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the rate (the smaller the rate, the larger the gain), the encoding
complexity (the greater the complexity, the greater the gain), and
the degree of inter-pixel correlation (the greater the correlation, the
greater the gain). Standard coding algorithms such as JPEG and
JPEG-LS perform much better than GPCM at the expense of a
significantly larger computational complexity.
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Weighted Similarity-Invariant Linear Algorithm for Camera
Calibration With Rotating 1-D Objects

Kunfeng Shi, Qiulei Dong, and Fuchao Wu

Abstract— In this paper, a weighted similarity-invariant linear
algorithm for camera calibration with rotating 1-D objects
is proposed. First, we propose a new estimation method for
computing the relative depth of the free endpoint on the 1-D
object and prove its robustness against noise compared with
those used in previous literature. The introduced estimator is
invariant to image similarity transforms, resulting in a similarity-
invariant linear calibration algorithm which is slightly more
accurate than the well-known normalized linear algorithm. Then,
we use the reciprocals of the standard deviations of the estimated
relative depths from different images as the weights on the
constraint equations of the similarity-invariant linear calibration
algorithm, and propose a weighted similarity-invariant linear
calibration algorithm with higher accuracy. Experimental results
on synthetic data as well as on real image data show the
effectiveness of our proposed algorithm.

Index Terms— 1-D calibration object, camera calibration,
weighted similarity-invariant linear algorithm (WSILA).

I. INTRODUCTION

One-dimensional calibration techniques are an important type of
techniques that generally use a stick consisting of at least three points
to calibrate camera parameters [1]–[11]. Since the 1-D object can be
observed without occlusion by all the referred cameras simultane-
ously, 1-D calibration techniques are more applicable in multicamera
systems [12], [13] than 2-D and 3-D calibration techniques [14]–[16].

In recent years, 1-D calibration techniques have been studied
extensively. Zhang [1] for the first time proposed a linear calibration
algorithm using a 1-D object that rotated around a fixed point. Ham-
marstedt et al. [3] investigated in detail the degenerate configurations
of [1]. Wu et al. [2] reformulated the calibration equation of [1]
in a geometric method and obtained a linear algorithm with similar
accuracy. Francca et al. [6] proposed a linear algorithm with the
normalized image points, which significantly improved the calibration
accuracy of [1]. To avoid possible nonpositive-definite estimations of
the image of absolute conic (IAC) in the linear calibration algorithms,
Wang et al. [7] minimized the norm of algebraic residuals subject
to the constraint that the solution was positive definite. Miyagawa
et al. [8] calibrated the camera’s focal length from a single image
of two orthogonal 1-D objects that shared one point. In addition,
when multiple cameras need to be globally calibrated, single-camera
calibration algorithms can be extended by combining the intrinsic and
extrinsic parameters of all the cameras. Moreover, Wang et al. [9]
showed that multiple cameras can be simultaneously calibrated with
a 1-D object that underwent general rigid motions.
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This paper focuses on how to improve the accuracies of linear
calibration techniques with rotating 1-D objects. The calibration
principle of [2] is different from that of [1] and [6], and the accuracy
of [2] is similar to that of [1]. Therefore, the linear algorithms in [1]
and [6] are discussed in detail in this paper. To improve the calibration
robustness against the measurement errors of image points, we first
introduce a new algorithm for computing the relative depths of
the free endpoints, and compare it with two existing algorithms
[1], [6]. Then, we analyze the influence of data normalization on
the calibration accuracy and give a new explanation on why the
performance of [6] is superior to that of [1]. Finally, based on the
introduced algorithm for computing the relative depths, we propose
a weighed similarity-invariant linear calibration algorithm that uses
the reciprocals of the standard deviations of the computed relative
depths to weight the constraint equations.

The remainder of this paper is organized as follows. Section II
describes related work. Section III introduces a new relative depth
computation algorithm and compares it with existing algorithms. We
propose a weighted similarity-invariant linear calibration algorithm
in Section IV. Section V reports experimental results, followed by
some concluding remarks in Section VI.

