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Abstract—This paper presents a tensor multi-task model for1

person re-identification (Re-ID). Due to discrepancy among2

cameras, our approach regards Re-ID from multiple cameras as3

different but related classification tasks, each task corresponding4

to a specific camera. In each task, we distinguish the person5

identity as a one-vs-all linear classification problem, where one6

classifier is associated with a specific person. By constructing7

all classifiers into a task-specific projection matrix, the proposed8

method could utilize all the matrices to form a tensor structure,9

and jointly train all the tasks in a uniform tensor space. In10

this space, by assuming the features of the same person under11

different cameras are generated from a latent subspace, and12

different identities under the same perspective share similar13

patterns, the high-order correlations, not only across different14

tasks but also within a certain task, can be captured by utilizing15

a new type of low-rank tensor constraint. Therefore, the learned16

classifiers transform the original feature vector into the latent17

space, where feature distributions across cameras can be well-18

aligned. Moreover, this model can be incorporated into multiple19

visual features to boost the performance, and easily extended to20

the unsupervised setting. Extensive experiments and comparisons21

with recent Re-ID methods manifest the competitive performance22

of our method.23

Index Terms—Person Re-identification, Multi-task learning,24

Tensor optimization.25

I. INTRODUCTION26

CAMERA networks are now ubiquitous in public infras-27

tructure for surveillance. As one of the most fundamental28

tasks for surveillance systems, person re-identification (Re-29

ID) [1], [31], [42], [49] has received considerable academic30

attention recently, owing to its tremendous potential in security31

applications such as people tracking [25] and behavior analysis32

[2]. The essential objective of person Re-ID is to identify33

target person from a large amount of visual data, where the34

images of persons are captured from non-overlapping camera35

views. This makes person images be under various viewpoints,36

different illuminations and human poses, leading to a large37

intra-personal variation. Furthermore, the surveillance data38
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Figure 1. The visual comparison of feature distributions alignment by using
t-SNE. (a) feature distribution in the original feature space; (b) and (c) feature
distributions in the projected common space produced by [44] and ours,
respectively. Blue and green points denote the features captured by Camera 1
and Camera 2, respectively. The overlap ratio of the two feature distributions
indicates the degree of alignment (the more, the better).

captured from the cameras often has a low resolution, which 39

also provides additional difficulties to match individuals. 40

To deal with these issues, several methods have been 41

investigated for decades. The recent success of person Re-ID 42

usually stems from the discriminative metric learning process, 43

which is commonly achieved by establishing a reliable view- 44

generic or view-specific matching model upon the training 45

data. Specifically, the view-generic methods [4], [31] utilize 46

a uniform model for all the cameras to distinguish different 47

people, while the view-specific model [13], [44] explicitly 48

captures camera-wise discrepancy. Since feature distributions 49

across different cameras can not be well-aligned by the view- 50

generic model (see Fig. 1(a) for more details), it is expected 51

that the view-specific model might be much more preferable. 52

A major problem for the view-specific model is the in- 53

sufficiency of training samples, particularly in the condition 54

of dramatic view-specific changes. Due to the difficulties of 55

collecting matched pairs, previous methods usually resort to 56

matrix regularization [13], [28], [32], [44], learning asymmet- 57

ric distance to describe such view-wise discrepancy. One key 58

assumption in this sort is that all view-specific projection ma- 59

trices are correlated via a certain structure, which, for example, 60

includes low-rank regularizer [44], Bregman discrepancy [32] 61

[28]. Nevertheless, one obvious drawback of these methods is 62

that they only focus on pairwise asymmetric metric learning, 63

where the knowledge is merely shared across the cameras, 64

ignoring the high-order correlation among cameras and per- 65

sons. Furthermore, the complexity increases in proportion to 66

the scale of the camera network. 67

In this paper, by considering each camera as one task, we 68

propose a new multi-task learning model via tensor regular- 69

ization for person Re-ID. Concretely, in each task (camera)1, 70

we recognize person identities via a standard one-vs-all multi- 71

class classification formulation, where one classifier is used to 72

1We do not distinguish between cameras and tasks throughout the paper.
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Fig. 2. The flowchart of the proposed approach. In the off-line stage, suppose there are three different cameras (tasks), and we formulate the person Re-ID
under a certain camera (task) as a standard one-vs-all multi-class classification problem, where one classifier corresponds to a specific person. All these linear
classifiers of a certain task are then constructed into a task-specific projection matrix (e.g., grey matrix, blue matrix and purple matrix). By stacking these
projection matrices to a tensor structure and imposing regularizer on it, all linear classifiers are optimized simultaneously to capture the high-order correlations.
Optimal projection matrices are finally obtained in an alternative way. In on-line stage, given the probe and its Camera ID, we transform original features
of probe and gallery images with corresponding projection matrix to a common space, which is produced by the outputs of classifiers. We compute cosine
distance to rank all gallery images.

distinguish a specific person, and all these binary classifiers73

are stitched into a task-specific projection matrix. To achieve74

better generalization ability, among different tasks, we assume75

that the features of the same person under different cam-76

eras are generated from a latent/common subspace. Within77

a certain task, we assume that different identities under the78

same perspective should share similar patterns. By utilizing79

a new type of low-rank tensor constraint, the correlation80

among all the projection matrices can be captured, such that81

the feature distributions from different tasks can be well-82

aligned in the projected common space (see Fig. 1 for more83

details). Thanks to this well-founded tensor norm, namely84

tensor-Singular Value Decomposition (t-SVD) based nuclear85

norm [48], its circulant algebra could provide the relationship86

not only along third dimension (task-specific) but also among87

different columns (person-specific). This indicates the high-88

order correlationship not only across different tasks but also89

through the classifiers under a certain camera (within a certain90

task) , which is the major motivation of the proposed tensor91

multi-task model.92

Inherited the merit from the multi-task learning, i.e., the93

knowledge obtained from each task being reused by the others94

leads to a better generalization ability, our proposed model95

can deal with the situation that little or even no training96

labels are given. The derived model can be further extended97

by incorporating various visual representations in a direct but98

elegant way. Our experiments show the promising performance99

of the person Re-ID on both supervised and unsupervised100

settings. Fig. 2 illustrates the pipeline of our proposed scheme.101

The main contributions of this paper are summarized as102

follows:103

• We propose a new multi-task learning model, in both su-104

pervised and unsupervised manners, by taking advantage105

of a new tensor regularization to effectively handle person 106

Re-ID, where the correlationship can be captured not only 107

across different tasks but also within the task itself. 108

• We present an efficient optimization algorithm to solve 109

the objective function of the proposed model, with rel- 110

atively low computational complexity and theoretical 111

convergence guarantee. 112

• The proposed model can be easily incorporated multiple 113

visual features in a flexible way. Interestingly, no matter 114

how we construct the multi-task tensor, the consistency 115

and complementary among different visual features could 116

be effectively exploited through high-order low-rank reg- 117

ularization. 118

• We conduct extensive evaluations of our method on sev- 119

eral benchmark datasets, which manifests the competitive 120

performance of our method. 121

The rest of this paper is organized as follows. Section II 122

introduces related works. Section III gives the notations used 123

throughout this paper. In Section IV, we firstly motivate the 124

proposed model in detail, present it formally, then give an 125

optimization algorithm to solve it, and extend the proposed 126

method at last. Experimental analysis and completion results 127

are shown in Section V to verify our method. Some analyses 128

and discussions are also provided in this section. Finally, we 129

conclude the proposed method in Section VI. 130

II. RELATED WORK 131

Most person Re-ID methods fall in the scope of robust 132

feature design and supervised/unsupervised distance metric 133

learning. Their strengths and limitations are briefly reviewed 134

below. 135
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A. Robust Feature Design136

