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In this paper, how to calibrate a fixed multi-camera system and simultaneously achieve a Euclidean reconstruc-
tion from a set of segments is addressed. It is well known that only a projective reconstruction could be achieved
without any prior information. Here, the known segment lengths are exploited to upgrade the projective recon-
struction to a Euclidean reconstruction and simultaneously calibrate the intrinsic and extrinsic camera parame-
ters. At first, a DLT(Direct Linear Transformation)-like algorithm for the Euclidean upgrading from segment
lengths is derived in a very simpleway. Although the intermediate results in the DLT-like algorithmare essential-
ly equivalent to the quadric of segments (QoS), the DLT-like algorithm is of higher accuracy than the existing lin-
ear algorithms derived from the QoS because of a more accurate way to extract the plane at infinity from the
intermediate results. Then, to further improve the accuracy of Euclidean upgrading, two weighted DLT-like algo-
rithms are presented by weighting the linear constraint equations in the original DLT-like algorithm. Finally,
using the results of these linear algorithms as the initial values, a new weighted nonlinear algorithm for
Euclidean upgrading is explored to recover the Euclidean structure more accurately. Extensive experimental re-
sults on both the synthetic data and the real image data demonstrate the effectiveness of our proposed algo-
rithms in Euclidean upgrading and multi-camera calibration.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

With an uncalibrated multi-camera system, a projective reconstruc-
tion of the 3D points in the common field of view is possible to be
obtained from the correspondencebetween their projections. Rectifying
this projective reconstruction to a Euclidean reconstruction, i.e.
performing Euclidean upgrading, is equivalent to calibrating the intrin-
sic and extrinsic parameters of the cameras. In literature, camera cali-
bration methods can be divided into two categories: self-calibration
and reference-object-based calibration. The self-calibration methods
do not use any geometry information about the scene and they usually
require some sort of constraints on the intrinsic parameters [1–6], or
constraints on the motion of cameras [7–9]. The reference-object-
based methods are mainly based on some calibration objects of
known size, such as 3D calibration object [10,11], 2D calibration object
[12,13], and 1D calibration object [14–17]. Compared with the self-
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calibration methods, the reference-object-based methods can provide
higher calibration accuracy due to the use of Euclidean knowledge.

In the case of calibrating multi-camera systems [18,19], both 3D cal-
ibration objects and 2D calibration objects are prone to be self-occluded
so that themarker points on them cannot be observed by all the referred
cameras simultaneously, whereas 1D calibration objects are immune to
self-occlusion. In [14,16,17], the 1D objects contain at least threemarker
points in order to calibrate one or more cameras, where the marker
points are required to be exactly collinear and the distances between
thesemarker points need to bemeasuredwith high precision. Liebowitz
and Carlsson [20] proposed amethod to recover the Euclidean structure
from an affinely distorted space by the knowledge of segment lengths.
Thismethod can be used to calibratemultiple affine cameraswith a seg-
ment undergoing general motions. This calibration object, a segment
with two end points, is more flexible than the conventional 1D objects,
since only the distance between the two end points needs to be known,
and the collinearity requirement is not involved anymore. Moreover,
even without the knowledge about the segment length, a Euclidean
reconstruction can still be obtained despite that its global scale is
undetermined.

Can the Euclidean structure be recovered from a projectively
distorted space from the knowledge of segment lengths? Ronda
and Valdés [21] gave this question an affirmative answer and pro-
posed three algorithms based on the quadric of segments (QoS) de-
fined in a higher-dimensional space by a set of segments of fixed
length. These algorithms based on the QoS need to solve a set of
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homogeneous linear equations in 55 variables, and thus require at
least 54 segments in the projective space. The work of Ronda and
Valdés [21] is very interesting but involves some very complex
mathematics. The main contributions of them are that the relation
of the QoS with the standard geometry associated to the Euclidean
structure of space is given and the explicit formulae are derived to
obtain the dual absolute quadric and the absolute quadratic complex
from the QoS.

