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How to Select Good Neighboring Images in
Depth-Map Merging Based 3D Modeling

Shuhan Shen and Zhanyi Hu

Abstract— Depth-map merging based 3D modeling is an effec-
tive approach for reconstructing large-scale scenes from multiple
images. In addition to generate high quality depth maps at
each image, how to select suitable neighboring images for each
image is also an important step in the reconstruction pipeline,
unfortunately to which little attention has been paid in the
literature untill now. This paper is intended to tackle this issue for
large scale scene reconstruction where many unordered images
are captured and used with substantial varying scale and view-
angle changes. We formulate the neighboring image selection
as a combinatorial optimization problem and use the quantum-
inspired evolutionary algorithm to seek its optimal solution.
Experimental results on the ground truth data set show that our
approach can significantly improve the quality of the depth-maps
as well as final 3D reconstruction results with high computational
efficiency.

Index Terms— Neighboring image selection, depth-map
computation, 3D modeling.

I. INTRODUCTION

IMAGE based 3D modeling of objects and scenes is an
active research field nowadays, and has emerged as a

powerful tool for many applications, such as architecture
heritage preservation, city-scale modeling, and so on. The
ultimate goal of image based 3D modeling is to provide
comparable accuracy and lower cost than relatively expensive
laser scanners (LIDAR). According to [1], multiple view 3D
modeling algorithms could be divided into four classes, called
voxel based methods [2]–[4], surface evolution based methods
[5]–[8], feature point growing based methods [9]–[13], and
depth-map merging based methods [14]–[22]. Among these
classes, the depth-map merging based methods have been
proved to be more adapted to large-scale scenes, and the key of
such methods is to generate a high-quality depth-map at each
image at first, then to merge the depth-maps into a complete
3D model.

Fig. 1 shows the pipeline of a typical depth-map merging
based 3D modeling system. The input of this system are

Manuscript received July 1, 2013; revised September 26, 2013; accepted
November 5, 2013. Date of publication November 12, 2013; date of current
version November 28, 2013. This work was supported in part by the Natural
Science Foundation of China under Grants 61105032 and 61333015, and in
part by the Strategic Priority Research Program of the Chinese Academy of
Sciences under Grant XDA06030300. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Xin Li.

The authors are with the National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
(e-mail: shshen@nlpr.ia.ac.cn; huzy@nlpr.ia.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2013.2290597

Fig. 1. The pipeline of a typical depth-map merging based 3D modeling
system. This paper is focused on the optimal neighboring image selection
shown in gray.

multiple images captured from different positions and view-
points, and a certain overlap between neighboring images is
required. The system first uses Structure from Motion (SfM)
algorithm, like Bundler [23], to determine the focal length,
position and orientation of each camera, i.e. to calibrate the
camera internal and external parameters. Sometimes extra
information, like GPS and IMU, is available, and this could
improve the calibration accuracy and efficiency [24]. After
camera calibration, the system try to compute depth-map at
each image followed by a refinement process to enforce depth
consistency over neighboring views. Finally, all the depth-
maps are back projected to 3D and merged together. The
output of the system is a 3D model represented either by a
dense 3D point cloud or 3D triangulated meshes.

Obviously, the accuracy of the depth-map computed at each
image is a key factor of a depth-map merging based 3D
modeling system. A lot of research has been done to investi-
gate accurate and efficient depth-map computation algorithms.
However, how to select appropriate neighboring images for
each reference image is also an important factor to which
little attention has been paid till now to our knowledge. The
neighboring image selection is a relatively easy task for street-
side view cameras on the vehicle [25]–[27] or cameras in a
controlled environment like the Middlebury benchmark data
[1], but needs to be carefully designed for large-scale scenes
where unordered images are captured at various locations
and scales. Furukawa et al. [12] proposed a view clustering
algorithm which divides an image set into overlapping view
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Fig. 2. The depth uncertainty of a rectified stereo image pair.

clusters, after which a feature point growing based MVS
algorithm is used to reconstruct each cluster in parallel. How-
ever this image selection algorithm is not designed for depth
maps. Li et al. [19] introduced a neighboring image selection
algorithm by computing the angle between principle view
directions and the distance between camera optical centers.
This method is very simple and straightforward but only suited
for regular arrayed cameras. Goesele et al. [10] computed a
global score for each view and used greedy algorithm to select
neighboring images. Bailer et al. [21] improved the method
in [10] by modifying the view score function to increase
the depth-map’s accuracy. However, these two methods used
greedy algorithm as the optimization tool which in most cases
generates a suboptimal solution. This paper tries to investigate
an optimal neighboring image selection algorithm and shows
that our algorithm can significantly improve the quality of the
depth-maps as well as the final 3D reconstruction results.