Feature representation methods [4], [7] target on designing137

robust features against viewpoint, illumination and human138

pose changes. In the early stage, many hand-crafted features139

have been proposed, including texture descriptors [45], color140

information [7], gradient [49]. These local features do not141

need training process but are designed with human knowledge,142

which can be directly applied to any data since it doesn’t need143

any domain knowledge. In this framework, Liao et al. [4]144

adopted the Retinex algorithm to conquer illumination vari-145

ations and maximized the occurrence to deal with viewpoint146

changes. Matsukawa et al. [7] proposed to utilize hierarchical147

Gaussian distribution to preserve discriminative information148

for RE-ID, achieving promising performance. However, high149

precision needs to be accompanied with discriminative learn-150

ing process [4], [31], [45].151

More recently, deep learning is introduced into the Re-ID152

community and significantly promotes the performance. But153

its success partly stems from annotating a large number of154

labels. For sufficient training labels, SVDnet [46], MTDnet [1],155

CAN [12] and some other convolutional neural networks [3]156

have been proposed to produce more discriminative features.157

These methods differ significantly in network structure [18],158

training strategy [11] and loss function [40], leading different159

performance for Re-ID. On the contrary, there are also some160

methods aiming at designing domain-free feature extractors,161

such as JSTL [39], deep transfer model [30] and HIPHOP [5].162

Moreover, to take full advantage of the strengths of different163

features, a lot of works [21] have already begun to combine164

different visual features to boost Re-ID performance. MHJLw165

[27] was proposed to explore the correlation among the probe166

and gallery data with various visual representations. MMF167

[8] proposed a multi-index fusion procedure to fuse multiple168

visual features.169

B. Supervised Metric Learning170

Supervised distance learning is another important issue for171

person Re-ID. Most works resort to metric learning [36], [47],172

rank learning [29], subspace learning [4] and deep learning173

[3] to give more reliable and stable similarities to identify174

persons. Theses methods can be further divided into view-175

generic model and view-specific model. Notable view-generic176

models include Metric Ensembles [29], SCSP [9], Null Space177

[16], XQDA [4], KISSME [31], MFA [45] and so on, which178

don’t consider camera information and only build one model179

for all cameras. Hence, view-generic model is intrinsically180

limited, since the domain gap between cameras widely exists.181

But their computational complexity is usually low, making182

them scalable for large scale person Re-ID.183

On the contrary, view-specific model either learns a match-184

ing model for each pair of cameras, or trains different projec-185

tions for each camera. The former’s representative method is186

MtMCML [13], which designs multiple Mahalanobis distance187

metrics to associate with the camera network. However, the188

complexity of these methods increases in proportion to the189

scale of the camera network, making them not feasible for real-190

world application. Instead, the projection based framework is191

becoming popular. In this framework, Su et. al. [44] proposed 192

a multi-task classification framework to train view-specific 193

classifiers simultaneously. Chen et. al. [32] generalized Maha- 194

lanobis distance to asymmetric distance to describe the view- 195

wise discrepancy. These methods hold a common assumption 196

that all view-specific models are different but correlated , such 197

that information can be shared among all the models. How- 198

ever, previous works only focus on the relationship between 199

cameras, ignoring the high-order information among cameras 200

and persons, leading a suboptimal solution for person Re-ID. 201

C. Unsupervised Metric Learning 202

Learning a Re-ID model without training labels is a more 203

challenging task but has broader application scenarios. To 204

achieve this goal, a lot of transfer learning methods [6], 205

[30], [39] have been proposed, which transfer the knowledge 206

obtained from auxiliary datasets. Due to the domain gap across 207

datasets, Peng et al. [6] developed a cross-dataset transfer 208

model via multi-task dictionary learning. Geng et al. [30] 209

addressed the data sparsity problem by a well-designed trans- 210

fer deep structure and a loss-specific dropout strategy. Xiao 211

et al. [39] also proposed a novel domain guided dropout to 212

train images from all the datasets in a uniform deep structure, 213

which can be regarded as an excellent deep feature extractor. 214

Fan et al. [11] proposed a progressive training strategy by 215

iteratively performing clustering and fine-tuning, indicating 216

that the clustering results can also teach our model to improve 217

identification. 218

Apart from transfer learning, several other methods focus 219

on taking advantage of unlabeled training data to improving 220

unsupervised Re-ID performance. Kodirov et al. [37] intro- 221

duced l1-norm graph Laplacian term into dictionary learning 222

framework, jointly learning representation and discriminative 223

information. Lisanti et al. [38] also explored additional in- 224

formation carried by neighboring individuals and proposed a 225

solution for group Re-ID. To alleviate view-specific bias, Yu et 226

al. [28] followed the idea [11] and proposed an unsupervised 227

asymmetric metric via the clustering process. But this is 228

achieved by performing clustering multiple times, which is 229

time-consuming. 230

Summary: Our work is significantly differenced with pre- 231

vious works in a lot of aspects. First, the proposed method 232

extends traditional metric learning methods [4], [31] to asym- 233

metrical metric by exploiting camera information. Second, our 234

model is based on the assumption that the MTL framework 235

for Reid problem exists high-order correlations that not only 236

across tasks but also within a certain task, while existing Re- 237

ID model only focuses on exploring the relationship across 238

tasks [32], [44]. Third, we show that the well-founded tensor 239

structure can be flexibility incorporated into multiple visual 240

features, and is easily generalized to the unsupervised setting. 241

III. NOTATION 242

The notations used throughout the paper will be introduced 243

in this section. Specifically, we use lower case letters x(i, j) to 244

denote entries of matrix, bold lower case letters x to denote 245

vector and bold upper case letters X to denote matrix. The 246
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notation ‖X‖F := (
∑
i,j |xij |2)

1
2 is the Frobenius norm.247

And ‖X‖∗ :=
∑
i σi(X) is the matrix nuclear norm, where248

σi(X) denotes the i-th largest singular value of a matrix.249

The bold calligraphy letters are denoted for tensors (i.e.,250

Z ∈ Rn1×n2×n3 is a three-order tensor, where order means251

the number of ways of the tensor and is fixed at 3 in this252

paper). For a three-order tensor X , the 2D section X (i, :, :),253

X (:, i, :) and X (:, :, i) (Matlab notation is used for better254

understanding) denote the ith horizontal, lateral and frontal255

slices, respectively. Analogously, the 1D section X (i, j, :),256

X (i, :, j) and X (:, i, j) are the mode-1, mode-2 and mode-257

3 fibers of tensor. Specifically, X (k) is used to represent k-th258

Frontal Slice X (:, :, k) for convenience. And X f denotes the259

tensor that we apply Fourier transform to X along the third260

dimension.261

IV. THE PROPOSED METHOD262

A. Motivation263

Let X = {xi ∈ Rd}Ni=1 be a set of N samples, where d is
the dimension of the feature vector. Typical metric learning for
person Re-ID aims to learn mahalanobis distance M to match
individuals across multiple cameras, in which the distance
between any two samples xi and xj is given by a symmetric
model:

d(xi,xj) =
√

(xi − xj)TM(xi − xj) (1)

= ||UTxi −UTxj ||2,

where M = UUT . By computing distance between feature264

vectors of probe and gallery images, we rank gallery images265

to complete re-identification. However, due to a unitary266

mapping for all cameras used in symmetric model [4], such a267

formulation fails to handle the situation where dramatic view-268

specific (i.e., camera-specific) changes happen.269

Hence, suppose a more general case that there are V ≥
2 cameras with significant camera-specific discrepancy. Let
X(v) = [x

(v)
1 ,x

(v)
2 , ...,x

(v)
nv ] ∈ Rd×nv be the normalized

feature vectors of pedestrian images captured by the v-th
camera, where nv is the number of images under the v-th
camera. Note that we don’t assume the numbers of training
samples under different cameras are equal and this is suitable
for most Re-ID applications. Like [28], we use the camera-
specific projection matrix U(v), v = 1, 2, . . . , V to transform
each original feature vector to a latent space. In this latent
space, each probe and gallery images can be represented by
the projected feature. Thus, the distance between probe image
x
(v1)
i and gallery image x

(v2)
j is reformulated by:

d(x
(v1)
i ,x

(v2)
i ) = ||U(v1)Tx

(v1)
i −U(v2)Tx

(v2)
i ||2. (2)

In this way, distinct mapping matrices align feature distri-270

butions under different cameras, modeling the discrepancy271

among different cameras and generalizing the symmetric272

model (Eq. (1)) to asymmetric metric (Eq. (2)). As a result,273

the distance computed in this common space is more suitable274

for Re-ID on-line testing.275

To learn suitable projection matrices, we formulate the per-276

son Re-ID as a one-vs-all classification problem under multi-277

task framework. Formally, we are given V sets of classifiers,278

in which one set corresponds to one specific camera (task). 279

Let U = {U ∈ Rd×C}Vi=1 be the sets of the classifiers, U(v)
280

denote the projection matrix for v-th camera, its column, i.e., 281

U
(v)
i , represent the classifier for i-th identity under v-th cam- 282

era, C is the number of classes (i.e., persons). The relationship 283

among classifiers, projection matrices, and tasks is illustrated 284

in Fig. 3. Thus, given the training labels Y(v) ∈ (0, 1)C×nv

Tensor MTL

Across

 Task

Within 

Task

Task 1 Task 2 Task 3

Camera 1 Camera 2 Camera 3

Fig. 3. The learning detail of the proposed approach. Each matrix represents
the specific task learning problem. Each column of the matrix is a specific
classifier. Across-task and within-task are incorporated in our model via the
tensor structure.