In this paper, we find that for the Euclidean upgrading from seg-
ment lengths, it is not necessary to use such complex mathematics
as in [21], or in other words, a DLT (Direct Linear Transformation)-
like algorithm can be derived in a very simple way. The derived al-
gorithm consists of two main steps: First, a set of 4-order polyno-
mial equations on the plane at infinity and the image of the
absolute conic (IAC) are introduced from a given projective recon-
struction of the scene consisting of segments with known lengths.
Then, these 4-order polynomial equations are transformed into a
set of inhomogeneous linear equations in 54 variables by a simple
linearization technique, from which the least squares solution to
the 54 variables can be computed in a linear way. Although the in-
termediate results in the DLT-like algorithm are essentially equiva-
lent to the QoS, the DLT-like algorithm extracts the plane at infinity
more accurately than the existing linear algorithms derived from
the QoS and thus has higher accuracy in Euclidean upgrading. In
addition, considering that the constraint equations in the above
DLT-like algorithm have different reliabilities due to the measure-
ment errors, we design two strategies to assign weights on these
constraint equations, resulting in two weighted DLT-like algo-
rithms. At last, a new weighted nonlinear algorithm for Euclidean
upgrading is explored to refine the obtained results by these linear
algorithms.

The rest of this paper is organized as follows. In Section 2 we de-
scribe the notations and related work. Section 3 presents a DLT-like
algorithm for Euclidean upgrading from segment lengths and dis-
cusses the relationship between the DLT-like algorithm and existing
algorithms. Then, two weighted DLT-like algorithms are proposed in
Section 4. Section 5 introduces a weighted nonlinear algorithm to re-
fine the results by these linear algorithms. The experimental results
are reported in Section 6, followed by some concluding marks in
Section 7.

2. Preliminaries

2.1. Notations

Here, the homogeneous coordinates of a space point are denoted by
X = [x1,x2,x3,1]T, and the corresponding inhomogeneous coordinates

are denoted by eX ¼ x1; x2; x3½ �T . A segment is determined by its two
end points {X,Y}. Given the images ofm (m ≥ 4) segments in general po-
sition under n (n ≥ 2) views, the projective camera matrices and the
projective reconstruction of the segments can be obtained from the cor-
respondences between the images of the 2m end points [5], which are
related to the real Euclidean structure by a 4 × 4 transformation matrix.
The projective camera matrices of the n views are denoted by Pj
(1 ≤ j ≤ n), and the projective reconstruction of the end points

of segments {Xi,Yi} (1 ≤ i ≤ m) are denoted by Xpi ¼ eXT
pi;1

� �T
and Ypi ¼ eYT

pi;1
� �T

.

2.2. Linear algorithms derived from the QoS

Ronda and Valdés [21] proposed three algorithms for Euclidean
upgrading with a set of segments of known lengths. These algo-
rithms are designed based on the quadric of segments (QoS): For
segments {X,Y}, let σ(X,Y) be a 10-vector composed of the elements
of the symmetric matrix (XYT + YXT). Then, for all the segments of
fixed length d, σ(X,Y) lie on a quadric called the QoS of length d.
The QoS can be written as C1 þ d2

2 C2, where the dimensions of the lin-
ear spaces spanned by C1 and C2 are respectively 20 and 35. Given a
segment {Xi,Yi} of length di, the constraint equation on C1 and C2 is
obtained as

σT Xpi;Ypi

� �
C1 þ d2i

2
C2

� �
σ Xpi;Ypi

� �
¼ 0: ð1Þ

Given at least 54 segments of known lengths, C1 and C2 can be deter-
mined uniquely. Then, C1 and C2 are used respectively to extract the
Euclidean structure in the following three algorithms (C1S, C1A, and
C2A):

2.2.1. C1S and C1A
C1 in Eq. (1) determines the real structure up to a Euclidean

transformation with an unknown scale. An explicit formula to de-
rive the absolute quadratic complex from C1 is given in [21],
where the absolute quadratic complex is the quadric in terms of
the Plücker coordinates of the lines which intersect the absolute
conic [6]. A rectifying matrix is then extracted from the absolute
quadratic complex to recover a Euclidean reconstruction [6],
where the scale ambiguity can be determined by changing the over-
all scale of the structure such that the length constraints are satis-
fied. This algorithm is called C1S.