The rest of the paper is organized as follows. The neigh-
boring image selection is formulated as a combinatorial opti-
mization problem and a novel objective function is proposed
in Section II. Then the Quantum-inspired Evolutionary Algo-
rithm (QEA) is used solve this combinatorial optimization
problem in Section III. Finally, experimental results on ground
truth data set are presented in Section IV, followed by some
concluding remarks in Section V.

II. FORMULATING THE NEIGHBORING IMAGE SELECTION

AS A COMBINATORIAL OPTIMIZATION PROBLEM

In the depth-map merging based 3D modeling pipeline
(Fig. 1), the SfM step computes the internal (focal length) and
external (position and oritation) parameters of each image, as
well as a set of sparse 3D points and their visibilities as a
by-product. Now the question is: given the camera poses and
a set of stable sparse feature points, how to define a good
neighboring image for a reference view?

In order to answer this question, a quantitative measure is
needed. As shown in Fig. 2, consider a rectified stereo image
pair with focal length f and baseline b, and let d be the
disparity, z be the depth of the triangulated point, εd be the
correspondence error which describes the error from incorrect
matches and sub-pixel accuracy of correct matches, and εz be
the triangulated depth error, then the depth uncertainty can be

Fig. 3. The graph of (a) wα(p, I ) and (b) ws (p, I ).

written in terms of the disparity error as [28]:

εz = z − z′ = bf

d
− bf

d + εd
≈ z2

b f
· εd (1)

where, the “≈” step is obtained by using the first order taylor
expansion at point εd = 0.

Hence, the depth error εz is mainly a function of the ray
intersection angle. Increasing the ray angle can decrease the
depth error, but a larger angle may reduce the common visible
area of the stereo pair and introduce more mismatches. In
[19], [20], [22], the ray angles computed by sparse feature
points from SfM are utilized to select the best neighboring
view. However, as shown in [29], adding more views for
multi-view triangulation could significantly reduce the depth
uncertainty compared to stereo triangulation. Thus, in the
neighboring image selection process it is better to select
multiple neighboring images rather than selecting a single
one. Here comes the second question: how to find the best
neighboring images?

Intuitively, good neighboring images should have three char-
acteristics. First, they should have sufficient ray intersection
angles with the reference image at feature points according
to Eq. (1) in order to guarantee the reconstruction accuracy.
Second, they should have equal or higher resolution than the
reference image at feature points in order to capture texture
details. Third, they should sparsely and uniformly cover the
visible feature points in the reference image. To achieve this,
some neighboring image selection methods [10], [21] have
been proposed.

Goesele et al. [10] first introduced a neighboring image
selection algorithm by computing a global score for each view
within a set of candidate neighboring images and used greedy
algorithm to grow the neighboring images. Based on [10],
Bailer et al. [21] proposed an improved selection algorithm
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Fig. 4. A reference image R and its searching domain C. Here, the red
triangle cone represents R, yellow cones represent cameras in C, and blue
cones are other cameras. In this graph, | C | = 59.

Algorithm 1 QEA Based Neighboring Image Selection

which was reported to be able to improve the depth-map’s
accuracy and completeness compared to [10].

In [21], given a reference image R and a set of neighboring
images N, a score for each view I ∈ N is computed as:

gR(I ) =
∑

p∈FR∩FI

ωα(p)ωs(p)ωc(p) (2)

where, FX is the set of feature points visible in image X ,
ωα(p) is the angle weighting, ωs(p) is the scale weighting,
and ωc(p) is the covering weighting.