285

whose c-th dimension is used to distinguish whether it belongs 286

to the c-th identity, a general classification model can be 287

described as: 288

U(v)∗ = argminL(U(v),X(v),Y(v)) + λR(U(v)), (3)

where L(U(v),X(v),Y(v)) indicates the classification term, 289

and R(U(v)) denotes the regularizer term for U(v), λ is the 290

trade-off parameter to balance two terms. 291

However, due to the limited number of collected matched 292

pairs, the learned classifiers are prone to be over-fitting. 293

Therefore, the regularizer term R(U(v)) will play a critical 294

role in learning process. Moreover, from the aspect of domain 295

transfer, it is expected that the knowledge obtained from one 296

camera can be re-used by others, which can further improve 297

the discriminant and generalization ability. This motivates us to 298

adopt the multi-task (MTL) framework constrained by tensor 299

based regularization to train the classifiers jointly. It is worth 300

noting that the typical MTL [44] only allows knowledge 301

sharing across the tasks (i.e., knowledge sharing is only across- 302

tasks not within a task), while ignoring a critical issue that, 303

the knowledge learned from the mapping to one output may 304

be useful to the others within a certain task (i.e., different 305

person-specific classifiers under one camera). In other words, 306

previous works mainly focus on pairwise asymmetric metric 307

learning, ignoring the high-order information among cameras 308

and persons. In the following, we will formally introduce our 309

supervised/unsupervised Tensor-MTL (t-MTL) model, which 310

extends to capture the high-order correlation across tasks and 311

within a certain task, as well as the corresponding optimization 312

algorithms and its attractive extension. 313
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B. Supervised t-MTL Learning314

One key assumption holds on MTL learning that all task-315

specific classifiers are correlated via a certain structure, so316

that the shared information can be transferred among tasks. To317

this end, we propose a new tensor structure for applications318

of person re-identification. Specifically, the proposed model is319

given as:320

min
U(v)

∑
v

L(U(v),X(v),Y(v))+α‖U‖~+β
∑
i 6=j

‖U(i)−U(j)‖2F

(4)
where α and β denote the trade-off parameters, U =
Φ(U(1),U(2), . . . ,U(V )) ∈ Rd×C×V is a tensor by merging
different U(v) to a 3-order tensor along third dimension. That
is to say, each frontal slice of U is our task-specific projection
matrix (i.e., U(:, :, v) = U(v)). We emphasize here that ‖ ·‖~
denotes the t-svd nuclear norm [22], which constrains the
tensor structure with a low-rank assumption. Here we give
its formulation and the detailed mathematical derivation is
introduced in supplementary material.

‖U‖~ = ||bcirc(U)||∗ (5)

= ||


U(1) U(V) · · · U(2)

U(2) U(1) · · · U(3)

...
...

. . .
...

UV U(V−1) · · · U(1)

 ||∗.
This low-rank assumption allows us to capture the high321

order relationship by comparing every column in each task-322

specific classifiers (within task) and every frontal slice over323

the third dimension (across task). Specifically, by measuring324

every column of frontal slices (i.e., U(i)), the classifiers,325

which are under different cameras but correspond to the326

specific identity, will be correlated. By measuring every row327

of frontal slices, the different identities, which are under the328

same perspective, would share similar patterns. It enables the329

model to achieve better performance and generation ability.330

Besides, the classification term L(U(v),X(v),Y(v)) can be331

any smooth and convex function measuring the discrepancy332

between groundtruth and predictions. Without loss of gener-333

ality, we define the classification term as:334

L(U(v),X(v),Y(v)) = ||U(v)TX(v) −Y(v)||2F . (6)

In this way, each column of the Uv matrix corresponds to one335

identity in the training set and Uv transforms the feature vector336

into the label space rather than the distance space. Although337

the identities included in training and testing set are completely338

non-overlapping, it is trivial and beneficial to adopt this setting.339

The main advantage is that we can directly compute the340

classification loss in the transformed space without additional341

mapping, as well as knowing the number of identities in the342

testing set. From this perspective, each unseen identity can be343

represented by other training identities. This representation is344

also discriminative since it can be further mapped to binary345

training labels. Furthermore, there is no need to differentiate346

the intra-view and inter-view situations like [32], because of347

the uniform label space. Meanwhile, due to the clear physical348

meaning of Uv , the consistent information both across and349

Algorithm 1: t-MTL
Input: Featre vector: Xv, v = 1, 2, . . . , V ,

labels:Yv, v = 1, 2, . . . , V , α > 0, β > 0
Output: Classifiers Uv, v = 1, 2, . . . , V

1 Initialized: Uv = 0; G = W = 0; ρ = 10−5,
ρmax = 1010;

2 Construct: Ũ,X̃,Ỹ,M
3 while not converge do
4 Update Ũ by using (16);
5 Obtain U through Ũ;
6 Update G via Algorithm 2;
7 Update Lagrange multipliers W by using (21);
8 Obtain G̃ and W̃ by G and W ;
9 Update parameters ρ: ρ = min(ηρ, ρmax);

10 end
11 Obtain Uv, v = 1, 2, . . . , V via Ũ;
12 Return Classifiers Uv, v = 1, 2, . . . , V .

within tasks can be explored more thoroughly via the tensor 350

structure. The Bregman discrepancy
∑
i 6=j ‖U(i)−U(j)‖2F is 351

also used in our model to guarantee the discrepancy between 352

transformations being controlled, leading to a more flexible 353

way for the metric learning. 354

C. Optimization Procedure 355

The optimization problem (4) seems challenging to solve,
not only because of the tensor low-rank norm on U , but also
due to the Bregman discrepancy. We first rewrite Eq. (4) in a
more compact form by constructing block matrices:

Ũ = [U(1);U(2); . . . ;U(V )], (7)

Ỹ = [Y(1),Y(2), . . . ,Y(V )]. (8)

Thus the classification term of Eq. (6) can be reformulated as:∑
v

||U(v)TX(v) −Y(v)||2F = ||ŨT X̃− Ỹ||2F (9)

where 356

X̃ =


X(1) 0 · · · 0

0 X(2) · · · 0
...

...
. . .

...
0 0 · · · X(V )

 . (10)

With identity matrix I ∈ Rd×d, we define a block matrix 357

M as: 358

M =


(V − 1)I −I · · · −I
−I (V − 1)I · · · −I
...

...
. . .