II. RELATED WORK

A. Preliminaries

Here, an image point is denoted by x = [u, v]�, and its homo-
geneous coordinate is x̃ = [u, v, 1]�. A space point is denoted by
X = [X, Y, Z]�. The weighted norm of a vector v is ‖v‖M =

√
v�Mv,

where M is a positive definite matrix. And we define Im×n as an m×n
matrix with 1s on the diagonal and 0s elsewhere. Throughout this
paper, we use typewriter font for matrices, boldface font for vectors,
and Italic font for scalar quantities.

Fig. 1 is an illustration of a 1-D calibration object consisting of
three collinear points. The point X1 is fixed while the 1-D object
rotates around it. The number of the 1-D object’s poses is denoted
by I , and the number of the points on it is denoted by J . Xi

j (i =
1, 2, . . . , I and j = 2, . . . , J ) denotes the position of the point j in
the pose i , and the spatial distance between X1 and Xi

j is L j . The
calibration matrix of a pinhole camera is

K =
⎡

⎣
fu γ u0
0 fv v0
0 0 1

⎤

⎦ (1)

where [ fu , fv ] is the focal length, γ is the skew factor, and [u0, v0]�
is the principal point. Under the camera coordinate frame, the space
points and their image coordinates satisfy

X1 = Z1K
−1x̃1, Xi

2 = Zi
2K

−1x̃i
2, . . . , Xi

J = Zi
JK

−1x̃i
J . (2)

The relative depth of the free endpoint Xi
J is the ratio of its

depth to the depth of the fixed point X1, denoted by βi = Zi
J /Z1.

Different methods to compute β̂i result in different linear calibration
algorithms.

B. Zhang’s Linear Algorithm (ZLA)

ZLA [1] consists of two steps: estimating the relative depths and
establishing a set of linear constraints on the IAC. When J = 3, the
relative depth βi is estimated as

β̂
(1)
i = (L3 − L2)(̃x1 × x̃i

2)�(̃xi
2 × x̃i

3)

L2‖̃xi
2 × x̃i

3‖2
. (3)

Fig. 1. Illustration of a rotating 1-D calibration object.

Since ‖X1 − Xi
3‖2 = L2

3 (i = 1, 2, . . . , I ), a constraint on ω =
Z1

2K−�K−1 can be obtained from the image of the pose i according
to (2) as follows:

(
x̃1 − β̂

(1)
i x̃i

3
)�

ω
(
x̃1 − β̂

(1)
i x̃i

3
) = L2

3. (4)

Let w = [ω11, ω12, ω22, ω13, ω23, ω33]�, and then (4) is converted
to a linear constraint on w as ξ�

i w = L2
3, where ξ i is the coefficient

vector of w in (4). Combining constraints on w from I images, a
linear system of equations results, given by

Vw = L. (5)

Once at least six images are captured without motion singularity,
w can be determined uniquely as ŵ = V+L. Then, ω̂ and K̂ can be
computed.

C. Francca et al.’s Normalized Linear Algorithm (FNLA)

To decrease the influence of image noise on ZLA, Francca et al. [6]
used the normalized image points to calibrate the camera as follows.
Denote the image normalization matrix by H, and the normalized
image points are x̃1

′ = H̃x1, x̃i
j
′ = H̃xi

j , (i = 1, 2, . . . , I, j =
2, 3, . . . , J ). With x̃1

′, x̃i
j
′, and x̃i

J
′, βi is estimated as

β̂
(2)
i j =

(L J − L j )
(
x̃1

′ × x̃i
j
′)�(x̃i

j
′ × x̃i

J
′)

L j
∥
∥̃xi

j
′ × x̃i

J
′∥∥2

, j = 2, 3, . . . , J − 1.

