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Abstract
Objectives To build a dual-energy CT (DECT)–based deep learning radiomics nomogram for lymph node metastasis (LNM)
prediction in gastric cancer.
Materials and methods Preoperative DECT images were retrospectively collected from 204 pathologically confirmed cases of
gastric adenocarcinoma (mean age, 58 years; range, 28–81 years; 157 men [mean age, 60 years; range, 28–81 years] and 47
women [mean age, 54 years; range, 28–79 years]) between November 2011 and October 2018, They were divided into training
(n = 136) and test (n = 68) sets. Radiomics features were extracted frommonochromatic images at arterial phase (AP) and venous
phase (VP). Clinical information, CT parameters, and follow-up data were collected. A radiomics nomogram for LNM prediction
was built using deep learning approach and evaluated in test set using ROC analysis. Its prognostic performance was determined
with Harrell’s concordance index (C-index) based on patients’ outcomes.
Results The dual-energy CT radiomics signature was associated with LNM in two sets (Mann-WhitneyU test, p < 0.001) and an
achieved area under the ROC curve (AUC) of 0.71 for AP and 0.76 for VP in test set. The nomogram incorporated the two
radiomics signatures and CT-reported lymph node status exhibited AUCs of 0.84 in the training set and 0.82 in the test set. The C-
indices of the nomogram for progression-free survival and overall survival prediction were 0.64 (p = 0.004) and 0.67 (p = 0.002).
Conclusion The DECT-based deep learning radiomics nomogram showed good performance in predicting LNM in gastric
cancer. Furthermore, it was significantly associated with patients’ prognosis.
Key Points
• This study investigated the value of deep learning dual-energy CT–based radiomics in predicting lymph node metastasis in
gastric cancer.

• The dual-energy CT–based radiomics nomogram outweighed the single-energy model and the clinical model.
• The nomogram also exhibited a significant prognostic ability for patient survival and enriched radiomics studies.
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Abbreviations
AP Arterial phase
AUC Area under the receiver operating characteristic curve
CI Confidence interval
GC Gastric cancer
GSI Gemstone spectral imaging
IC Iodine concentration
LNM Lymph node metastasis
MD Material deposition
OS Overall survival
PFS Progression-free survival
VP Venous phase

Introduction

Gastric cancer (GC) ranks as the fifth among all cancers and
is the third leading cause of cancer-related mortality world-
wide [1, 2]. Approximately 70% cases occur in Asia and
more than half in China alone [3, 4]. N staging is crucial
to select treatment options (endoscopy, surgery, neoadjuvant
chemotherapy) [5–8] and helps prognosis prediction [9, 10].
CT is recommended as the first-line imaging technique for
the detection of lymph node metastasis (LNM) by the
National Comprehensive Cancer Network [11, 12], but its
overall accuracy (around 60%) is disappointing [13–15].

Radiomics is an emerging approach that converts medical
images to mineable data and generates thousands of quantita-
tive features. This approach improves the performance in di-
agnosis and prognosis of cancer patients [16–18], which in
turn helps in the clinical decision-making [19]. Notably, the
association of radiomics signature with clinical features may
improve the predictive accuracy of LNM in cancers [20–22].
Until now, most CT-based radiomics analyses have typically
used one phase-enhanced image with single-energy scan
mode. In terms of GC, CT has been used to extract a series
of prognosis-related radiomics features [23] and was able to
provide information for occult peritoneal metastasis prediction
[24, 25]. Although previous studies proved dual-energy CT’s
ability to quantify response to neoadjuvant chemotherapy and
the iodine concentration (IC) is an independent predictor for
LNM in GC [26, 27], dual-energy CT–based radiomics for the
prediction of LNM in GC have not yet to be reported.
Meanwhile, the advanced deep learning method has become
the mainstream approach for radiomics analyses based on big
data medical imaging [28, 29]. Theoretically, the combination
of dual-energy CT and deep learning methodology may po-
tentially improve the predictive performance of radiomics
nomogram.

The aim of this study was to build a dual-energy CT–based
deep learning radiomics nomogram for the prediction of LNM
and prognosis in patients with GC.

