1109/TSUSC.2018.2881416
http://dx.doi.org/10.1016/j.suscom.2018.05.011
http://dx.doi.org/10.1016/j.suscom.2018.05.011
http://dx.doi.org/10.1016/j.suscom.2018.05.011
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb31
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb31
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb31
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb31
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb31
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb32
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb32
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb32
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb32
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb32
http://dx.doi.org/10.1145/2955102
http://dx.doi.org/10.1145/2955102
http://dx.doi.org/10.1145/2955102
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb34
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb34
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb34
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb34
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb34
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb35
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb35
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb35
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb35
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb35
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb36
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb36
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb36
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb36
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb36
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb38
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb38
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb38
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb38
http://refhub.elsevier.com/S0167-739X(19)30227-4/sb38
mailto:sunmengyu.cugb@gmail.com

1030 M. Sun, Z. Zhou, J. Wang et al. / Future Generation Computer Systems 100 (2019) 1017–1030

Zhangbing Zhou is a professor at China University of
Geosciences (Beijing), China, and an adjunct profes-
sor at TELECOM SudParis, Evry, France. His research
interests include wireless sensor networks, services
computing and business process management. Email:
zhangbing.zhou@gmail.com.

Junping Wang is currently an Associate Research Fel-
low with the Laboratory of Precision Sensing and Con-
trol Center, Institute of Automation, Chinese Academy
of Sciences. His research interests include services
computing and business process management. Email:
wangjunping@bupt.edu.cn.

Chu Du is a Senior Engineer with the 54th Research
Institute of China Electronics Technology Group Corpo-
ration, Shijiazhuang, China. He has authored 10 referred
papers. His research interests include sensor network
middleware and process-aware information system.
Email: duchu2017@126.com.

Walid Gaaloul is currently a Professor with TELECOM
SudParis, France. His research interests include seman-
tic business process management, process intelligence,
and services computing. Email: walid.gaaloul@mines-
telecom.fr

mailto:zhangbing.zhou@gmail.com
mailto:wangjunping@bupt.edu.cn
mailto:duchu2017@126.com
mailto:walid.gaaloul@mines-telecom.fr
mailto:walid.gaaloul@mines-telecom.fr
mailto:walid.gaaloul@mines-telecom.fr

	Energy-Efficient IoT Service Composition for Concurrent Timed Applications
	Introduction
	Preliminaries
	Concept definition
	Energy model

	Concurrent service requests integration
	IoT service composition
	Constraints of IoT service composition
	Spatial constraints
	Temporal relevancy of common components with respect to various service requests
	Energy consumption of IoT service composition
	Residual energy constraint of IoT nodes

	Service composition optimization of concurrent service requests
	Optimization algorithms for concurrent service composition
	Particle swarm optimization (PSO)
	Grey wolf optimizer (GWO)

	Implementation and evaluation
	Experiment settings
	Experimental evaluation
	Experimental result and impact of key parameters
	Comparison with CR for service composition
	Comparison with SSA Lima2016SOSEApproach4QoSSelectionSharedSev4MulSevCom for service selection
	Comparison with MOEAQI Helan2019FGCSMulti-objectiveApproachSevSelection4SevProcesseswithRestrictions for service selection

	Related work and comparison
	Energy-efficient service composition
	Multi-application sharing
	Temporal constraints for service composition

	Conclusion
	Acknowledgments
	Conflict of interest
	Declaration of competing interest
	References