(6)
Define the normalized IAC as ω′ = H−�ωH−1, and then the
constraint on ω′ is

(
x̃1

′ − β̂
(2)
i j x̃i

J
′)�ω′(x̃1

′ − β̂
(2)
i j x̃i

J
′) = L2

J . (7)

Similar to (5), from the I (J −2) constraints in (7), a linear system
of equations on w′ = [

ω′
11, ω

′
12, ω′

22, ω′
13, ω′

23, ω
′
33
]� is given by

V′w′ = L. (8)

After computing w′ and ω̂′, the calibration matrix K̂ is obtained
from ω̂ = H�ω̂′H.

D. Maximum-Likelihood Estimation of the Pinhole Camera
Model (MLEPCM)

Zhang [1] and Francca et al. [6] also used nonlinear optimization
to refine their linear calibration results. Suppose the variance of
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the noise on image point xi
j is �xi

j
, and then the maximum-

likelihood estimation of the pinhole camera model can be computed
by minimizing the reprojection error

∥
∥
∥
∥x1−x̂1 (̂K, X̂1)

∥
∥
∥
∥

2

�−1
x1

+
I∑

i=1

J∑

j=2

∥
∥
∥
∥xi

j −x̂i
j (̂K, X̂i

j )

∥
∥
∥
∥

2

�−1
xi

j

(9)

where x̂i
j is the estimated projection of X̂i

j according to (2), and

X̂i
j = X̂1 + L j [sin θi cos φi , sin θi sin φi , cos θi ]�, where (θi , φi ) are

the spherical coordinates at the pose i .

III. NEW ALGORITHM FOR RELATIVE

DEPTH COMPUTATION

In this section, we first introduce a new algorithm to estimate
the relative depth of the free endpoint at each pose of the 1-D
object. Then, the detailed analyses of the accuracies of different
relative depth computation algorithms are given. The influence of
data normalization on the calibration accuracy is also revisited.

A. Similarity-Invariant Algorithm for Computing the
Relative Depths

From the collinearity of X1, Xi
j , and Xi

J , we obtain

(Xi
J − X1)/L J = (Xi

j − X1)/L j , and then

L J Xi
j = (L J − L j )X1 + L j Xi

J . (10)

By substituting (2) into (10) and eliminating K−1 from both sides,
we have

L J Zi
j x̃i

j = (L J − L j )Z1x̃1 + L j Zi
J x̃i

J . (11)

Equation (11) can provide three linear equations in Z1, Zi
j , and Zi

J .

After eliminating Zi
j by substitution and dividing both sides of (11)

by Z1, the linear constraints on βi are given by

L j (x
i
j − xi

J )βi = (L J − L j )(x1 − xi
j ), j = 2, . . . , J − 1.

(12)

The 2(J − 2) constraints in (12) form a linear system of equations,
and the least-squares solution is

β̂
(3)
i =

∑J−1
j=2

[
L j (L J − L j )(x1 − xi

j )
�(xi

j − xi
J )
]

∑J−1
j=2

[
L2

j ‖xi
j − xi

J ‖2
] . (13)

Since similarity transform (isotropic normalization) preserves the
ratio between vector inner products, β̂

(3)
i is similarity-invariant

regardless of the noises on image points.
With the obtained β̂

(3)
i (i = 1, 2, . . . , I ), a similarity-invariant

linear calibration algorithm (SILA) is designed as follows. In both
the minimal configuration (J = 3) and the redundant configurations
(J > 3), the constraint on ω is

(
x̃1 − β̂

(3)
i x̃i

J
)�

ω
(
x̃1 − β̂

(3)
i x̃i

J
) = L2

J . (14)

Then, similar to (5), a linear system of equations on w can be obtained
from constraints (14) as

Vw = L. (15)

Then, ω̂ and K̂ are computed from ŵ = V+L. The calibration result K̂
in this algorithm is invariant under an image similarity normalization
as proved in Section III-D. In the redundant configurations, the
number of the constraints in (15) is smaller than that in (8), so the
computational cost of SILA to obtain the least-squares solution is
lower according to [17].