Materials and methods

Patients

Ethical approval was obtained from our institutional review
board, but waiver of informed consent was required due to the
retrospective nature of this study. A total 204 patients with path-
ologically confirmed gastric adenocarcinoma were recruited
from November 2011 to October 2018. The inclusion and ex-
clusion criteria are listed in Supplemental Material. Flow dia-
gram for the patient selection is presented in Fig. 1. Computer-
generated random numbers were adopted to divide patients into
a training set (n = 136; 72.06% males; mean age, 58.98 ±
11.65 years; rang, 28–81 years) and a test set (n = 68; 72.06%
males; mean age, 58.54 ± 10.79 years; range, 28–74 years).

Follow-up

Abdominal CT data of 133 patients were successfully collect-
ed between January 1st 2012 and December 31th 2018. Over a
mean follow-up period of 32 months, 22 patients died and 30
showed progression. Both progression-free survival (PFS)
and overall survival (OS) were measured from the first day
of preoperative CT scan until the date of events (death for OS;
death, metastasis and recurrence for PFS). The mean OS was
24.0 months, range of 4.0–72.0 months. The mean PFS was
18.2 months, range of 1.5–61.5 months. Patients were defined
as the censored data if they did not achieve the events.

CT protocol

CT scans were performed using two versions of dual-energy
CT in gemstone spectral imaging (GSI) mode (first or second
generation Discovery CT750 HD scanner; GE Healthcare).
The CT scans, covering the entire stomach region, were ac-
quired with breath-hold with the patient head first supine in all
of the phases. For enhanced CT scan, patients were infused
1.5 ml/kg of iodine (Ultravist 370, Bayer Schering Pharma)
with a pump injector (Urich REF XD 2060-Touch, Ulrich
Medical) at a rate of 3.0 ml/s into an antecubital vein.
Arterial phase (AP) and venous phase (VP) contrast-
enhanced CT images were performed after a 30 s and 70 s
delay. The details on patient preparation and CT acquisition
parameters were described in Supplemental Material.

Image interpretation and tumor segmentation

A radiologist with 12 years of experience in gastrointestinal
radiology interpreted the dual phasic enhanced CT images and
analyzed the iodine-water MD images by using GSI viewer
software on dual-energy CT platform, as well as implemented
tumor segmentation with ITK-SNAP version 3.6.0 software.
The details were in Supplemental Material.
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Radiomics feature extraction

To quantify the tumor phenotypes, both deep learning
features and handcrafted features were extracted. A total
of 136 deep learning features and 391 handcrafted fea-
tures were extracted from 40-, 65-, and 100-keV images
for each CT phase. Based on the training set, two deep
convolutional neural networks (DCNNs) were constructed
and trained to extract the deep learning features in the two
groups of ROIs. The details on the architecture and im-
plementation of the constructed DCNNs and the feature
extraction pipeline were described in Supplemental
Material.

Feature selection and radiomics signature
construction

The following processes were implemented to construct two
radiomics signatures (i.e., the AP CTsignature and the VP CT
signature) to reflect the phenotypic characteristics of tumors.

Firstly, intra-class correlation coefficient (ICC) was calcu-
lated on the re-segmentation data to estimate the reproducibil-
ity of features. Only the stable features with ICC > 0.75 were
reserved. Secondly, the features were divided into different
groups, where each pair of features yielded a Pearson correla-
tion coefficient of greater than 0.8. To build these feature
groups, we examined the features in order of their

Fig. 1 Flow chart of patient selection process
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significances. We incorporated each feature into the group
whose internal features correlated highly with it, or construct-
ed a new group if it could not be incorporated into any existing
group. Then, the most predictive feature (i.e., with the most
significant p value) in each group was selected to obtain a
stable and non-redundant candidate feature sets. For signature
construction, four different models were compared: artificial
neural network (ANN), k nearest neighbors (KNN), random
forest (RF), and support vector machine (SVM). The best
performing model as well as its final input features and opti-
mized hype-parameters (i.e., the number of hidden neurons
and the activation function in ANN, the number of neighbors
and the distance metric in KNN, the minimum sample number
required for a leaf node and the number of trees in RF, the
penalty parameter, and the kernel coefficient in SVM) were
obtained through multiple five-fold cross-validation applied
on the training set.