...
−I −I · · · (V − 1)I

 , (11)

and the Bregman discrepancy can be transferred as: 359∑
i 6=j

‖U(i) −U(j)‖2F = tr(ŨTMŨ). (12)

Then, Eq. (4) can be rewritten as: 360

min
Ũ
||ŨT X̃− Ỹ||2F + α‖U‖~ + βtr(ŨTMŨ) (13)
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The above optimization problem can be solved by using the
Augmented Lagrange Multiplier (ALM) [23]. To adopt alter-
nating direction minimizing strategy to problem Eq. (4), we
need to make the objective function seperable. By introducing
the auxiliary tensor variable G, the optimization problem
can be transferred to minimize the following unconstrained
problem:

L(Ũ;G) =||ŨT X̃− Ỹ||2F + α‖G‖~ + βtr(ŨTMŨ) (14)

+ 〈W ,U − G〉+
ρ

2
||U − G||2F

where the tensor W represents Lagrange multiplier, ρ is361

actually the penalty parameter, which are adjusted by using362

adaptive updating strategy as suggested in [50]. We adopt an363

alternating scheme and partition the unconstrained problem364

into two steps alternatingly.365

Ũ-subproblem: When tensor G is fixed, since G(v) =
Φ−1v (G) and W(v) = Φ−1v (W), where Φ−1v is the inverse
operation w.r.t Φ by clipping v-th frontal slice of the tensor,
our optimization task is transferred to solve the following

Algorithm 2: t-SVD based Tensor Nuclear Norm
Minimization

Input: Observed tensor F ∈ Rn1×n2×n3 , scalar τ > 0
Output: tensor G

1 Ff = fft(F , [ ], 3), τ ′ = n3τ ;
2 for j = 1 : n3 do
3 [U (j)

f ,S(j)
f ,V(j)

f ] = SVD(F (j)
f );

4 J (j)
f = diag{(1− τ ′

S(j)
f (i,i)

)+}, i =

1, . . . ,min(n1, n2);
5 S(j)

f,τ ′ = S(j)
f J (j)

J ;

6 G(j)
f = U (j)

f S(j)
f,τ ′V(j)T

f ;
7 end
8 G = ifft(Gf , [ ], 3);
9 Return tensor G.

subproblem for updating the projection matrix Ũ:

Ũ∗ = argmin
Ũ

||ŨT X̃− Ỹ||2F + βtr(ŨTMŨ) (15)

+ < W̃, Ũ− G̃ > +
ρ

2
||Ũ− G̃||2F

where W̃ and G̃ are the block matrices constructed by366

[W(1);W(2); . . . ;W(V )] and [G(1);G(2); . . . ;G(V )] like Ũ.367

It is easy to solve this optimization problem since it has a368

closed-form solution. We can obtain the solution by setting369

the derivative to zero:370

ŨT∗ = (ỸX̃T + ρG̃T − W̃T )(X̃X̃T + βM + ρĨ)−1 (16)

where Ĩ ∈ RV d×V d denotes the identity matrix.371

G-subproblem: When Ũ is fixed, solving Eq. (14) is equal372

to minimize the following problem:373

G∗ = argmin
G

α(||G||~ +
ρ

2α
||G − (U +

1

ρ
W)||2F ). (17)

It can be reformulated in a compact way: 374

min
G

τ ||G||~ +
1

2
||G −F ||2F (18)

where τ = α
ρ and F = (U + 1

ρW). The optimal solution of 375

this problem is given by following theorem: 376

Theorem 1. For τ > 0 and G,F ∈ Rn1×n2×n3 , the globally 377

optimal solution to the following problem 378

min
G

τ ||G||~ +
1

2
||G −F ||2F (19)

is given by the tensor tubal-shrinkage operator 379

G = Cn3τ (F) = U ∗ Cn3τ (S) ∗ VT, (20)

where F =
∑min(n1,n2)
i=1 U(:, i, :) ∗ S(i, i, :) ∗ V(:, i, :)T and 380

Cn3τ (S) = S ∗ J , herein, J is an n1 × n2 × n3 f-diagonal 381

tensor whose diagonal element in the Fourier domain is 382

J f (i, i, j) = (1− n3τ

S(j)
f (i,i)

)+. 383

The proof is given by supplementary material. Additionally, 384

the Lagrange multipliers W need to be updated as follows 385

W∗ = W + ρ(U − G) (21)

The above two steps are repeated until the convergence 386

condition is satisfied. Meanwhile based on [51], we have 387

following theorem regarding the convergence of Algorithm 1. 388

Theorem 2. The sequence (G, Ũ) generated by Algorithm 1 in 389

each step converges to an accumulation point. Moreover, the 390

accumulation point is an optimal solution of the optimization 391

problem (13). 392

Furthermore, the proposed method performs well and indeed 393

converges fast in reality, which will be illustrated in Section 394

V-C. In practice, we fix max iteration number to 30 for all 395

datasets. 396

D. Unsupervised t-MTL Learning 397

In the previous sections, we have introduced the idea 398

regarding the person Re-ID as an MTL classification problem. 399

In this framework, the proposed supervised t-MTL learns 400

suitable distance that matches the same individuals across 401

multiple cameras. However, it is not always guaranteed that 402

there are enough labels for training. Alternatively, a practical 403

and intuitive solution is to make full use of cheap and 404

valuable unlabeled data. But in the unsupervised setting, it 405

becomes more challenging to train the model, as we have no 406

labeled data to guide to distinguish similar appearance persons. 407

Instead, motivated by [28], we can replace the label Y(v)
408

in classification term by a virtual label. Specifically, we first 409

produce a virtual label for each training sample by clustering 410

(e.g., k-means clustering). Then, similar to our supervised t- 411

MTL method, minimize the following objective function to 412

obtain the projection matrices: 413

min
U(v)

∑
v

||U(v)TX(v)−P||2F +α‖U‖~+β
∑
i 6=j

‖U(i)−U(j)‖2F

(22)
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where P ∈ RC×K denotes the virtual label, and K is414

the number of cluster centers. Even though the virtual label415

is relatively undesirable w.r.t the ground truth, the tensor416

structure can benefit from the shared knowledge intra/inter-417

task to improve the generalization ability. Meanwhile, the418

proposed unsupervised model runs the clustering procedure419

only once, unlike [28], which must perform clustering many420

times until the algorithm converges.421

E. Multiple Visual Features for Tensor-MTL422

Existing person Re-ID methods [5], [16], [41], [43] usually423

utilize multiple types of visual features to boost performance424

by concatenating feature vectors. Nevertheless, such a kind of425

operation ignores the importance of different visual features,426

which can not exploit complementary information of multi-427

visual representations.428

Multi-visualM
u

lti-v
is

u
a
l

Tensor A Tensor B Tensor C

Persons

D
im

e
n

s
io

n

Fig. 4. The multi-visual tensor used in this paper. Each tensor is constituted
by stacking the classifiers.

Built upon our multi-task learning problem, we can further429

explore the shared information contained in the multi-visual430

representations. Owing to the tensor structure, the proposed431

model can be easily incorporated with multiple visual features432

by stacking their corresponding projection matrices. Suppose433

we have L visual representations for each image, let U
(v)
(l)434

denote the projection matrix for l-th visual feature and v-th435

camera, {U(v)
(l) }

L
l=1 implicitly encode the shared information436

hidden in different visual representations. In practice, we437

consider three ways to construct our multi-task tensor as438

shown in Fig. 3, which are denoted as UA, UB and UC ,439

respectively. Actually, these three ways are all equivalent due440

to the following Theorem.441

Theorem 3. The high-order nuclear norm on Tensor A, Tensor442

B and Tensor C is the same.443

The proof is provided in supplementary material. We im-444

plement our model by using the way as Tensor A (see Fig.445

3) for all experiments. In contrast to concatenate the feature446

vectors directly, the proposal utilizes circulant algebra to447

compare every specific classifier to capture the consistence.448

Thus the complementary information is implicitly embedded449

in the projections, which leads a better performance. To450

sum up, no matter how we construct the multi-task tensor,451

the consistency and complementary among different visual452

features could be effectively exploited through high-order low-453

rank regularization.454

F. Online Stage 455

In the online query stage, given the query image q with 456

camera ID vq ∈ [1, . . . , V ], we first extract multiple visual 457

features x(q) = [x(1)(q), . . . ,x(L)(q)]. Notice that, for the 458

Re-ID task, the classes in the training set can be the same as 459

or different from those in the gallery and probe sets. That is 460

to say, once the projection matrix U
(vq)

(l) , l = 1, . . . , L with 461

respect to vq-th camera are obtained in the off-line stage, we 462

directly use it without any modifications to convert extracted 463

features to the common space, no matter its label is in the 464

training set or not. 465

x′(q) = [U
(vq)T

(1) x(1)(q),U
(vq)T

(2) x(2)(q), . . . ,U
(vq)T

(L) x(L)(q)].
(23)