The scale ambiguity of the Euclidean reconstruction can also be re-
ducedwith the affine adjustment algorithm [20]. Here, an affine transfor-
mation matrix is computed linearly to minimize the total reconstruction
error of segment lengths. The algorithm C1S followed by the affine ad-
justment step is called C1A. And the experimental results in [21] show
that the affine adjustment step can improve the accuracy of Euclidean
upgrading.

2.2.2. C2A
C2 in Eq. (1) encodes the information of the plane at infinity. In the

implementation of the algorithm C2A in [21], the plane at infinity is
computed as the polar plane of the center of a sphere with respect to
the sphere. For a given space point Y, the sphere AY with center Y and
radius infinity is extracted from C2 through

AYð Þij ¼ σT ei;Yð ÞC2σ e j;Y
� �

;

where (AY)ij is the element in the i-th rowand the j-th columnof AY, and
ei is the i-th column of the 4 × 4 identity matrix. And then the plane at
infinity is obtained as the polar plane of Ywith respect to AY, i.e.

π∞ ¼ AYY: ð2Þ

When C2 is not accurate due to the error in the projective recon-
struction of the segments, the result of Eq. (2) is dependent on the
choice of Y. Therefore, multiple values of Y are used to compute amatrix
which is composed of multiple estimations of the plane at infinity and
then afinal result is obtained by the SVD of thismatrix. Next, a rectifying
matrix is constructed from the plane at infinity to transform the projec-
tive reconstruction to an affine reconstruction. At last, the affine adjust-
ment [20] is performed to refine the affine reconstruction to a Euclidean
reconstruction.

A simpler way to directly extract the plane at infinity from C2 was
also given in [21]. In this simpler way, the plane at infinity is computed
as

π∞ ¼
σT e1; eαð ÞC2σ eβ ; eγ

� �
⋮

σT e4; eαð ÞC2σ eβ ; eγ
� �

0BB@
1CCA; ð3Þ
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where α, β, and γ represent three arbitrary numbers in {1,2,3,4}. When
the projective reconstruction of the segments is influenced by noise, the
estimation of C2 in Eq. (1) does not satisfy its internal constraints and
the accuracy of the computed π∞ in Eq. (3) is dependent on the choices
ofα,β, andγ. The influence of the choices ofα,β, andγwasnot tested in
[21], and we will give some analyses in the later part of this paper.

3. DLT-like algorithm

This section proposes a DLT-like algorithm for Euclidean upgrading
from segment lengths, and discusses the relationship between the
DLT-like algorithm and the existing linear algorithms derived from the
QoS.

3.1. Constraint equations

Given a projective reconstruction of the segments and the corre-
spondingprojective cameramatrices,we can always choose a projective
coordinate system such that the first projective camera projection ma-
trix has the canonical form P1 = (I|0). Let π∞ = (nT,1)T be the coordi-
nates of the plane at infinity in this projective space and Kj (1 ≤ j ≤ n)
the intrinsic matrix of the j-th view. Then, according to the theory of
stratified reconstruction [5], the Euclidean camera projection matrices
of the n views and the Euclidean reconstruction {Xei,Yei} of the segments
{Xi,Yi} can be expressed respectively as

Pej∼P j
sK1 0

−snTK1 1

� �
; 1≤ j≤nð Þ; ð4Þ

Xei∼
sK1ð Þ−1 0
nT 1

 !
Xpi;

eXei ¼
sK1ð Þ−1eXpi

1þ nTeXpi

; 1≤ i≤mð Þ; ð5Þ

Yei∼
sK1ð Þ−1 0
nT 1

� �
Ypi;

eYei ¼
sK1ð Þ−1eYpi

1þ nTeYpi

; 1≤ i≤mð Þ; ð6Þ

where “∼” denotes equality up to an unknown scalarmultiplication, and
s is the overall scale.