Development of radiomics nomogram
and comparative models

The chi-square test or Fisher’s exact test was used to compare
the differences in categorical variables between two groups,
while the Mann-Whitney U test or independent t test was
applied for continuous variables. The normality of the distri-
bution of continuous variables was evaluated with the Shapiro
test. A two-sided p value of < 0.05 was used as the criterion to
indicate a statistically significant difference. In addition, mul-
tivariable logistic regression analysis with backward stepwise
selection was performed to screen out key factors for LNM
prediction. Akaike’s information criterion (AIC) was used as
the selection criterion. Then, a quantitative model was con-
structed using the regression coefficients and visualized as a
radiomics nomogram (Fig. 2).

The above processes were also implemented to build a
clinical model based on the clinical characteristics to simulate
the clinical situation and to build a single-energy model com-
bining the clinical characteristics with two single-energy

(65 keV) signatures to explore the beneficial effect of the
additional spectral information.

Statistical analysis

Receiver operating characteristic (ROC) curves were used to
determine the predictive abilities of the involved models,
while the DeLong test was used to compare different ROCs.
The area under the curve (AUC) and 95% confidence interval
(CI) were calculated. Quantitative performance of radiomics
nomogram was assessed by calculating its accuracy. The cal-
ibration of the nomogram was evaluated by calibration curves
using the Hosmer-Lemeshow test. Additionally, net reclassi-
fication index (NRI) was calculated to quantify the improve-
ment in discrimination performance. To assess the reproduc-
ibility of our results, we randomly divided the patients into
training set or test set five times. Subsequently, the nomogram
was re-constructed and validated repeatedly.

To investigate the prognostic potential of radiomics nomo-
gram, its association with patients’ clinical outcomes (i.e.,
PFS and OS) was analyzed using univariable Cox regression
model and Harrell’s concordance index (C-index).

The software and the packages used for modeling and sta-
tistical analysis in this study are listed in Supplemental
Material.

Results

Demographic and clinical characteristics of patients
with GC

Demographic data, IC values and clinical features in two sets
are listed in Table 1. Tumor thickness, nICVP, and CT-
reported LN differed significantly between LNM-negative
group and LNM-positive group in the training set (p < 0.05).
No significant difference was observed between the two sets,
in terms of age, sex, tumor location, and LNM prevalence.

Fig. 2 Workflow of the dual-energy CT–based radiomics nomogram
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Radiomics signature construction and validation

After excluding the non-reproducible features and the redun-
dant features, a total of 68 AP and 51 VP CT features
remained. Based on the two feature sets, two radiomics signa-
tures were constructed by using four types of models and
compared through cross-validation in the training set. For
AP CT, the highest cross-validation accuracy of 0.63 was
yielded from radial basis function (RBF) kernel SVM with
two deep features and two handcrafted features as input fea-
tures. For VP CT, the best model was linear ANN with one
deep feature and one handcrafted feature input, yielding a
cross-validation accuracy of 0.68. The results of cross-
validation are listed in Table S1. Therefore, the AP and VP
CT signatures were built using these two models. The two
radiomics signatures exhibited good performance for the dis-
crimination of LNM status in the test set, with AUCs of 0.71
(95% CI, 0.59–0.84) for AP CT signature and 0.76 (95% CI,
0.64–0.87) for VP CT signature.

Development of radiomics nomogram
and comparative experiments

Multivariable regression with backward elimination was used
to analyze the two radiomics signatures, tumor thickness,

nICVP, and CT-reported LN. The results demonstrated that
the two radiomics signatures and CT-reported LN remained
significant after adjustment for cofactors (Table 2).
Subsequently, using the derived regression coefficients, a
radiomics nomogram was built as a quantitative method for
noninvasive LNM prediction (Fig. 3).

As shown in Fig. 4, the developed nomogram exerted a
powerful predictive ability in both training and test sets with
AUCs of 0.84 (95% CI, 0.77–0.90) and 0.82 (95% CI, 0.72–
0.92), respectively, which were higher than single-energy
model (incorporating CT-reported LN and single-energy VP
signature, Table S2) and clinical model (incorporating tumor
thickness and CT-reported LN, Table S3). To assess the pos-
sibility of overfitting, the DeLong test was employed on the
ROC curves of radiomics nomogram. The results indicated
that the AUCs between training set and test set were not sig-
nificantly different (p = 0.772). Furthermore, by splitting the
whole data set randomly five times, different training and test
sets were established to construct and validate the predictive
model. And there was no significant difference found between
the resulted ROC curves (with AUCs ranging from 0.80 to
0.84 in the test sets), demonstrating the robust and consistent
performance of our method.