This projected visual features need to be further normalized. 466

For gallery image, we also transform their original feature 467

vectors to the common space as done for query images. 468

According to asymmetric model (Eq. (2)), we measure the 469

similarity between these two features by cosine distance. 470

Finally, we rank gallery images to complete Re-ID. 471

V. EXPERIMENTAL RESULTS AND ANALYSIS 472

In this section, we perform experiments to present a 473

comprehensive evaluation of the proposed method. All 474

experiments are implemented on a workstation with In- 475

tel Xeon E5-2630 @ 2.30 GHz CPU, 128GB RAM, 476

and TITANX GPU (12GB caches). To promote the cul- 477

ture of reproducible research, source codes and experimen- 478

tal results accompanying this paper will be released at 479

https://www.researchgate.net/profile/Zhizhong Zhang5. 480

To clearly illustrate our experimental strategies, we first 481

introduce our experimental settings, including datasets, feature 482

representations, and evaluation methodology. The main results 483

and observations of the proposed methods are then presented, 484

where both supervised and unsupervised settings are con- 485

ducted. In both manners, the comparison is made to measure 486

performance improvement on the baseline methods and some 487

other state-of-the-art methods. Meanwhile, we also conduct 488

experiments with variants of our approach and report results 489

by integrating multiple visual features to further confirm the 490

effectiveness of the extension of the proposal. At last, we 491

analyze the characteristics of our t-MTL method, such as 492

sensitivity, convergence, computational complexity and some 493

insights for unsupervised t-MTL. 494

A. Experimental Settings 495

We evaluate the proposed algorithm on four public bench- 496

mark datasets, i.e., ViPeR [33], CUHK01 [34], CUHK03 497

[35], and Market-1501 [49]. All of them are used to test 498

our supervised model, while only Viper and Market-1501 are 499

evaluated for our unsupervised t-MTL learning for simplicity. 500

In the following, we will introduce some experimental details 501

such as datasets, data representation, evaluation metric, and 502

parameter setting. 503

Datasets: VIPeR [33] presents illumination variations and 504

pose changes between pairs of views. We split the whole set of 505

632 image pairs randomly into two sets with equal size (316 506
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pairs), one for training and the other one for testing. A single507

image from the probe set is selected and matched with all the508

images from the gallery set. CUHK01 [34] dataset is captured509

with two camera views in a campus environment. This dataset510

contains 971 persons, and each person has two images in each511

camera view. The person identities are split into 485 for train-512

ing and 486 for the test. This dataset provides two evaluation513

modality: single-shot and multi-shot setting. CHUK03 [35]514

contains 13,164 images of 1,360 pedestrians captured from515

six surveillance camera views. Besides hand-cropped images,516

samples detected by a state-of-the-art pedestrian detector is517

provided. Market-1501 [49] is collected from six camera views518

in front of a supermarket in Tsinghua University. Overall,519

this dataset contains 32,668 annotated bounding boxes of520

1,501 identities. There are 12,936 images used for training521

and other 19732 images for testing. Data Representation522

for Supervised Model: To obtain the image representations,523

we utilize two representative descriptors, (i.e., Local Maximal524

Occurrence (LOMO) [4] and Gaussian Of Gaussian (GOG)525

[7]). In addition, we also use LOMO and GOG with the526

same weight to evaluate the performance of our multi-visual527

model. For market-1501, we follow the identification model528

proposed by [52] and train two baseline CNN networks, i.e.,529

CaffeNet [26] and ResNet50 [49] without any modifications .530

Data Representation for Unsupervised Model: In our531

experiments, we use the deep learning based JSTL feature532

proposed in [39]. We implement it by using the convolutional533

layers, Inception modules, and fully connected layers [39],534

producing a 256-D feature. The original JSTL is adopted to535

our implementation to extract features on Market-1501. Note536

that the training set of the original JSTL contained VIPeR,537

violating the unsupervised setting. So we train a new JSTL538

model without using VIPeR training data to extract features.539

Evaluation Measures: Three popular metrics are used540

to evaluate the performances, including cumulative match541

characteristic (CMC), Rank-1 accuracy (Rank-1), and mean542

average precision (mAP). In supervised setting, we evaluate543

the VIPeR, CUHK01 and CHUK03 by CMC as suggested in544

[4], [7], [27], [32], [44], while Rank-1 and mAP are adopted545

for Market-1501 [49]. In unsupervised setting, we follow [28]546

to report Rank-1 for VIPeR, Rank-1 and mAP for Market-547

1501. Note that in VIPeR and CUHK01, the reported final548

results on those metrics are measured by the average of 10549

runs, while 20 runs for CUHK03.550

Parameter setting: Only two parameters α and β need to551

be tuned. More details about the parameters will be discussed552

in Section V-C. The parameters in other competitors are set553

within ranges suggested by the original papers, and we tune554

those parameters so as to show the best results.555

B. Experimental Results556

1) Supervised t-MTL Results: VIPeR: For VIPeR dataset,557

we first compare the performance of the proposed method with558

some baseline models, which is shown in Table I. Our ap-559

proach gets the Rank-1 accuracy of 44.7%, 50.6% and 56.1%560

for LOMO, GOG and multiple visual features, respectively. It561

is worth noting that our approach outperforms the existing562

asymmetric person Re-ID methods, such as CVDCA [32] and 563

MTL-LORAE [44], by utilizing multiple visual features. Fur- 564

thermore, compared to the symmetric metric learning method 565

XQDA [4], our approach improves Rank-1 accuracy with an 566

absolute gain of 4.7%, 0.9% and 2.8% for various features. 567

But for Rank-5, Rank-10 and Rank-20 accuracy, our approach 568

performs almost the same or slightly worse than XQDA. 569

The reason for this may be that, our proposal is based on 570

the classification model which is good at identifying similar 571

appearance persons rather than concentrating on improving the 572

ranking performance [1]. 573

TABLE I
PERFORMANCES OF SUPERVISED T-MTL ON VIPER

Method Feature
Viper

Rank-1 rank-5 Rank-10 rank-20

MTL-LORAE [44] LBP+Attribute 42.3 72.2 81.6 89.6

CVDCA [32] LOMO 43.7 74.1 84.8 91.9
XQDA [4] LOMO 40.0 - 80.5 91.1

t-MTL(α = 0) LOMO 31.2 64.5 79.1 89.6
t-MTL(β = 0) LOMO 32.6 58.0 69.7 80.2

t-MTL LOMO 44.7 74.1 84.7 91.8

CVDCA [32] GOG 50.4 78.8 88.0 94.5
XQDA [4] GOG 49.7 - 88.6 94.5

t-MTL GOG 50.6 78.4 87.3 93.3

CVDCA [32] LOMO+GOG 49.5 78.6 87.7 94.1
XQDA [4] LOMO+GOG 53.3 - 90.9 95.7

t-MTL (L1 loss) LOMO+GOG 53.4 80.5 88.7 94.6
t-MTL (Concatenate) LOMO+GOG 55.8 82.1 90.3 95.5

t-MTL (Tensor) LOMO+GOG 56.1 82.1 90.3 95.5

To confirm the effectiveness of the proposed model, we 574

also conduct experiments with variants of our approach, (i.e., 575

discard either low-rank regularizer or Bregman discrepancy 576

constraint, and apply different tenor structures for multiple 577

visual features to implement high-order norm). For LOMO 578

feature, when we remove the tensor constraint or Bregman 579

discrepancy, respectively, i.e. by setting α = 0 (the fourth 580

row in Table. I) or β = 0 (the fifth row in Table. I), it 581

drops nearly 10% absolute reduction in term of Rank-1 582

TABLE II
PERFORMANCES OF SUPERVISED T-MTL ON VIPER WITH STATE-OF-THE

ART METHODS

Method Ref
Viper

Rank-1 Rank-10 rank-20

MTL-LORAE [44] ICCV2015 42.3 81.6 89.6
XQDA [4] CVPR2015 40.0 80.5 91.1

MetricEnsemple [29] CVPR2015 45.9 88.9 95.8
SSDAL [10] ECCV2016 43.5 81.5 89.0
NULL [16] CVPR2016 51.2 90.5 95.9