Since eXei; eYei

n o
is the Euclidean reconstruction of the segments {Xi,

Yi} of length di, the following equation holds

eXei−eYei

� �T eXei−eYei

� �
¼ d2i : ð7Þ

Denote ω = (sK1)− T(sK1)−1 as the image of the absolute conic
under the first view. Substituting Eqs. (5) and (6) into Eq. (7), a con-
straint equation on (n,ω) is obtained as

eXpi

1þ nTeXpi

−
eYpi

1þ nTeYpi

 !T

ω
eXpi

1þ nTeXpi

−
eYpi

1þ nTeYpi

 !
¼ d2i : ð8Þ

Eq. (8) can be rewritten as

1þ nTeYpi

� �eXpi− 1þ nTeXpi

� �eYpi

h iT
ω 1þ nTeYpi

� �eXpi− 1þ nTeXpi

� �eYpi

h i
¼ d2i 1þ nTeXpi

� �2
1þ nTeYpi

� �2
:

ð9Þ

This is a 4-order polynomial equation in 9 variables (3 variables in n
and 6 different variables in the symmetric matrixω). Given a projective
reconstruction of 9 segments, a nonlinear solution to the Euclidean
upgrading can be obtained from Eq. (9) in theory. However, it is very
difficult in practice to solve such a set of 4-order polynomial equations
in 9 variables. In order to obtain a linear solution of (n,ω), a linearization
of Eq. (9) will be derived in the next subsection.
3.2. Linearization

For n = [n1,n2,n3]T, its anti-symmetric matrix is defined as

n½ �� ¼
0 −n3 n2
n3 0 −n1
−n2 n1 0

0@ 1A:

Define a 6 × 6 matrix Λ and a 6-dimensional vector p eXpi;
eYpiÞ

�
as

Λ ¼ ω ω n½ �T�
n½ ��ω n½ �T�ω n½ ��

 !
;p eXpi;

eYpi

� �
¼

eYpi−eXpieXpi � eYpi

 !
; ð10Þ

then, the left hand side of Eq. (9) is rewritten as

1þ nTeYpi

� �eXpi− 1þ nTeXpi

� �eYpi

h iT
ω

1þ nTeYpi

� �eXpi− 1þ nTeXpi

� �eYpi

h i
¼ eXpi−eYpi

� �
þ nTeYpi

� �eXpi− nTeXpi

� �eYpi

h in oT
ω

eXpi−eYpi

� �
þ nTeYpi

� �eXpi− nTeXpi

� �eYpi

h in o
¼ eXpi−eYpi

� �
þ n½ �� eXpi � eYpi

� �n oT
ω

eXpi−eYpi

� �
þ n½ �� eXpi � eYpi

� �n o
¼ pT eXpi;

eYpi

� �
Λp eXpi;

eYpi

� �
:

ð11Þ

For a = (a1,a2,a3)T, define vector q(a) as

q að Þ ¼ a21; a
2
2; a

2
3;

ffiffiffi
2

p
a1a2;

ffiffiffi
2

p
a1a3;

ffiffiffi
2

p
a2a3;

ffiffiffi
2

p
a1;

ffiffiffi
2

p
a2;

ffiffiffi
2

p
a3;1

� �T
:

The symmetric matrix Γ = q(n)qT(n) is given by
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Then, the right hand side of Eq. (9) becomes

d2i 1þ nTeXpi

� �2
1þ nTeYpi

� �2 ¼ d2i q
T eXpi

� �
Γq eYpi

� �
: ð13Þ

According to Eqs. (11) and (13), Eq. (9) can be rewritten as

pT eXpi;
eYpi

� �
Λp eXpi;

eYpi

� �
−d2i q

T eXpi

� �
Γq eYpi

� �
¼ 0: ð14Þ

The 6 × 6 symmetricmatrix Λ contains 21 different elements. Let Λi,j
be the element in the i-th row and the j-th column of Λ. It is noted that
ω[n]×T (i.e. the upper right 3 × 3 sub-matrix of Λ) has zero trace, which
means Λ3,6 is equal to − Λ1,4 − Λ2,5. Therefore, Λ can be linearly repre-
sented by the following 20 elements:

λ ¼ ðΛ1;1;…;Λ16;Λ22;…;Λ26;Λ33;…;Λ35;Λ44;…;Λ46;

Λ55;Λ56;Λ66ÞT:

ð15Þ

There are 34 different monomials n1i n2j n3k(1 ≤ i + j + k ≤ 4) in Γ,
and all these monomials can form the following vector when sorted in
the graded lexicographic order:

γ ¼ ðn4
1;n

3
1n2;n

3
1n3;n

2
1n

2
2;n

2
1n2n3;n

2
1n

2
3;n1n

3
2;n1n

2
2n3;

n1n2n
2
3;n1n

3
3;n

4
2;n

3
2n3;n

2
2n

2
3;n2n

3
3;n

4
3;n

3
1;n

2
1n2;

n2
1n3;n1n

2
2;n1n2n3;n1n

2
3;n

3
2;n

2
2n3;n2n

2
3;n

3
3;n

2
1;

n1n2;n1n3;n
2
2;n2n3;n

2
3;n1;n2;n3

�T
:

ð16Þ

Let cλ eXpi; eYpiÞ
�

and cγ eXpi; eYpiÞ
�

be the coefficient vectors of λ and

γ in Eq. (14), and then the following linear equation in 54 vari-
ables (20 variables in λ and 34 variables in γ) is obtained from
Eq. (14):

cλ eXpi;
eYpi

� �
cγ eXpi;

eYpi

�� �� λ
γ

� �
¼ d2i : ð17Þ

3.3. Algorithm overview

Based on the derivations in Sections 3.1 and 3.2, the DLT-like algo-
rithm (abbreviated as DLT-like) for Euclidean upgrading from segment
lengths is performed as follows: From the projective reconstructioneXpi; eYpi

n o
of a set of segments of length di, a set of linear equations is

established by Eq. (17):

cλ eXp1;
eYp1

� �
cγ eXp1;

eYp1

� �
⋮ ⋮

cλ eXpm;
eYpm

� �
cγ eXpm;

eYpm

� �
0BB@

1CCA λ
γ

� �
¼

d21
⋮
d2m

0@ 1A: ð18Þ

Denote the coefficient matrix and the constant vector in Eq. (18)
as C and d respectively, and then the least squares solution to
Eq. (18) is

λ
γ

� �
¼ Cþd:

where C+ denotes the pseudo-inverse of C.
According to Eq. (16), the last three elements of γ = (γ1,γ2,…,γ34)T

determine the normal vector of the plane at infinity:

n ¼ γ32;γ33;γ34ð ÞT: ð19Þ
And according to Eqs. (16) and (30), the IAC is extracted from
λ = (λ1,λ2, …,λ20)T by

ω ¼
λ1 λ2 λ3
λ2 λ7 λ8
λ3 λ8 λ12

0@ 1A:

Then, the intrinsic matrix K1 and the overall scale s are determined
by the Cholesky decomposition of ω−1 = s2K1K1

T.
After computing (n, sK1), the Euclidean camera projection

matrices and the Euclidean reconstruction of the segments are
obtained according to Eqs. (4), (5), and (6). The affine adjust-
ment algorithm [20] is then performed to refine the obtained
Euclidean structure and the camera projection matrices. Finally,
the intrinsic matrices and extrinsic parameters (Kj,Rj,Cj)
(1 ≤ j ≤ n) are obtained from the decompositions of Pej in the
form of Pej ∼ KjRj[I − Cj].

It is noted that the coefficientmatrix C in Eq. (18) is quartic in the co-
ordinates of the end points and the large condition number of C may
cause instability of the DLT-like algorithm [22]. Therefore, the end
points need to be normalized to improve the stability. Similarly, the
normalization step is also necessary to Ronda and Valdés's linear algo-
rithms derived from the QoS [21]. A matter of concern is that some
end points in the projective reconstruction of the segments may
be near infinity and then the computation of the normalization ma-
trix will be dominated by the influence of those points. A solution to
this problem is to first transform the projective reconstruction to a
quasi-affine reconstruction [5] and then construct the normaliza-
tion matrix. This two-step transformation has another benefit. Be-
cause the resulting space points are not split across the plane at
infinity [5] and the centroid of these points is at the origin of the co-
ordinate frame [22], the plane at infinity will not pass through the
origin. It is clear that the last coordinate of the plane at infinity
will not be zero and therefore parametrizing the plane at infinity
as π∞ = (n1,n2,n3,1)T will not cause instability.

3.4. Relationship betweenDLT-like and the existing algorithms derived from
the QoS

The DLT-like algorithm and the existing linear algorithms (C1S, C1A,
and C2A) in [21] are all derived from the knowledge of segment lengths,
and they all require at least 54 segments. Indeed, DLT-like is closely re-
lated to these linear algorithms.