B. Accuracies of β̂i in the Minimal Configuration

Suppose the covariance matrix of the noises on image points has
the diagonal form �x1xi

2xi
3

= Diag(σ 2
1 , σ 2

1 , σ 2
2i , σ

2
2i , σ 2

3i , σ 2
3i ). Then,

the standard deviation of β̂i can be approximated with

std(β̂i ) ≈ ∥
∥(∂β̂i )/(∂x1xi

2xi
3)
∥
∥
�

x1xi
2xi

3

where the Jacobian (∂β̂i )/(∂x1xi
2xi

3) is calculated at the true values
of image points [18].

When J = 3, only one estimation of βi is computed in (6) and it
is represented by β̂

(2)
i . The normalization matrix used in FNLA can

be written as

H =
⎛

⎝
s 0 s ut
0 k s k s vt
0 0 1

⎞

⎠ (16)

where [ut , vt ]� is the translation vector, and s and k s are the scaling
factors [19]. We have the following proposition.

Proposition 1: std(β̂
(2)
i ) � std(β̂

(3)
i ) for any normalization matrix

H.
Proof: The Jacobian of β̂

(2)
i is

∂β̂
(2)
i

∂x1xi
2xi

3

=
⎛

⎜
⎝

L3−L2
L2

L2−L3−βi L2
L2
βi

⎞

⎟
⎠⊗ I2×3

[̃xi
2]×H∗�H∗(̃xi

2× x̃i
3)

‖̃xi
2 × x̃i

3‖2
H∗�H∗

(17)

where the operator “⊗” denotes the Kronecker product and H∗ =
det(H)H−�. Then, std(β̂

(2)
i ) is approximated with

std(β̂
(2)
i ) ≈

∥
∥
∥
∥
∥

∂β̂
(2)
i

∂x1xi
2xi

3

∥
∥
∥
∥
∥
�

x1xi
2xi

3

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

σ1
L3−L2
βi L2

σ2i
L2−L3−βi L2

βi L2
σ3i

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

∂β̂
(2)
i

∂xi
3

∥
∥
∥
∥
∥

. (18)

Similarly, the Jacobian of β̂
(3)
i is

∂β̂
(3)
i

∂x1xi
2xi

3

=
⎛

⎜
⎝

L3−L2
L2

L2−L3−βi L2
L2
βi

⎞

⎟
⎠⊗ xi

2 − xi
3

‖xi
2 − xi

3‖2
. (19)

std(β̂
(3)
i ) is approximated with

std(β̂
(3)
i ) ≈

∥
∥
∥
∥
∥

∂β̂
(3)
i

∂x1xi
2xi

3

∥
∥
∥
∥
∥
�

x1xi
2xi

3

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

σ1
L3−L2
βi L2

σ2i
L2−L3−βi L2

βi L2
σ3i

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

∂β̂
(3)
i

∂xi
3

∥
∥
∥
∥
∥

. (20)

According to (18) and (20), std(β̂
(2)
i )−std(β̂

(3)
i ) has the same sign

as
∥
∥(∂β̂

(2)
i )/(∂xi

3)
∥
∥ − ∥

∥(∂β̂
(3)
i )/(∂xi

3)
∥
∥. Since

∥
∥(∂β̂

(2)
i )/(∂xi

3)
∥
∥ �

∥
∥(∂β̂

(3)
i )/(∂xi

3)
∥
∥ as shown in (21) at the bottom of the next page,

std(β̂
(2)
i ) � std(β̂

(3)
i ) for any normalization matrix H.

From Proposition 1 and its proof, some points can be revealed.

1) Since β̂
(1)
i is a special case of β̂

(2)
i when H = I3×3, β̂

(3)
i is

more accurate than β̂
(1)
i .

2) In real applications with high-resolution images, the scaling
factors s and ks in FNLA are very small. Then, β̂

(2)
i in FNLA
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is close to the limit of β̂
(2)
i as s approaches 0. Besides, by (21),

we have

lim
s→0

∥
∥
∥

∂β̂
(2)
i

∂xi
3

∥
∥
∥

2 −
∥
∥
∥

∂β̂
(3)
i

∂xi
3

∥
∥
∥

2

= β2
i (k2 − 1)2(ui

2 − ui
3)2(v i

2 − v i
3)2

[(
ui

2−ui
3

)2+
(
v i

2−v i
3

)2
] [(

ui
2−ui

3

)2+k2
(
v i

2−v i
3

)2
]2 .