GOG [7] CVPR2016 49.7 88.6 94.5
KCVDCA [32] TCSVT2017 43.3 83.5 92.2
MHJLw [27] TNNLS2017 45.4 84.0 92.5

SSM [43] CVPR2017 53.7 91.5 96.1
MTDnet [1] AAAI2017 47.5 82.6 -
DictRW [41] IJCAI2017 55.7 91.5 96.7

t-MTL (Tensor) - 56.1 90.3 95.5
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accuracy. Meanwhile, for multiple visual features, two variants583

with regard to different ways of tensor construction, e.g.,584

concatenate like Tensor A (the penultimate row in Table. I)585

and stack like Tensor B (the last row in Table. I), achieve586

almost the same performance. Notice that both of them are587

superior to XQDA, while their baselines behave similar to588

XQDA. This indicates that our t-MTL method could capture589

the complementary knowledge between the LOMO feature and590

GOG feature, and elevate the performance to a higher level.591

We also use L1 loss (i.e., ||U(v)TX(v) −Y(v)||1) to replace592

L2 loss (i.e., ||U(v)TX(v) − Y(v)||22) for our classification593

term. The detailed solution to this problem is shown in594

the supplementary material. The result is shown in Table595

I. Although we carefully tune the parameters, L2 loss still596

performs slightly better than L1 loss. It appears that a smooth597

classification term could be beneficial.598

Furthermore, for ViPeR dataset, the comparison of visu-599

alization of distributions in the original feature spaces and600

the common spaces are provided by performing dimension601

reduction via PCA and t-SNE. As illustrated in Fig. 5 (a)602

and (b), the two feature distributions (blue and green points)603

obtained from two cameras have relatively low overlap ratio in604

original feature space, which indicates they are miss aligned605

for different tasks. Note that, under different cameras, the606

feature distributions in original feature space should be very607

different. But after the task-specific projections (see Fig. 5 (c)608

and (d)), the distributions are well aligned in common space,609

and data points are more separated than before.610

TABLE III
PERFORMANCES OF SUPERVISED T-MTL. MEASURED BY RANK-1

ACCURACIES FOR MARKET-1501

Method
Single Query Multiple Query

Rank-1 mAP Rank-1 mAP

CaffeNet [49] 59.53% 32.85% 66.63% 41.25%
CaffeNet+ CVDCA [32] 59.80% 35.69% - -

CaffNet+XQDA [4] 62.00% 37.55% 70.28% 46.78%
CaffNet+KISSME [31] 61.02% 37.72% 69.86% 45.34%

CaffNet+t-MTL 62.35% 35.60% 71.38% 44.68%

ResNet50 [49] 75.62% 50.68% 81.26% 59.10%
ResNet-50+CVDCA [32] 74.82% 50.21% - -

ResNet50+XQDA [4] 76.01% 52.98% 81.12% 61.09%
ResNet50+KISSME [31] 77.52% 53.88% 82.16% 61.54%

ResNet50+t-MTL 78.33% 52.66% 84.14% 61.73%

Since enormous algorithms have reported results on VIPeR611

dataset, it is unrealistic to exhibit all of them. Hence, we612

only include those published in recent 3 years or have close613

relationships with our work. As demonstrated in Table II, the614

proposed approach achieves highly comparable (even better)615

results with the state-of-the-art methods, including domain616

transfer method [1], multi-task learning method [44], and617

also outperforms the multi-visual fusion method [27]. It is618

remarkable that SSM [43], as a postprocessing method, also619

provides comparable performance. It can be anticipated that620

SSM and t-MTL will benefit from each other, and lead a better621

performance. Meanwhile, DictRW [41] exceeds our proposal622

in terms of Rank-10 and Rank-20 accuracy, since they embed623

TABLE IV
PERFORMANCES OF SUPERVISED T-MTL ON CUHK03

Method
Detected

Rank-1 rank-5 Rank-10 rank-20

DeepReID [35] 19.9 49.0 64.3 -
S-LSTM [17] 57.3 80.1 88.3

Null [16] 54.7 84.8 94.8 95.2
S-CNN [18] 61.8 80.9 88.3 -
SSM [43] 72.7 92.4 96.1 -

XQDA+LOMO [4] 46.3 78.9 88.6 94.3
XQDA+GOG [7] 64.0 88.6 94.2 97.6

CVDCA+LOMO+GOG [32] 59.6 86.6 93.9 97.3
XQDA+LOMO+GOG 68.1 90.2 95.0 98.0

t-MTL+LOMO 50.5 78.5 86.3 92.2
t-MTL+GOG 59.3 84.5 91.5 96.2

t-MTL+LOMO+GOG 66.5 88.3 93.3 97.0

Result of dimensionality reduction by PCA

(a)

Result of dimensionality reduction by t-SNE

(b)
Result of dimensionality reduction by PCA

(c)

Result of dimensionality reduction by t-SNE

(d)
Figure 5. Result of dimensionality reduction for ViPeR dataset (LOMO
feature). Figure. 5(a) and figure. 5(b) represent the original feature space,
while figure. 5(c) and figure. 5(d) represent the projected common space. Blue
points denote the features captured by Camera 1 and Green points denote the
features captured by Camera 2.

triplet relationship into the model while we only focus on 624

a classification model. By considering triplet loss, a slight 625

improvement can be expected. However, this is out of the 626

scope of this work. Besides, DictRW adopts deep feature 627

to produce a strong baseline. By contrast, we only adopt 628

handcrafted feature but achieve higher Rank-1 accuracy. 629

Market-1501: For Market-1501, since there are sufficient 630

training samples and labels, deep learning based methods [49] 631

achieve promising performance, as it is shown in Table III. 632

With our proposal, we can find that, by exploring inter/intra- 633

task correlations, the proposed method can further improve 634

the performance accompanied with the same deep features. 635

Concretely, for single query we outperform baseline models 636

with a clear improvement in terms of Rank-1 accuracy and 637

mAP. For CaffeNet, we achieve 2.82% and 2.70% absolute 638

increase, and for ResNet-50, we obtain 2.71% and 1.98% 639

absolute gain. As for multiple queries, similar results are also 640

observed. Meanwhile, compared to typical metric learning 641
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TABLE V
PERFORMANCES OF SUPERVISED T-MTL ON CUHK01

Method
single-shot multiple-shot

Rank-1 rank-5 Rank-10 rank-20 Rank-1 rank-5 Rank-10 rank-20

MetricEnsemple [29] 53.4 76.4 84.4 90.5 - - - -
KCVDCA [32] 47.8 74.2 83.4 89.9 - - - -