The angle weighting is defined as:

ωα(p)=min(
� I, R(p)

αmax
,1)1.5 ·

∏

J∈N\I, p∈FI ∩FJ

min(
� I, J (p)

βmax
, 1)

(3)

where, � I, X (p) is the ray intersection angle at feature point
p from the camera center of image I and X , αmax is set to
35 degrees, and βmax is set to 14 degrees. This weighting
favors the image whose ray intersection angle with R at feature
p is bigger than αmax and angles with other images in N are
bigger than βmax.

Fig. 5. Sample images, ground truth 3D model, and cameras in the data set.
(a) Three sample images in the data set. (b) The ground truth 3D model with
cameras.

The scale weighting is defined as:

ωs(p) =

⎧
⎪⎪⎨

⎪⎪⎩

0 r > 1.8
r2 1 < r ≤ 1.8
1 1/1.6 < r ≤ 1
( 1.6

r )2 else

(4)

where r = sR(p)/sI (p), and sX (p) is the scale at p in image
X . sX (p) is computed as the diameter of a sphere centered at
p whose projected diameter in the X equals the pixel spacing.
Thus, r > 1 means the resolution of I at p is higher than R,
and vice versa.

The covering weighting is defined as:

ωc(p) = r∗
I (p)

r∗
I (p) + ∑

J∈N\I, p∈FI ∩FJ
r∗

J (p)
(5)

where, r∗
X (p) = min(sR(p)2/sX (p)2, 1). This weighting

favors images that sparsely cover each feature point.
Finally, given the size of the neighboring image set N, [10]

and [21] use a greedy algorithm and grow N by iteratively
adding to N the view with highest score gR(I ) given current
N (initial N is empty). This neighboring image selection
method in [21] is quite efficient, but its main drawback
lies in the use of greedy algorithm which usually achieves
a suboptimal solution. Besides, since the view score gR(I )
defined in Eq. (2) is only designed for local optimization,
using a global optimization algorithm directly on

∑
I∈N gR(I )

always performs worse than [21] as our experimental part
shows. Thus a reformulation of the view selection objective
function is required for global optimization.

In this paper, we propose a new objective function for image
selection and use global optimization method to select the
neighboring image set. Given the reference image R and a
set of candidate neighboring images N, our objective function
is defined as:

G R(N) =
∑

p∈FR

vb(p)vq(p)vc(p) (6)
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TABLE I

PARAMETER SETTINGS OF OUR PROPOSED METHOD

Fig. 6. Depth-maps and error maps computed using three neighboring image selection methods for the 51st image in the data set. (a) shows the 51st image
and its ground truth depth-map. (b) and (c) are the depth-maps and error maps computed using three methods with nmax = 3 and 6 respectively. In both
(b) and (c), from left to right: the depth-map computed using our proposed method, the Bailer et al. Greedy method, and the Bailer et al. QEA method
respectively. The top row is the depth-map, and the bottom row is the error map in which the blue pixels encode missing depth values, red pixels encode an
error e larger than τe, and pixels with errors between 0 and τe are encoded in gray 255 ∼ 0.

where, vb(p), vq (p) and vc(p) are three weighting func-
tions. For each feature point p in R we define a image set
Q = {I | p ∈ FR ∩ FI , I ∈ N}, that is, Q contains all
images in which p is visible. vb(p) is a boolean function
as:

vb(p) =
{

1 | Q |≥ 2
0 else

(7)

where, | Q | is the cardinality of Q. The definition of vb(p)
means that we only consider R’s feature points that are visible
in at least two neighboring images.

The weighting function vq(p) measures the reconstruction
quality for p as an average of the visible image set Q, as:

vq(p) =
∑

I∈Q wα(p, I )ws(p, I )

| Q | (8)
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Fig. 7. The reference image R (the 51st image in the data set) and
its neighboring images I1 ∼ I6 selected by three evaluated methods with
nmax = 6. In (a), (b), and (c), the red triangle cone represents the reference
camera, yellow cones represent the obtained neighboring cameras, and blue
cones are other cameras.

where, wα(p, I ) = min(
� I,R(p)

αmax
, 1)1.5 and αmax is set to

35 degrees, and ws(p, I ) is:

ws(p, I ) =
⎧
⎨

⎩

r2 r < 1
1 1 ≤ r ≤ 1.6
( 1.6

r )2 r > 1.6
(9)

where, r = sR(p)/sI (p), it is the scale of p defined in Eq. (4).
The graph of wα(p, I ) and ws(p, I ) is shown in Fig. 3.