(22)

Then, when k = 1, lim
s→0

∥
∥(∂β̂

(2)
i )/(∂xi

3)
∥
∥ = ∥

∥(∂β̂
(3)
i )/

(∂xi
3)
∥
∥, when k �= 1, lim

s→0

∥
∥(∂β̂

(2)
i )/(∂xi

3)
∥
∥ �

∥
∥(∂β̂

(3)
i )/

(∂xi
3)
∥
∥. Therefore, according to (18) and (20), β̂

(2)
i with

isotropically scaled points will have similar accuracy to β̂
(3)
i ,

and the anisotropically scaled version of β̂
(2)
i will have slightly

worse accuracy.

C. Accuracies of β̂i in the Redundant Configurations

Suppose the J points on the 1-D object are uniformly fixed, i.e.,
L j = (( j − 1)/(J − 1))L J ( j = 2, ..., J ). Besides, the covariance
matrix of the noises on image points is supposed to be σ 2I2J×2J .

The Accuracy of β̂
(2)
i j : Since the scaling factors of data normaliza-

tion in FNLA are always small in real applications, each β̂
(2)
i j is close

to the limit of β̂
(2)
i j as s approaches 0. Therefore, we only analyze

this limit for the sake of convenience. With isotropic normalization,
the Jacobian of β̂

(2)
i j can be approximated with

∂β̂
(2)
i j

∂x1xi
j xi

J

≈ lim
s→0

∂β̂
(2)
i j

∂x1xi
j xi

J

=

⎛

⎜
⎜
⎝

1 + J− j
βi ( j−1)

−2 − J− j
βi ( j−1) − βi ( j−1)

J− j

1 + βi ( j−1)
J− j

⎞

⎟
⎟
⎠⊗ βi (x1 − xi

J )

‖x1 − xi
J ‖2

. (23)

Then, std(β̂
(2)
i j ) ≈ σ

∥
∥(∂β̂

(2)
i j )/(∂x1xi

j xi
J )
∥
∥ is an increasing func-

tion of (J − j)/(βi ( j − 1)) + (βi ( j − 1))/(J − j), and it is
maximized at j = 2 or j = J − 1 for a given J . Furthermore,
when j = 2 or j = J − 1, since βi is usually close to 1,
(J − j)/(βi ( j −1))+(βi ( j −1))/(J − j) and std(β̂

(2)
i j ) increase with

the increase of J . If β̂
(2)
i j is computed with anisotropic normalization,

the same conclusion still holds.
The Accuracy of β̂

(3)
i : The Jacobian of β̂

(3)
i with respect to the

image points is

∂β̂
(3)
i

∂xi
j

= αi j
∑J−1

k=2
(k−1)2(J−k)2

[J−k+βi(k−1)]2

x1 − xi
J

‖x1 − xi
J ‖2

(24)

∥
∥
∥
∥
∥

∂β̂
(2)
i

∂xi
3

∥
∥
∥
∥
∥

2

−
∥
∥
∥
∥
∥

∂β̂
(3)
i

∂xi
3

∥
∥
∥
∥
∥

2

=
β2

i

{
(k2−1)(ui

2−ui
3)(v i

2 − v i
3)+k2s2[(ui

2 + ut )(v
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β

Fig. 2. Curves of
∥
∥(∂β̂

(3)
i )/(∂x1xi

2···J )
∥
∥‖x1 − xi

J ‖ for J = 3, 4, . . . , 9.

where

αi1 =
J−1∑

k=2

(k − 1)(J − k)2

J − k + βi (k − 1)

αi j = −( j − 1)(J − j), j = 2, . . . , J − 1

αi J =
J−1∑

k=2

βi (k − 1)2(J − k)

J − k + βi (k − 1)
. (25)