CVDCA+LOMO+GOG [32] 73.0 89.1 93.9 95.5 - - - -
MTDnet [1] - - - - 78.5 96.5 97.5 -

Null+LOMO [16] - - - - 65.0 85.0 89.9 94.4
MHJLw [27] - - - - 64.5 - 91.1 95.3

XQDA+LOMO [4] 48.7 73.0 81.3 88.2 63.2 83.9 90.0 94.2
XQDA+GOG [7] 57.8 79.1 86.2 92.1 67.3 86.9 91.8 95.9

XQDA+LOMO+GOG 68.5 87.3 92.4 96.3 76.9 91.5 95.4 97.9

t-MTL+LOMO 50.1 73.8 81.3 87.7 64.4 84.9 90.3 94.1
t-MTL+GOG 58.0 78.6 85.1 90.2 66.0 85.1 90.1 94.6

t-MTL+LOMO+GOG 74.1 89.1 92.9 95.9 80.3 92.4 95.1 96.9

methods (i.e., KISSME [31] and XQDA [4]), our method is642

good at improving the top rank accuracy, but fails for the643

mAP, due to the aforementioned reason. However, when644

we fuse two types of visual features, the performance is645

slightly worse than the ResNet-50. The reasons behind such646

abnormal phenomena might be that, the CaffeNet and ResNet647

intrinsically belong to homogeneous feature, as well as have648

significant difference in performance, so they can’t benefit649

from each other. It is worth mentioned that SVDnet [14]650

is also a similar tensor SVD projection in the CNN model,651

which shows nice improvements. But its motivation is very652

different from ours, since SVDnet is based on the observation653

that the last linear layers produce nonorthogonal projection.654

On this basis, it utilizes SVD decomposition to produce655

orthogonal layer to project features. Compared to SVDnet, we656

aim to find a tensor low-rank approximation to achieve better657

generalization ability, where t-SVD is adopted for the purpose658

of optimization solution. Re-ranking technique [8], [15] is659

also very relevant to our work, but they focus on embedding660

the relationship of the gallery images into the learned metric,661

where we aim to learn a suitable metric by exploring shared662

information between/within tasks.663

CUHK01: The main results of CUHK01 dataset are shown664

in Table V. It is worth noting that similar experimental665

results are presented compared with VIPeR. Actually, for both666

single-shot and multi-shot, we perform better than the metric667

learning XQDA [4] by using LOMO feature, and achieve668

almost the same performance by using GOG feature. However,669

when we fuse two types of visual features, 6.5% absolute670

gain in terms of Rank-1 accuracy for single-shot has been671

achieved compared to XQDA, which beats most multi-shot672

metric methods. While for multi-shot, we also get a 3.4%673

improvement in terms of Rank-1 accuracy. The improvement674

is limited since our baseline for GOG feature is worse than675

XQDA. Compared with recent proposed methods [1], [16],676

[27], [29], [32] (the first group in Table V), the proposal677

achieves comparable performance for single visual feature,678

but outperforms them by a large margin for multiple visual679

features.680

CUHK03: Since the scale of CUHK03 is relatively large, 681

we apply principal component analysis to reduce the dimen- 682

sion of GOG and LOMO features to 1000D. All experimental 683

results of CUHK03 dataset can be seen in Table IV where 684

we compare our proposal with seven representative Re-ID 685

methods [4], [7], [16], [17], [18], [35], [43]. XQDA [4] 686

provides highly competent results, outperforming ours by a 687

large margin with GOG feature. On this basis, SSM [43], as 688

a matter of course, yields the best performance among all of 689

the competitors by smoothing the learned metric. However, 690

with LOMO feature, the proposed method performs slightly 691

better than XQDA. Moreover, by fusing two kinds of visual 692

features, our proposal obtains 66.5% Rank-1 accuracy, which 693

is very close to 68.1% achieved by XQDA. It is worth noting 694

that CVDCA [32] performs well on relatively small data sets, 695

while for larger ones, its performance becomes poor. Due to 696

the sufficient training samples, most involved deep methods, 697

such as S-LSTM, S-CNN, are in the top performance group 698

among all of the methods. 699

2) Unsupervised t-MTL Results: We compare our proposed 700

unsupervised model with some other representative unsuper- 701

vised methods on VIPeR and Market-1501. 702

ViPeR: In Table VI, we utilize three types of visual features 703

(i.e., LOMO, GOG and JSTL) to give a comprehensive evalu- 704

ation for VIPeR dataset. Firstly, we evaluate our proposal with 705

single feature. For the LOMO, GOG, and JSTL, we get the 706

Rank-1 accuracy of 21.8%, 25.3% and 30.3%, respectively, 707

which far exceeds Euclidean distance by using same visual 708

feature. Furthermore, when we fuse the GOG and LOMO 709

with the proposed tensor structure, a slight improvement is 710

achieved. Specifically, we obtain 28.6% in term of Rank-1 711

accuracy, outperforming CAMEL [28] by 2.1%. For deep 712

learning based feature JSTL, we also achieve highly compa- 713

rable performance. 714

Market-1501: For Market-1501, as demonstrated in Table 715

VII, we achieve the Rank-1 accuracy of 51.57% and mAP 716

of 22.71% with single query, and 59.44%, and 30.75% for 717

multiple queries. Here, we only use the training samples but 718

without training labels, achieving an absolute improvement 719
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TABLE VI
PERFORMANCES OF UNSUPERVISED T-MTL. MEASURED BY RANK-1

ACCURACIES FOR VIPER .

Method Feature Rank-1 Method Feature Rank-1
t-MTL JSTL 31.8 l2 JSTL 30.0
t-MTL LOMO 21.8 l2 LOMO 16.5
t-MTL GOG 25.3 l2 GOG 15.4
CAMEL [28] LOMO 26.5 CAMEL [28] JSTL 30.6
t-MTL LOMO+GOG 28.6 t-MTL JSTL 31.8

TABLE VII
PERFORMANCES OF UNSUPERVISED T-MTL. MEASURED BY RANK-1

ACCURACIES AND MAP FOR MARKET-1501

Market
Single Query Multiple Query

Rank-1 mAP Rank-1 mAP

JSTL [39] 43.0% 19.2% 52.9% 25.7%
PUL [11] 45.5% 20.5% - -

CAMEL [28] - - 54.5% -

t-MTL 51.6% 22.7% 59.4% 30.8%

of 8.61% and 6.51% for Rank-1 accuracy compared with720

Euclidean distance [39]. We also compare the proposal with721

the most relevant work CAMEL [28], where almost identical722

experimental setting is adopted. Due to the well property723

possessed by tensor based multi-task regularization, we find724

that the proposal can benefit the shared information, leading725

a better performance than CAMEL [28]. Compared with the726

domain transfer method PUL [11], our method utilizes the727

unlabeled data from Markte-1501 and a joint learning feature728

extractor, outperforming PUL by a large margin. Fig. 6 shows729

some representative results produced by our unsupervised t-730

MTL model. Note that similar appearance persons are easier731

to be identified since only clustering results are used to guide732

the model.733

C. Model Analysis734

In this section, we conduct further analysis and experiments735

to better understand the characteristics of our t-MTL method.736

1) Sensitive Analysis: First of all, we conduct a sensitivity737

analysis of the parameters. Two key parameters, i.e., α and738

β, play an important role in our t-MTL approach. But most739

results are still much better than the baseline methods. Their740

values are set by cross-validation with training data. It is also741

worth noting that all the results are reported by random dataset742

spitting in avoid over-fitting.743

For the supervised setting, we evaluate the impact of pa-744

rameters by using different values of α and β. As shown in745

Fig. 7(c), the horizontal plane indicates the performance of746

the baseline model [7]. The values of the rank-1 accuracy747

of ViPeR dataset first climb, and then keeps relatively stable748

when α and β increase. But when they exceed the particular749

values, the performance begins to drop. The best perfor-750

mance is achieved by setting α within [0.5, 1] and β within751

[0.01, 0.05]. Fig. 7(d) shows the sensitivity of parameters for752

CUHK01. Similar results are presented, and the plane also753

Query

Junk Image Unmatched ImageMatched Image

Fig. 6. Representative RE-ID results on the Market-1501 dataset produced
by unsupervised t-MTL. Junk images indicate the distractors or the images
that come from the same camera with the query, which is defined by [49].

indicates the competitor [7]. As the scale of training identities 754

increases, larger α is more suitable compared to ViPeR. 755

While for unsupervised setting, our t-MTL model fluctuates 756

as the values of parameters changing on ViPeR, due to the 757

random splitting. The best performance is achieved by setting 758

α = 0.08 and β = 18. It is noteworthy that there is no 759

significant difference in performance as indicated in Fig 7(a). 760

Furthermore, most values significantly outperform the baseline 761

plane [28]. The main results of Market-1501 are shown in 762

Fig 7(b). When the α increases, the Rank-1 accuracy firstly 763

climbs to the peak point and then slowly decreases by fixing 764

β. A similar observation can be found by fixing α. Also,

TABLE VIII
PERFORMANCES OF UNSUPERVISED T-MTL WHEN NUMBER OF

CLUSTERS K VARIES. MEASURED BY RANK-1 ACCURACIES FOR
MARKET-1501 AND VIPER .

K 500 800 1000 1500 2000
Market-1501 49.0 50.8 50.8 51.2 51.6
K 200 300 400 500 632
VIPeR 15.0 19.5 22.3 24.9 28.6

TABLE IX
PERFORMANCES OF UNSUPERVISED T-MTL WITH DIFFERENT

CLUSTERING METHODS. MEASURED BY RANK-1 ACCURACIES FOR
VIPER .