Thus, vq(p) favors the images that have sufficiently big ray
intersection angle (≥ 35o) with R and have a litter higher
resolution (1 ≤ r ≤ 1.6) than R at feature point p.

A good neighboring image set should separate from each
other and sparsely cover each feature point in the reference

image. Thus, the last weighting function vc(p) measures the
coverage quality of the neighboring image set, as:

vc(p) =
∑

I,J∈Q wβ(p, I, J )

C |Q|
2

· 1

| Q | (10)

where, wβ(p, I, J ) = min(
� I,J (p)

βmax
, 1) and βmax is set to

15 degrees, and C |Q|
2 = |Q|(|Q|−1)

2 . Here, vc(p) favors the
image set that sparsely covers p and in which each pair of
images possesses big enough ray intersection angle (≥ 15o)
at p.

Having defined the objective function G R(N) for a reference
image R, we could maximize this function to find its optimal
neighboring image set which will be elaborated in the next
section.

III. QEA BASED OPTIMIZATION

Let M denote the image set containing all the images, for
each reference image R ∈ M, we try to find the best neigh-
boring image set N from all the remaining images {M\ R}. To
improve the efficiency, we first make a subset C ⊆ {M \ R}
which excludes all the images that are obviously not suited to
be R’s neighboring images. For each image I ∈ {M \ R},
it is included into C if the following three conditions are
satisfied: 1) the number of common visible feature points in
I and R is more than 10; 2) the average ray intersection
angle � I, R(p) over all common feature points is bigger than
5 degrees and smaller than 120 degrees; 3) the average scale
r = sR(p)/sI (p) over all common feature points is bigger
than 0.5 and smaller than 4. This step could significantly
reduce the searching domain for finding N , especially for large
scale scenes where a large number of images are involved. An
example of R and C is shown in Fig. 4. The best neighboring
image set N is a subset of C, and usually | C | � | N |.
The maximal size of N, denoted as nmax , is a key parameter.
According to [29], increasing the size of N could decrease the
depth uncertainty but will increase the depth-map computation
burden. Thus, there is a tradeoff for setting nmax , and in this
paper we test nmax = 3 and nmax = 6.

Given C and nmax , the best N for each R is computed by
maximizing G R(N) with constraint | N | ≤ nmax . Mathemati-
cally, the maximization of G R(N) over C could be considered
as a 0-1 knapsack problem which is an NP-hard problem. The
0-1 knapsack problem is a combinatorial optimization problem
which is described as: given a set of items each of which
has a weight and a value, and given a knapsack with limited
capacity, then select a subset of the items to maximize the
profit. From a knapsack problem’s view, each image in C is
an item whose volume is 1, the capacity of the knapsack is
nmax , the total profit of selected items is G R(N), and this
could be formally described as:

max f (x)
subject to

∑m
i=1 xi ≤ nmax

(11)

where, x = (x1, x2, . . . , xm), m is the size of C, i.e.
m = | C |. xi is 0 or 1, and xi = 1 means the i -th image
in C is selected for N. Thus, the profit f (x) = G R(N), where
N = {Ii | Ii ∈ C, xi = 1}i=1,...,m .
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TABLE II

NUMBERS OF CORRECT, ERROR AND MISSING DEPTH PIXELS USING THREE DIFFERENT NEIGHBORING IMAGE SELECTION METHODS FOR THE 51st

IMAGE. THE NUMBER INSIDE THE BRACKET IS THE PERCENTAGE OF THE PIXELS AS OPPOSED TO THE GROUND TRUTH PIXEL COUNTS

TABLE III

AVERAGE PERCENTAGES OF CORRECT/ERROR/MISSING PIXELS AS

OPPOSED TO THE GROUND TRUTH PIXEL COUNTS USING

THREE METHODS ON 102 IMAGES

Among various methods that can solve the knapsack prob-
lem, the Quantum-inspired Evolutionary Algorithm (QEA)
[30] is proven to be quite suitable for the 0 − 1 knapsack
problem. QEA is characterized by its Q-bit representation for
the individual, the observation process for producing a binary
string from the Q-bit individual, the update process by the Q-
gate, and the migration process of the Q-bit individuals. For
a full description of QEA, one can refer [30] for details.