The optimal cut-off value of the multivariable logistic re-
gression equation was selected as 0.62 to maximize Youden’s

Table 1 Characteristics of patients in training and test sets

Parameters Training set Test set

Overall LNM(−) LNM(+) p value Overall LNM(−) LNM(+) p value

Age (mean ± SD, years) 58.98 ± 11.65 59.48 ± 11.57 58.67 ± 11.75 0.627a 58.54 ± 10.79 57.27 ± 10.82 59.55 ± 10.80 0.373a

Sex Woman 38 13 25 0.548c 19 8 11 0.835c

Man 98 39 59 49 22 27

Borrmann
classification

I 43 20 23 0.064d 16 11 5 0.053d

II 48 21 27 25 11 14

III 40 10 30 21 5 16

IV 4 0 4 6 3 3

Location Cardia/fundus 60 23 37 0.878c 26 9 17 0.586c

Body 37 15 22 20 10 10

Antrum 31 12 19 19 10 9

≥ 2/3 stomach 8 2 6 3 1 2

Tumor thickness (mean ± SD,
mm)

18.54 ± 8.58 15.29 ± 7.02 20.55 ± 8.88 < 0.001*a 17.80 ± 8.90 16.73 ± 10.90 18.64 ± 6.98 0.049*a

ICAP (100 μg/ml) 53.58 ± 20.39 51.93 ± 20.35 54.59 ± 20.46 0.461b 49.67 ± 19.78 50.51 ± 19.14 49.02 ± 20.49 0.761b

ICVP (100 μg/ml) 73.63 ± 24.92 69.05 ± 24.30 76.44 ± 25.02 0.094b 76.56 ± 40.23 87.07 ± 49.90 68.09 ± 28.32 0.153a

nICAP 0.15 ± 0.06 0.15 ± 0.06 0.16 ± 0.06 0.404a 0.15 ± 0.07 0.14 ± 0.07 0.16 ± 0.08 0.305a

nICVP 0.49 ± 0.19 0.44 ± 0.17 0.51 ± 0.19 0.043*a 0.49 ± 0.16 0.48 ± 0.16 0.50 ± 0.16 0.488a

CT-reported LN Negative 77 42 35 < 0.001*c 38 25 13 < 0.001*c

Positive 59 10 49 30 5 25

AP, arterial phase;VP, venous phase; IC, iodine concentration; nIC, normalized iodine concentration; LNM, lymph node metastasis;CT-reported LN, CT-
reported lymph node status. aMann-Whitney U test; b Independent t test (for normal distribution indicated by the Shapiro test); c Chi-square test;
d Fisher’s exact test (for small frequency)

*p value < 0.05
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index on the training set. By using this cut-off value, the de-
veloped nomogram yielded high performances in the training
set (accuracy = 0.77, 95% CI 0.69–0.84; sensitivity = 0.77;
and specificity = 0.77) and in the test set (accuracy = 0.76,
95% CI 0.65–0.86; sensitivity = 0.74; and specificity = 0.80).
The results of NRI revealed that radiomics nomogram exhib-
ited significantly better performance than the clinical model
(NRI = 0.22, p = 0.037) and single-energy model (NRI = 0.19,
p = 0.040) in the test set.

Detailed description on stratified analysis is provided in
Supplemental Material. The results showed the performance
of radiomics nomogram was not affected by tumor location,
sex, and age (DeLong test, p > 0.05) (Figure S4), suggesting
its generality on different kinds of cases. In addition, the no-
mogram calibration curves demonstrated good agreement be-
tween observed and predicted outcomes in the two sets
(Hosmer-Lemeshow test, p = 0.335 and 0.403) (Fig. 5).