As mentioned in [21], the constraint equation on the QoS in Eq. (1)
can be rewritten as

Xpi∧Ypi

� �T
Σ Xpi∧Ypi

� �
þ d2i

2
σT Xpi;Ypi

� �
C2σ Xpi;Ypi

� �
¼ 0; ð20Þ

where (Xpi ∧ Ypi) is the Plücker coordinates of the line containing the
segment {Xpi,Ypi} and Σ is the 6 × 6 matrix representing the absolute
quadratic complex [6]. The relationship between the involved vectors
and matrices in Eqs. (14) and (20) is summarized as below:

1. According to the representation of the Plücker coordinates by Stan
Birchfield [23],p eXpi; eYpi

� �
in Eq. (10) are exactly the Plücker coor-

dinates (Xpi ∧ Ypi) of the line passing through eXpi and eYpi. Besides,
by writing Λ and Σ in terms of the elements of n and ω with the
help of symbolic computation software, it is observed that Λ is
the absolute quadratic complex Σ when the Plücker coordinates
are defined as in Eq. (10). Therefore, it is obvious that

pT eXpi;
eYpi

� �
Λp eXpi;

eYpi

� �
∼ Xpi∧Ypi

� �T
Σ Xpi∧Ypi

� �
: ð21Þ
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As seen from Eq. (21), the first term in Eq. (14) is equivalent to the
first term in Eq. (20) up to a scale factor.

2. It is easy to verify that

q eXpiÞ ¼ H2σ Xpi;Xpi

� �
; q eYpiÞ ¼ H2σ Ypi;Ypi

� �
;

��
ð22Þ

where

H2 ¼

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
:

After writing Γ and C2 in terms of the elements of n, we can verify
that Γ can be obtained by reordering the elements of C2 as

Γ∼H−T
2 C2H

−1
2 ; ð23Þ

According to Eqs. (22), (23), and σT(Xpi,Xpi)C2σ(Ypi,Ypi) = σT(Xpi,
Ypi)C2σ(Xpi,Ypi), it is obvious that the second term in Eq. (14) is equiva-
lent to the second term in Eq. (20) up to a scale factor,

qT eXpi

� �
Γq eYpi

� �
∼σT Xpi;Ypi

� �
C2σ Xpi;Ypi

� �
: ð24Þ

From the results in Eqs. (21) and (24), we can see that Eq. (14) is
equivalent to Eq. (20) up to a scale factor. In addition, since Eq. (20) is
equivalent to Eq. (1), we see that Eq. (14) and Eq. (1) are also equivalent
up to a scale factor. Actually, our DLT-like algorithm and the linear algo-
rithms in [21] use different parametrization strategies to represent the
same constraint equations. According to the proof in [21], C1 and C2

can be uniquely determined from enough number of segments, and
therefore Λ and Γ in the DLT-like algorithm can be uniquely determined
aswell. Since the parametrizations of Eqs. (14) and (20) are related by a
linear transformation, the computation results of (Λ,Γ) and (Σ,C2) will
have the same first-order error propagation model [24]. Besides, data
normalization on the end points can reduce the second-order and
higher-order error terms. Therefore, these intermediate results will
have similar accuracy.

It is worth pointing out that in spite of themathematical equivalence
between the constraint equations of the DLT-like algorithm and the
existing linear algorithms in [21], the accuracies of Euclidean upgrading
in these linear algorithms are different as shown in the experiments in
Section 6mainly because their strategies to extract (n,ω) from the inter-
mediate results are different. Furthermore, since DLT-like, C1A, and C2A
all use affine adjustment as the last step of Euclidean upgrading and the
results of affine adjustment are dependent only on the estimations of n,
the different accuracies among these three linear algorithms aremainly
caused by their different estimations of n.

The computation result in Eq. (3) is a 4-dimensional vector com-
posed of four elements of C2, where the positions of these four elements
are dependent on the choices of α, β, and γ. Besides, we find that when
α, β, and γ are all equal to 4, the positions of these four elements in C2
will correspond to the positions of (n1,n2,n3,1) in Γ by the relationship
in Eq. (23), and therefore this strategy to extract π∞ from C2 will be
equivalent to our strategy to extract n from Γ in Eq. (19). As a result,
the DLT-like algorithm has the same first-order error propagation
model as the linear algorithm that extracts the plane at infinity from
C2 by (3) with α = 4, β = 4, and γ = 4. However, the implementation
of the DLT-like algorithm is easier and the parametrization in the DLT-
like algorithm is more direct to show the relation between (n,ω) and
the intermediate matrices.