Then, the standard deviation of β̂
(3)
i can be approximated with

std(β̂
(3)
i ) ≈ σ

∥
∥(∂β̂

(3)
i )/(∂x1xi

2···J )
∥
∥. Since σ and ‖x1 − xi

J ‖
are unchanged when J varies, std(β̂

(3)
i ) is thus in proportion

to
∥
∥(∂β̂

(3)
i )/(∂x1xi

2···J )
∥
∥‖x1 − xi

J ‖, which is a function of βi
and J . For each value of J in {3, 4, . . . , 9}, the curves of∥
∥(∂β̂

(3)
i )/(∂x1xi

2···J )
∥
∥‖x1 − xi

J ‖ are shown in Fig. 2. When J

increases, the curve of
∥
∥(∂β̂

(3)
i )/(∂x1xi

2···J )
∥
∥‖x1 − xi

J ‖ becomes

lower, so std(β̂
(3)
i ) decreases with the increase of J .

To summarize the analyses of std(β̂
(2)
i j ) and std(β̂

(3)
i ), β̂

(3)
i is more

robust against noise than β̂
(2)
i j .

D. Influence of Data Normalization on the Calibration
Accuracy

Although Francca et al. [6] considered that the calibration accuracy
is improved in FNLA because data normalization decreases the
condition number of the coefficient matrix, we reinvestigate the
influence of data normalization on the calibration accuracy and
provide a different explanation from that given in [6].
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To test the influence of the condition number on the calibration
accuracy, we assume that the estimations of the relative depths are
identical in ZLA and FNLA, i.e., β̂

(1)
i = β̂

(2)
i (i = 1, 2, . . . , I ).

Then, Hartley’s method to analyze the influence of data normalization
on the eight-point algorithm in [19] is utilized as follows. It can
be verified that there exists an invertible 6 × 6 matrix S such that
V′ = VS and w′ = S−1w if and only if ω′ = H−�ωH−1. Thus
ω′ = H−�ωH−1 is the one-to-one correspondence between ω and ω′
such that Vw − L = V′w′ − L. Then, the least-squares solutions to
(5) and (8) are related by ω̂′ = H−�ω̂H−1. As a result, the retrieved
estimation of the IAC in FNLA is the same as that in ZLA, since
ω̂ = H�ω̂′H.

The above deduction shows that, if β̂i (i = 1, 2, . . . , I ) are
invariant to H, the calibration result K̂ is also invariant regardless
of the condition numbers of V and V′. Then, we speculate that
the improved accuracy of FNLA over ZLA is because β̂

(2)
i (i =

1, 2, . . . , I ) are more accurate than β̂
(1)
i .

Next, we consider the influence of data normalization on the
accuracy of SILA. Since β̂

(3)
i (i = 1, 2, . . . , I ) in SILA are invariant

to similarity transform (isotropic normalization), the calibration result
of SILA is also similarity-invariant. Thus, the calibration accuracy of
SILA cannot be improved through isotropic normalization. Besides,
similar to the influence of anisotropic normalization on the accuracy
of β̂

(2)
i , anisotropic normalization will reduce the accuracy of β̂

(3)
i ,

resulting in declined accuracy of SILA. To summarize the discus-
sions on the influences of isotropic normalization and anisotropic
normalization, SILA does not need data normalization.

IV. WEIGHTED SIMILARITY-INVARIANT LINEAR

ALGORITHM (WSILA)

Since the estimated relative depths β̂
(3)
i in different poses have

different accuracies, the constraints on the IAC including these β̂
(3)
i

have different levels of importance. Therefore, a weighed similarity-
invariant linear calibration algorithm is proposed based on SILA,
where each constraint is weighted with the reciprocal of the standard
deviation of corresponding β̂

(3)
i .