Comparison between radiomics nomogram
and CT-reported LN

To investigate the improvement of LNM detection of the pro-
posed radiomics nomogram, we evaluated its predictive per-
formance in all 204 patients and in the CT-reported LN-neg-
ative (cN0) subgroup (n = 115). In the whole set, the radiomics
nomogram demonstrated the best discrimination ability with
an AUC of 0.83 (95% CI, 0.78–0.89). The DeLong test

showed that there were significant improvements in contrast
to the CT-reported LN and the developed clinical model
(p < 0.05), which yielded AUCs of 0.71 (95% CI, 0.65–
0.77) and 0.77 (95% CI, 0.70–0.84), respectively.
Meanwhile, the statistically significant differences were also
determined in the results of NRI (p < 0.05). In the cN0 sub-
group, 70.00% (21/30) LNM-positive patients (i.e., the false-
negative cases of CT-reported LN) were successfully detected
by our nomogram, while a total of 79 patients were diagnosed
correctly. The patients with relatively high nomogram values
had a significantly greater possibility of being LNM positive
(Mann-Whitney U test, p < 0.05).

The interpretation of CT-reported LN is unstable and
highly experience-dependent. We assessed its intra-/inter-
reader agreement using the kappa test, based on the re-
interpretation for the whole set, and found that there were
only poor to moderate agreements (kappa values = 0.45 and
0.25). Correspondingly, combining CT-reported LN with the
two radiomics signatures, the radiomics nomogram achieved
good agreements with the kappa values of 0.75 and 0.68
respectively. Furthermore, the predictive performance was
maintained as well, as it yielded AUCs of 0.84 (95% CI,
0.78–0.89) and 0.86 (95% CI, 0.81–0.91). At one extreme,
when the interpretation of radiologist was ignored (i.e., CT-
reported LN was set to negative), the proposed nomogram
still showed good discrimination ability with an AUC of
0.79 (0.73–0.85).

Table 2 Risk factors in radiomics
nomogram Variable β Adjusted OR (95% CI) p value

Intercept − 4.66 < 0.001

AP signature (per 0.1 increase) 0.42 1.52(1.08–2.15) 0.017

VP signature (per 0.1 increase) 0.36 1.43(1.06–1.93) 0.021

CT-reported LN (1 vs 0) 1.26 3.53(1.42–8.77) 0.006

AP, arterial phase; VP, venous phase; CT-reported LN, CT-reported lymph node status. 1 = CT-reported lymph
node metastasis positive, 0 = CT-reported lymph node metastasis negative

Fig. 3 Developed radiomics
nomogram

Eur Radiol (2020) 30:2324–2333 2329



Prognostic value of radiomics nomogram

Based on the follow-up data, the prognostic value of the out-
put score of our radiomics nomogram was assessed. It yielded

high predictive accuracies for PFS (C-index = 0.64; 95% CI,
0.54–0.73; p = 0.004) and OS (C-index = 0.67; 95% CI, 0.56–
0.78; p = 0.002). GC patients with elevated nomogram scores
displayed worse PFS (HR = 1.22 per 0.1 increase, 95% CI

Fig. 4 Comparison of performances among the three developed models for the prediction of LNM in training set (a) and test set (b)

Fig. 5 Calibration curve of the
radiomics nomogram in each set

Eur Radiol (2020) 30:2324–23332330



1.04–1.43; p = 0.015) and OS (HR = 1.29 per 0.1 increase,
95% CI 1.06–1.58; p = 0.012).

Discussion

We have previously proved IC on dual-energy CT platform is
an independent predictor of LNM in GC [27]. Hereby, we
move forward to firstly build a dual-energy spectral CT
imaging–based radiomics nomogram by deep learning meth-
od for LNM prediction in GC. According to the experimental
results, the radiomics nomogram, which combined CT-
reported lymph node status and two radiomics signatures,
was clinically useful for the stratification of patients with
GC according to LNM risk. And it performed better than
single-energy model and clinical model.

The existing radiomics nomograms for the prediction of
LNM used one-phase enhanced CT images [20, 21]. Instead,
we used biphasic-enhanced images for feature extraction.
Image acquisition of AP and VP phases were started around
30 s and 70 s following contrast agent administration.
Typically, a linear enhancement in mucosa layer has been
observed at AP, which reflects the functional capillary density
in tissues [30]. GC with persistent enhancement has been
identified at VP, indicating the process of iodine agent flows
out from tumor tissues and diffuses into the interstitial spaces
[14, 30]. Thus, the biphasic-enhanced images comprehensive-
ly characterized the vascularity of GC. Therefore, the incor-
poration of biphasic images into signature constructions can
enrich radiomics analyses and improve the performance of the
model. Plus, AP and VP radiomics signatures both presented
significant association with LNM.