If the plane at infinity is extracted from C2 using Eq. (3) with other
choices of α, β, and γ, the estimation of the plane at infinity may be
unstable. When at least one element of n is zero, if we choose the
values of α, β, and γ such that nαnβnγ is zero, then it is easy to verify
that the estimation of the plane at infinity by Eq. (3) with noise-free
C2 will be a 4-dimensional zero vector (0,0,0,0)T. As a result, n cannot
be recovered by computing the inhomogeneous coordinates of this
4-dimensional zero vector, and therefore a degeneracy occurs. It is
unavoidable that the computation result of C2 is influenced by
noise in practice, and thus a 4-dimensional nonzero vector will be
obtained by Eq. (3) with inaccurate C2. The estimation of n recovered
by computing the inhomogeneous coordinates of this 4-dimensional
nonzero vector is only determined by random noise, and therefore is
a wrong estimation. After the original projective reconstruction is
transformed to quasi-affine and then normalized, the magnitudes
of the elements of n are usually small. When at least one element
of n is close to zero, recovering n by computing the inhomogeneous
coordinates of the result of Eq. (3) is close to a degeneracy for the re-
ferred choices of α, β, and γ, and therefore the resulting estimation of
n has high sensitivity to noise.

4. Weighted DLT-like algorithms

The DLT-like algorithm is a least squares algorithm, where the cost
function is the sum of squared residuals. This cost function is not statisti-
cally meaningful [5], and the different reliabilities of the constraint equa-
tions in the DLT-like algorithm are not taken into account. To further
improve the accuracy of theDLT-like algorithm,we assign each constraint
equation with a weight which reflects its reliability to some extent.

It is obvious that the accuracies of the end points eXpi; eYpi

n o
(i = 1, 2, …, m) have an important influence on the reliabilities of
the constraint equations in Eq. (18). The more accurate the end pointseXpi; eYpi

n o
are, the more reliably the corresponding constraint equation

is used for Euclidean upgrading. Therefore, a natural idea to design
weights on these constraint equations is tomake use of the different ac-

curacies of eXpi; eYpi

n o
. Unfortunately, the true errors of eXpi; eYpi

n o
cannot

be known except in the case of synthetic data experiments. However,
the covariance matrices of the end points can be used to represent
their uncertainties. Thus, we design the weights on these constraint

equations based on the covariancematrices of eXpi and eYpi. Here, their co-
variancematricesVeXpi

andVeYpi
are computed using thefirst-order error

propagationmethod [25,5], where the noise on the image points is sup-
posed to be independent, identically distributed, and isotropic Gauss-
ian. After computing the covariance matrices of the end points, we
propose two methods to compute the weights on the constraint equa-
tions with and without a given initial value of (n,ω) respectively,
resulting in two weighted DLT-like algorithms.

4.1. Weighted DLT-like algorithm with an initial value

Suppose we already have an initial value of (n,ω) (e.g. the result cal-
culated by the DLT-like algorithm), and then we weight the constraint
equations in the DLT-like algorithm in a similar way to the well-
known “iterative weighted least squares” [26], where the weights on
the constraint equations are computed as the inverses of the standard
derivations of their residuals.

According to Eqs. (14) and (17), the residual of the i-th constraint
equation in Eq. (18) can be rewritten as

ϵi ¼ pT eXpi;
eYpi

� �
Σp eXpi;

eYpi

� �
−d2i q

T eXpi

� �
Γq eYpi

� �
:
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Then, the Jacobians of ϵi with respect to eXpi and eYpi are given by

∂ϵi
∂eXpi

¼ 2pT eXpi;
eYpi

� �
Σ
∂p eXpi;

eYpi

� �
∂eXpi

−d2i q
T eYpi

� �
Γ
∂q eXpi

� �
∂eXpi

;