The basic unit in QEA is defined as a Q-bit as [α, β]T ,
where |α|2 +|β|2 = 1. |α|2 and |β|2 gives the probability that
this Q-bit could be found in the ′0′ and ′1′ state respectively.
Then an individual in QEA is given as a string of Q-bits, as:

[
α1 α2 . . . αm

β1 β2 . . . βm

]
(12)

where, |α|2i + |β|2i = 1, i = 1, 2, . . . , m, and m = | C |. Here
|β|2i is the probability that the i -th image in C is selected
in N . The Q-bit individual has the advantage to represent
a linear probabilistic combination of all the states, which
makes the population size in QEA quite small compared to
the conventional genetic algorithms.

The procedure of the QEA based neighboring image selec-
tion is outlined in Algorithm 1.

Q(t) is the population, and Q(t) = {qt
1, qt

2, . . . , qt
k}. qt

j is
the j -th Q-bit individual in the t-th generation, where k is the
population size. At t = 0, all probabilities in qt

j are set to 1√
2

which represents a linear combination of all possible states
with the same probability (|α|2 = |β|2 = 1

2 ).
P(t) is the observation population, and P(t) =

{xt
1, xt

2, . . . , xt
k}. xt

j is the binary solution of qt
j , and it is

generated by selecting either 0 or 1 for each bit using the
probabilities |α|2 and |β|2 of each bit in qt

j . xt
j is a binary

string of length m =| C |, and it could be used to evaluate the
profit f (x) in Eq. (11). Since the constraint in Eq. (11) may
not be satisfied for xt

j , a repair step is followed to randomly
select nmax of the bits in xt

j whose value is 1 and set others

to 0. Then each repaired xt
j in P(t) is evaluated and the best

solutions among B(t −1) and P(t) are stored into B(t), where
B(t) = {bt

1, bt
2, . . . , bt

k} is the best solution population.
In QEA, traditional crossover and mutation operators do not

exist. Instead, the population Q(t) is updated by the rotation
gate, as:

[
α′
β ′

]
=

[
cos(�θ) − sin(�θ)
sin(�θ) cos(�θ)

] [
α
β

]
(13)

where, [α, β]T and [α′, β ′]T are the Q-bit before and after
the update step respectively, and �θ is a rotation angle
of the Q-bit toward either 0 or 1 state depending on its
sign.

For each individual qt
j in Q(t), pt

j and bt−1
j are respectively

its observation and its best solution found till now. Suppose
pi and bi are the i -th binary bit of pt

j and bt−1
j respectively,

if f (bt−1
j ) > f (pt

j ) and pi �= bi , we should update the i -th
Q-bit of qt

j using Eq. (13) to rotate �θ degrees toward bi in
order to increase the state bi ’s observing probability. In this
paper | �θ | is set to 0.01π , and the sign of �θ depends on
[α, β]T ’s quadrant.

At each generation in QEA, the global best solution among
B(t) is stored into bg. When the migration condition is
satisfied (usually at every certain generations), a migration
step is implemented by replacing all the solutions in B(t) by
bg. Since each individual is evolved independently in QEA,
the migration step plays an important role in propagating
information in the population.

The QEA is running in the while loop in Algorithm 1
until the termination condition (usually at certain generations)
is satisfied. Once the loop is finished, the best neighboring
image set for R is generated from bg as N = {Ii | Ii ∈ C,
bi

g = 1}i=1,...,m , where bg = (b1
g, b2

g, . . . , bm
g ).

IV. EXPERIMENTAL RESULTS

A. Experiments Description

As noted in Section I, the neighboring image selection is a
relatively easy task for regular arrayed cameras like the EPFL
data sets [31] or images captured in a controlled environment
like the Middlebury data sets [32], but needs to be carefully
designed for large-scale scenes in which unordered images
are captured at various locations and scales which is the
focus of this paper. In order to quantitatively evaluate our
proposed neighboring image selection method, we set up a
new benchmark data set which is captured in the campus of
Tsinghua University. In this data set, a Riegl-LMS-Z420i laser
scanner (LIDAR) is used to scan the scene. The LIDAR’s
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Fig. 8. Number of correct, error and missing depth pixels at each image by the three method. In both (a) and (b), from top to bottom: number of correct,
error, and missing pixels at each image respectively. (102 images in total)