Dual-energy CT with energy information extends the capa-
bilities of conventional CT, by providing iodine-water images
for the quantification of actual iodine composition [31]. To date,
only a few texture analyses have been performed on dual-
energy CT [32, 33]. Al-Ajmi et al [32] found multi-energy
image texture analysis demonstrates an improved accuracy
(75% to 92%) for the diagnosis of parotid tumors compared
with single-energy level of 65 keV. With respect to image se-
lection for radiomics signature construction, 65 keVis relatively
comparable to 120-kvp single-energy CT acquisition with
higher contrast-to-noise ratio and less image noise [31, 34].
Based on CT physics and algorithms, low-energy images
(40–70 keV) reflect tissue enhancement characteristics similar
to the subtracted images, while high-energy images (100–
140 keV) represent non-enhanced tissue features [32, 33] and
we included the 40-keV image as representative for low-energy
image. Referring to the plateau performance of spectral HU
attenuation curve between 100 and 140 keV in Figure S1
(Supplementary Material), the 100-keV image was more visu-
ally comfortable and widely useful in clinical routine display
thus was ultimately included. Compared with the single-energy

model and clinical model, the multi-energy image-based
radiomics nomogram demonstrated better performance and ad-
ditional value from NRI test. Additionally, the combination of
different energy images enriches the input features and in-
creases the overall diagnostic accuracy for radiomics analysis.

The IC value reflects the actual iodine deposition in tissues
[26, 35] and is considered a promising biomarker in gastric
cancerous staging evaluation [26, 27, 36]. But we found the
ICs were significant in univariable analysis and excluded dur-
ing backward elimination and stepwise regression. We
checked that there were only weak correlations between ICs
and the three final retained indicators (Spearman’s correlation
coefficients < 0.2). This experimental result suggested that the
two radiomics signatures, as well as the clinical indicator CT-
reported-LN, yielded more apparent significance levels and
therefore might be more influential. Besides, with regard to
nIC, the values of aorta HU were relatively high in both AP
and VP, which can lead to an inaccurate IC during the image
thresholding steps.

Tumor size and CT-reported-LN were selected for model
construction because they are easily accessible on the preop-
erative images. Tumor size and thickness play important roles
in tumor staging and resectability as well as LNM. We found
larger gastric tumors were identified with higher N staging,
and tumor thickness was identified to be associated with LNM
[14, 15]. These findings are consistent with previous studies
[5, 14, 15, 27]. Tumor thickness was included in clinical mod-
el, but was removed from radiomics nomogram construction.
Although CT yielded an unsatisfactory diagnostic accuracy
(around 60%) for LNM determination, it is still comparable
to other imaging modalities [13–15]. Considering the conve-
nience and wide application of CT for LNM detection, CT-
reported LN was included as a qualitative clinical feature for
nomogram building and was significantly associated with
LNM. Compared with CT-reported LN, our nomogram en-
ables superior LNM prediction, especially for cN0 patients.
The cN0 patients are classified as LNM-negative based on
radiologist’s experiences on CT images, whereas our nomo-
gram showed promising performance to distinguish those who
actually have greater LNM possibility in cN0 subgroup.

The limitation of this study is the lack of external valida-
tion for the developed nomogram, but we further randomly
divided the patients into training set or test set and re-
constructed and tested repeatedly five times to assess the
results. And this pilot study is considered a pioneer to func-
tional imaging radiomics analyses and gives us confidence to
collaborate with other dual-energy CT centers for multicenter
analyses. Our study placed two-dimensional freehand ROIs
on the top three largest tumor slices for feature extraction, not
the true three-dimensional volumes. We used representative
energy level reference to literatures and practical experiences;
whole spectrum of energy and truly volumetric analyses are
expectable in the near future.
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In conclusion, a noninvasive deep learning dual-energy
CT–based radiomics nomogram was developed in this study.
The proposed nomogram exhibited a favorable accuracy and
added value for predicting LNM and prognosis in gastric
cancer.
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