From Fig. 2, we see that
∥
∥(∂β̂

(3)
i )/(∂x1xi

2···J )
∥
∥ ≈ kJ

(βi
2)/(‖x1 − xi

J ‖), where kJ is a constant related to J . Suppose
the covariance matrix of the noises on image points is σ 2I2J×2J ,
and then

std(β̂
(3)
i ) ≈ σ

∥
∥
∥

∂β̂
(3)
i

∂x1xi
2···J

∥
∥
∥ ≈ kJ σ

β2
i

‖x1 − xi
J ‖ . (26)

Since kJ and σ are both constant for different i , the weight on the
constraint corresponding to the pose i is defined as

wi = 1

std(β̂
(3)
i )

≈ ‖x1 − xi
J ‖

β̂
(3)
i

2
. (27)

Define the weighting matrix W = Diag(w1, w2, . . . , wI ). Then,
the weighted linear system is

WVw = WL (28)

where the constructions of V and L are the same as in SILA. Then,
ω̂ and K̂ can be computed from ŵ = (WV)+WL. The computational
load of this weighted linear algorithm is nearly the same as that of
SILA, since it is easy to compute such weights.

Fig. 3. Calibration errors in the minimal configuration. (a) Anisotropic
FNLA. (b) Isotropic FNLA. (c) SILA. (d) WSILA. (e) WSILA + MLEPCM.
(f) Average iteration numbers of MLEPCM with different initial values.

V. EXPERIMENTAL RESULTS

A. Synthetic Data

In the synthetic experiments, the camera intrinsic parameters are
fu = 3150, fv = 3250, γ = 3, u0 = 1504, v0 = 1000, and the
image resolution is 3008 × 2000 pixels. The length of the 1-D object
is 60, and the fixed point is X1 = [0, −25, 150]� . The spherical
coordinates parameters θ and φ of 30 poses of the 1-D object are
randomly chosen from the distributions θ ∼Uniform(0.2π, 0.8π) and
φ∼Uniform(0, π). Independent and identically distributed Gaussian
noises are added to the projections of points on the 1-D object. In
each set of the following experiments, the calibration procedure is
repeated 1000 times. Then, we report the relative errors of different
1-D calibration algorithms as in [20], where the relative errors are
the ratios of the root-mean-square errors of the estimated intrinsic
parameters to the ground truth of fu .

1) Calibration Accuracy in the Minimal Configura-
tion: Here, three equidistant collinear points are fixed on the
1-D object. The standard deviation of zero-mean Gaussian noise
varies from 0 to 5 pixels with a step of 0.5 pixel. The calibration
accuracies of FNLA with anisotropic normalization, FNLA with
isotropic normalization, SILA, WSILA, and MLEPCM are shown
in Fig. 3.

As seen in Fig. 3(a)–(d), the calibration accuracies of FNLA with
anisotropic normalization and isotropic normalization and SILA are
similar but the accuracy of WSILA is much higher than both of them.
When the results of these four linear calibration algorithms are used
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Fig. 4. Calibration errors in the redundant configurations. (a) Anisotropic
FNLA. (b) Isotropic FNLA. (c) SILA. (d) WSILA. (e) WSILA + MLEPCM.
(f) Average iteration numbers of MLEPCM with different initial values.

as the initialization of MLEPCM, the differences between the relative
errors of the four refined results are smaller than 0.002%. Hence,
only the accuracy of MLEPCM initialized with WSILA is shown
in Fig. 3(e), which is slightly higher than that of WSILA. Fig. 3(f)
shows that, when the results of WSILA are used as the initial values,
the least number of iterations is required by MLEPCM.

2) Calibration Accuracy in the Redundant Configurations:
Here, more than three points are uniformly fixed on the 1-D object.
The standard deviation of zero-mean Gaussian noise is 2 pixels. We
vary J from 3 to 10 with a step of 1. The accuracies of FNLA with
anisotropic normalization, FNLA with isotropic normalization, SILA,
WSILA, and MLEPCM for different values of J are shown in Fig. 4.