accuracy is 10mm@50m, and its angular stepwidth is 0.0057
degree. The captured LIDAR data is converted to a single high-
resolution triangle mesh using Poisson surface reconstruction
algorithm [33] which acts as the ground truth 3D model.
Together with the LIDAR data 102 images are captured with a
Canon DLSR camera with a resolution of 4368×2912 pixels.
Finally, the internal and external camera parameters of each
image, as well as the coordinates transformation between the
LIDAR data and the images, are calibrated with scene control
points using the same method as [34]. This data set could
be downloaded from our website,1 and some samples of the
data are shown in Fig. 5. As shown in Fig. 5b, the camera
locations and their distances from the building have a large
range variation across the scene.

1http://vision.ia.ac.cn/data/

We compared our proposed method with the method pro-
posed by Bailer et al. [21]. The selection method in [21]
uses a greedy algorithm and grows N by iteratively adding
to N the view with highest score gR(I ) (gR(I ) is defined in
Eq. (2)) as discussed in Section II. Since the QEA could be
used to optimize

∑
I∈N gR(I ) directly, we also evaluate the

results generated by QEA based optimization on
∑

I∈N gR(I ).
We denote the original greedy method in [21] by “Bailer et
al. Greedy” and the method using QEA on

∑
I∈N gR(I ) by

’Bailer et al. QEA’.
To measure the quality of the neighboring image set selected

by different methods, we compute the depth-map at each
reference image with its neighboring images and quantitatively
compare it with the ground truth depth-map which is gener-
ated by back projecting the ground truth 3D model to each
image. Here, we use the depth-map creation method in [21]
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Fig. 9. 3D reconstruction results and 3D error models using three methods with nmax = 3 and 6 respectively. In both (a) and (b), from top to bottom:
3D reconstruction results (colorized point cloud rendering) and 3D error models using the proposed method, Bailer et al. Greedy, and Bailer et al. QEA,
respectively.

to generate the depth-maps. This method can generate high
quality depth maps based on path propagation [35] between
nearby pixels which is very similar to our previous work [22],
and the main difference between [21] and [22] is that the
method in [21] uses multiple neighboring images for depth-
map computation and that in [22] uses only one neighboring
image for stereo computation.

B. Parameter Settings

Our proposed method has nine parameters, and we
have already discussed their value settings in Section II

and III. Table I is a summary. All the experiments are
implemented on a Intel 2.8GHz Quad Core CPU with
16G RAM.

Note that the parallel nature of QEA makes it well suited
for parallel computing because each individual is evolved inde-
pendently and information is exchanged only at the migration
step (every 100 generations). In this paper, the population size
of QEA is k = 4, thus the four individuals in our proposed
method and the Bailer et al. QEA are evolved in parallel on
the Quad Core CPU.

In all the experiments, the three evaluated methods use
the same value of nmax . According to [29], increasing nmax
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Fig. 10. 3D error with respect to the number of 3D points below the error.
(a) nmax = 3. (a) nmax = 6.

can decrease the depth uncertainty but will increase the
depth-map computation burden, thus in the experiments we
test two different values of nmax (3 and 6) as shown in Table I.

C. Results

In order to quantitatively evaluate the depth-maps computed
using different neighboring image selection methods, for each
pixel in the image we denote the computed depth by d , and
the ground truth depth by dgt , then the relative depth error
between the computed depth and the ground truth is defined
as:

e = ‖d − dgt‖
dgt

(14)

If the depth error e is below a threshold τe , the depth d
is considered as correct. In this paper we set the threshold
τe = 0.01.

Fig. 6 is the depth-map of the 51st image computed using
three different neighboring image selection methods. Fig. 6a
shows the 51st image in the data set and its ground truth
depth-map, and Fig. 6b and 6c shows the depth-maps and
error-maps generated by different methods with nmax = 3
and 6 respectively. The blue pixel in the error-map represents
the pixel whose depth is unavailable, called a missing depth
pixel, the red pixel represents an error e larger than τe which
is considered as an error pixel, and the gray pixel represents
a correct pixel whose depth error e ≤ τe and its accuracy is
encoded in gray 255 ∼ 0 (brighter, more accurate). Table II
compares the numbers of correct, error and missing depth
pixels in Fig. 6 by the three methods.