K 200 300 400 500 632
k-means 15.0 19.5 22.3 24.9 28.6
K 200 300 400 500 632
T-SVD-MSC 16.9 19.7 20.3 23.2 28.6

765

there is a plane indicating the baseline model [39], and our 766

proposal outperforms it by a clear margin. Empirically, α often 767
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locates between 0.01 and 0.1, and β = 10 is suitable for most768

situations. Meanwhile, larger β shows clear physical meaning.769

Since there are no labels to guide the model in unsupervised770

setting, the symmetric model which preserves characteristics771

of visual features can lead a better result.772

2) Deep Insights for Unsupervised t-MTL : For a compre-773

hensive understanding of our unsupervised t-MTL, we further774

discuss the influence of the number of clusters w.r.t final775

performance, which is shown in Table VIII. It is remarked that,776

when the number of clusters increases, the Rank-1 accuracy777

of our proposal also slowly increases. In market-1501, the778

training set includes 750 identities and it appears that when779

the clusters increase to 750, the system performance keeps780

slightly improving and stable. The situation in VIPeR is quite781

different where the performance changes dramatically with the782

number of clusters increasing. This is a strange phenomenon,783

since it is expected that an adequate number of clusters will784

achieve better performance, but according to more recent785

papers, such as [53,54], their experiments show that instance786

discrimination is very effective in the unsupervised learning787

setting. They regard each sample as an independent category,788

and try to train a model to separate each of them. Their idea789

is simple that a typical discriminative learning method can790

learn visual data themselves rather than semantic annotations.791

In this perspective, under weak supervision, a finer division792

will benefit from the instance discrimination, and help model793

identify hard sample which is far away from the cluster794

center. Our experimental result is very consistent with theirs795

(i.e., on ViPeR, taking 632 clusters, which is the number of796

training samples, achieves the best performance). Meanwhile,797

two reasonable regularizers, which can be considered as prior798

knowledge, help the model achieve better generalization abil-799

ity. The same result is also presented in CAMEL [32]. Hence,800

it deduces that the more cluster centers will be beneficial.801

More importantly, in CAMEL, an iterative generation of802

the virtual label is necessary for boosting the performance.803

But in our experiments, we find this process is nonsense for804

our model. As shown in Fig. 8, the Rank-1 accuracy reaches805

the peak at first several iterations, and slowly decreases until806

it is unchanged. We also conduct extra experiments on ViPeR807

dataset and it appears that with the increasing iterations, the808

performance first keeps stable and then slightly decreases re-809

gardless of the number of cluster centers. To in-depth analyze810

this abnormal phenomenon, we conduct another experiment811

on Market-1501. We select first 25 training samples from the812

same identity and observe the changes in their pseudo labels813

at each iteration. We find that after the first iteration, more814

samples are grouped in the same category, which indicates815

that the projected space becomes more discriminative. And816

with increasing iterations, the virtual labels change slightly817

and even give wrong supervision, where samples with the818

same virtual label are still assigned to the same cluster center819

with high probability at the next iteration. It deduces that the820

weakly supervised information can not further help our model821

improve the performance.822

We also conduct experiments to present the influence of823

different kinds of clustering algorithms. To do that, two kinds824

of clustering methods, i.e., k-means and t-SVD-MSC [21],825

are employed. Since the t-SVD-MSC, which achieves the 826

promising performance for most clustering tasks, is designed 827

for multiple visual features, we take GOG and LOMO as 828

inputs. The results are shown in Table IX. With the same 829

parameter setting, we find that the k-means performs as well as 830

T-SVD-MSC for a various number of clusters K. It deduces 831

that the clustering algorithm does not play a critical role in 832

our proposal, which is attribute to the well-founded prior 833

knowledge provided by two reasonable regularizers in our 834

model. 835

3) Algorithm Complexity and Convergence: Although the 836

optimization procedure seems complicated, as discussed 837

above, the whole procedure only performs once at off-line 838

training time. The bottleneck of our method is to solve the 839

subproblem G, but it equals to calculate (V − 1)/2 matrix 840

SVD according to [48], whose dimension is d×C. This special 841

structure can be easily parallelized, and would be invested in 842

our future work. In summary, it takes O(2dCV log(V )) for 843

calculating the FFT and its inverse. And for each matrix, it 844

takes O(min(C2d, d2C)) for calculating the SVD. 845

As a result, by considering V cameras, the complexity of 846

subproblem G is O(min(V C2d, V d2C)) in each iteration. 847

Since min(d,C) � log(V ), the complexity of our t-MTL 848

method is: 849

O(min(KV C2d,KV d2C))), (24)

where K means the iteration number. In practice, K usually 850

locates within 30 ∼ 50, and we set 30 for all the experiments, 851

empirically. For real-world applications, it appears that the 852

number of person identities plays a critical role in scalability. 853

However, it is easy to handle tens of thousands identities, 854

and a classifier in deep learning methods also encounters 855

the same dilemma when scaling to hundreds of thousands. 856

We also conduct experiments to present the execution time 857

shown in Table X. Note that the off-line cost is increased

TABLE X
QUANTITATIVE ANALYSIS OF EXECUTION TIME FOR OUR SUPERVISED

ALGORITHM.

Dataset ViPeR CUHK01 CUHK03 Market-1501
Time 7.2s 101.3s 52.4s 1267.3s

858

especially on larger datasets such as Market-1501, but we can 859

still train it around 20 minutes. Meanwhile, the execution time 860

of CUHK01 is almost twice than it of CUHK03 since we apply 861

PCA on CUHK03. 862

Additionally, the optimality gap produced in each iteration 863

of our algorithm is monotonically decreasing and our subprob- 864

lems are solved exactly. Thus we have: 865

||U t+1 − U t||F → 0. (25)

Hence, the convergence of our optimization can be indicated
by the following criterion:

Match Error = ||U − G||∞. (26)

Actually, our method converges fast in reality, as it is illus- 866

trated in Fig. 9, where the curve records the values of the 867

Match Error (defined in Eq. (26)) in each iteration step. 868
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Figure 7. Influence of parameter α and β in terms of Rank-1 accuracy. Fig. 7(a) and Fig. 7(b) show unsupervised results for ViPeR and Markte-1501. Fig.
7(c) and and Fig. 7(d) show supervised results for ViPeR and CUHK01.
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Figure 9. Convergence Curve on ViPeR Dataset

4) Limitation: The main limitation of the proposed method869

is that the view-specific model is built upon a not very practical870

problem setup. This setup assumes that training and testing871

person images will be from the same cameras. However, in872

practice, an idea model trained from the camera network in873

location A should generalize to the camera network in location874

B. But for the moment, most existing successful models also875

do not have such transferability. In the future, we will further876

investigate this issue.877

VI. CONCLUSION AND DISCUSSION878

In this paper, to conquer the view-specific discrepancy879

problem, a tensor multi-task model is proposed to perform880

person Re-ID. To explore the high order correlations among881

cameras and persons, the proposal constrains the camera-882

specific classifiers through tensor multi-rank and Bregman883

discrepancy. Then, people identifying across cameras has been884

formulated in a unified multi-task classification framework,885

where an efficient algorithm is introduced to achieve the886

optimal solution. The proposed t-MTL also adopts a clustering887

procedure to assign a virtual label to each training samples,888

which significantly improves the baseline by using training 889

samples but without labels. To extend our model to involving 890

multiple visual features, the results show that t-MTL is very 891

competitive with the recently proposed approach for both 892

supervised and unsupervised setting. 893

There are still some issues in the proposed model that 894

can be further improved. The most critical problem is the 895

adaptive parameter learning, as it is discussed in Section 896

V-C1. However, due to the domain gap and scale of datasets, 897

the parameters need to be fine-tuned for individual datasets. 898

Furthermore, we even can not obtain parameters via the cross- 899

validation in the unsupervised setting. Hence, an adaptive 900

approach is needed urgently. Another important issue is to 901

utilize different deep structures to extend asymmetric distance 902

learning in end-to-end training style. Moreover, future work 903

will also include how to scale if data continuously arrives. 904
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