As seen in Fig. 4(a) and (b), the errors of FNLA with anisotropic
normalization and isotropic normalization become larger with the
increase of J . However, the accuracy of SILA becomes higher with
the increase of J , and WSILA is more accurate than SILA as shown
in Fig. 4(c) and (d). When the results of these four linear algorithms
are used as the initialization of MLEPCM, the differences between
the relative errors of the four refined results are smaller than 10−5%,
so only the accuracy of MLEPCM initialized with WSILA is shown
in Fig. 4(e). WSILA has the closest accuracy to MLEPCM among the
linear calibration algorithms. As seen in Fig. 4(f), when the results of
WSILA are used as the initial values, the least number of iterations
is required by MLEPCM.

B. Real Image Data

In the experiments on real image data, seven ping-pong balls
are fixed on a metal stick that rotates around a ball at the end.

(a) (b)

Fig. 5. Images of calibration objects. (a) 1-D object. (b) Checkerboard.

Fig. 6. Calibration errors concerning the number of images. (a) Anisotropic
FNLA. (b) Isotropic FNLA. (c) SILA. (d) WSILA. (e) WSILA + MLEPCM.
(f) Average iteration numbers of MLEPCM with different initializations.

The distances between the center of the fixed ball and the
centers of other six balls are [L2, L3, L4, L5, L6, L7] =
[9.999, 19.968, 29.966, 39.905, 49.887, 59.861] cm. When the stick
rotates, 112 images are captured with a camera of resolution 3008
× 2000 pixels. In each image, the centers of seven ellipses are used
as the projections of balls’ centers. Then, FNLA with anisotropic
normalization, FNLA with isotropic normalization, SILA, WSILA,
and MLEPCM are used to calibrate the camera. And the result of
the planar calibration algorithm [14], [21] is used as the benchmark,
where 82 images of a checkerboard are captured. The sample images
of the 1-D object and the checkerboard are shown in Fig. 5.

To evaluate the calibration accuracy concerning the number of
images I , we vary I from 10 to 90 with a step of 10. And for each
value of I , 250 trials of 1-D calibration procedures are executed after
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randomly choosing I images from the total available set. We report
the relative errors in Fig. 6. Here, when the results of the four linear
algorithms are used as the initializations of MLEPCM, the differences
between the relative errors of the four refined results are smaller than
0.04% when I = 10, and smaller than 10−5% when I � 20. Thus,
only the accuracy of MLEPCM initialized with the results of WSILA
is shown.

It is seen from Fig. 6(a)–(e) that the errors of FNLA with
anisotropic normalization, FNLA with isotropic normalization, SILA,
and WSILA are approximately 2.4, 2.4, 2.0, and 1.4 times that
of MLEPCM respectively, which shows that WSILA has higher
accuracy than unweighted linear algorithms. Moreover, when the
results of WSILA are used as the initial values of MLEPCM, the
least iteration number is required as shown in Fig. 6(f).

It has to be pointed out that in the real data experiments, the
centers of the apparent contour ellipses generally do not coincide with
the projections of the balls’ centers xi

j [22], which may introduce

biases in the measurements of xi
j . To solve this problem, we can

first calibrate the camera with the biased measurements of xi
j , and

then refine xi
j with the obtained intrinsic parameters [22]. With

these refined estimations of xi
j , more accurate camera parameters

can be obtained by calibrating the camera once again. As for our real
data experiments, we found that the differences between the refined
estimations of xi

j and the centers of the ellipses were so small that
the calibration accuracy improved only very slightly, and therefore
we did not calibrate the camera twice here.

VI. CONCLUSION

This paper proposed a weighted similarity-invariant linear 1-D
calibration algorithm that can achieve sufficient accuracy at low com-
putational complexity. In addition, it can provide a good initial value
for the maximum-likelihood method if higher accuracy is required.
A number of experimental results demonstrated the effectiveness of
the proposed algorithm.

The main contributions of this paper include the following. 1) A
new algorithm to estimate the relative depth is proposed, which
is more robust against noise than existing algorithms. 2) A new
explanation is provided as to why the accuracy of FNLA [6] is
higher than that of ZLA [1]. 3) The accuracy of the proposed
WSILA can be improved further when more points are fixed on the
1-D object.
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