The results show that our proposed method could generate
more complete and accurate depth-maps compared with Bailer
et al. Greedy and Bailer et al. QEA. When nmax = 3, the
three images selected by Bailer et al. Greedy are all located
at the right side of R as shown in Fig. 7b I1 ∼ I3, which
results in an incomplete depth-map (such as the top of the
building in Fig. 6b). When nmax = 6, we found that Bailer et
al. QEA works worse than Bailer et al. Greedy although the
former one uses a global optimization method, which indicates
that the view score gR(I ) defined in Bailer et al. Greedy
is only designed for local optimization and a global optimal
solution on

∑
I∈N gR(I ) generated by Bailer et al. QEA does

not guarantee a good solution.
Fig. 7 shows the 51st image and its neighboring images

generated by the three methods with nmax = 6 in space. As
shown in Fig. 7a, the six neighboring images I1 ∼ I6 selected
by our proposed method all have similar scales with the
reference image R, {I1, I2}, {I3, I4} and {I5, I6} mainly cover
the left, middle and right part of R respectively. Comparatively
speaking, some neighboring images selected by Bailer et al.
Greedy and Bailer et al. QEA are not appropriate, such as I3
in Fig. 7b and I3 and I6 in Fig. 7c which only cover a small
portion of R at a very different scale.

Besides a single image, we respectively plot the number
of correct, error and missing depth pixels at each image
by the three methods in Fig. 8. The average percentages
of the correct/error/missing pixels as opposed to the ground
truth pixel counts across 102 images are shown in Table III.
The results show that our proposed method could generate
more correct pixels but less error and missing depth pixels in
most of the images compared with Bailer et al. Greedy and
Bailer et al QEA. Once again Bailer et al. Greedy outperforms
Bailer et al. QEA.

In order to evaluate the quality of final 3D models gener-
ated by different methods, we use the depth-map refinement
and merging algorithm in [22] to merge all the depth-maps.
The algorithm in [22] uses a depth-map refinement process to
enforce the depth consistency over neighboring views and then
merges all the refined depth-maps by removing redundancies,
which results in a dense and uniformly spaced 3D point cloud.
Here, we use the distance between a 3D point and its nearest
ground-truth triangular mesh as an error measurement for
each 3D point. Since some reconstructed 3D points may not
have corresponding ground-truth which could result in very
large 3D errors, we remove all those 3D points whose error
exceed 0.05 meters. The 3D reconstruction results and 3D
error models with the three methods are shown in Fig. 9. The
results show that our proposed method could generate a more
complete 3D model than both Bailer et al. Greedy and Bailer
et al QEA, such as the top of the building in Fig. 9. Fig. 10
shows the 3D error graph with respect to the number of 3D
points. It shows that our proposed method could get more
accurate 3D reconstructions than the other two methods, but
the improvement is not as significant as that on a single depth-
map because lots of errors are later removed by the refinement
step in [22].

Finally, we evaluate the computation speed of the proposed
method. Thanks to the parallel structure of QEA, the proposed



SHEN AND HU: HOW TO SELECT GOOD NEIGHBORING IMAGES 317

method in average takes 6.8 and 9.2 seconds to select neigh-
boring images for each reference image with nmax = 3 and 6
respectively. Since the depth-map computation step averagely
takes 278 seconds (nmax = 3) and 470 seconds (nmax = 6) to
process an image with a resolution of 4368×2912 pixels in the
data set, the runtime for image selection is almost negligible
in the whole MVS pipeline.

V. CONCLUSION

In the depth-map merging based 3D modeling, in addition
to generate high quality depth maps at each image, how to
to select suitable neighboring images for each image is also
an important issue to which unfortunately little attention has
been paid till now in the literature. This work is focused
on the optimal neighboring image selection problem. In this
paper we formulate the neighboring image selection as a
combinatorial optimization problem and use the quantum-
inspired evolutionary algorithm to seek its optimal solution.
We also create a publicly available ground truth data set in
which unordered images are captured at various locations and
scales. Experimental results on this ground truth data set show
that our proposed algorithm could significantly improve the
quality of the depth-maps as well as the final 3D reconstruction
results with high computational efficiency.
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