∂ϵi
∂eYpi

¼ 2pT eXpi;
eYpi

� �
Σ
∂p eXpi;

eYpi

� �
∂eYpi

−d2i q
T eXpi

� �
Γ
∂q eYpi

� �
∂eYpi

;

where Λ and Γ are computed with the initial value of (n,ω), and the Ja-
cobians of p eXpi;

eYpi

� �
, q eXpi

� �
, and q eYpi

� �
are

∂p eXpi;
eYpi

� �
∂eXpi

¼ − eYpi

h i
�

I

 !
;
∂p eXpi;

eYpi

� �
∂eYpi

¼ eXpi

h i
�

−I

 !
;

∂q eXpi

� �
∂eXpi

¼
ffiffiffi
2

p
ffiffiffi
2

p
x1 0 0 x2 x3 0 1 0 0 0

0
ffiffiffi
2

p
x2 0 x1 0 x3 0 1 0 0

0 0
ffiffiffi
2

p
x3 0 x1 x2 0 0 1 0

0B@
1CA

T

;

∂q eYpi

� �
∂eYpi

¼
ffiffiffi
2

p
ffiffiffi
2

p
y1 0 0 y2 y3 0 1 0 0 0
0

ffiffiffi
2

p
y2 0 y1 0 y3 0 1 0 0

0 0
ffiffiffi
2

p
y3 0 y1 y2 0 0 1 0

0B@
1CA

T

:

Then, the weight on ϵi is computed as

wi ¼
1

std ϵið Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂ϵi
∂eXpi

VeXpi

∂ϵi
∂eXpi

� �T
þ ∂ϵi
∂eYpi

VeYpi

∂ϵi
∂eYpi

� �T
s ð25Þ

and the weighted DLT-like algorithm is given by

WC λ
γ

� �
¼ Wd; ð26Þ

where W = diag(w1,w2, …,wm), and the computations of C and d
are the same as in Eq. (18). The least squares solution to Eq. (26)
is

λ
γ

� �
¼ WCð Þþ Wdð Þ:

After computing the weights on the linear equations in the DLT-
like algorithm, a set of weighted linear equations can be construct-
ed and solved. To reduce the computational complexity, the
weights in our algorithm are not recomputed and thus the set of
weighted linear equations is solved only once. The Euclidean re-
construction is then obtained in the same manner as the DLT-like
algorithm, and affine adjustment is also performed as the last
step. The above weighted DLT-like algorithm is named as WDLT-
Like1.
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Fig. 1. Images of synthetic segments. (a) Segments
4.2. Weighted DLT-like algorithm without an initial value

To avoid the requirement of an initial value of (n,ω) in the computa-
tion of weights in Eq. (25), some approximation must be made to re-
place the Jacobians of ϵi with respect to eXpi and eYpi . Without any prior
information about (n,ω), it is intuitive to treat the six unknown vari-
ables in the Jacobians of ϵi equally. We assume that the typical values
of ∂ϵi=∂eYpi and ∂ϵi=∂eYpi are both (1,1,1) multiplied by an unknown
and unimportant factor. Define e as the 3-dimensional vector of ones,
e = (1,1,1)T. Then, an approximation of Eq. (25) is given by

wi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eTVeXpi

eþ eTVeYpi

e
r : ð27Þ

It is noted that the expression (Eq. (25)) is invariant under affine
transformations on the projective reconstruction but Eq. (27) is not in-
variant even under orthogonal transformations. Therefore, the expres-
sion for the weights is not satisfactory and some further modifications
are necessary. Since the covariancematricesVeXpi

andVeYpi
are positively

definite, their elements with the largest magnitude are on the diagonal.
We approximate them with their diagonal matrices, and then eTVeXpi

e

and eTVeYpi
e are approximated with the traces of VeXpi

and VeYpi
. The

new approximation of Eq. (25) is given by

wi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trace VeXpi

� �
þ trace VeYpi

� �s : ð28Þ

It is easy to check that this expression is invariant under orthogonal
transformations. This way of computing weights depends only on the
covariance matrices of the reconstructed end points, and it is easier to
compute than Eq. (25). After computing the weights using Eq. (28), a
set of weighted linear equations can be constructed and then solved
in a similar manner to the implementation in WDLT-Like1. And this
new weighted DLT-like algorithm is named as WDLT-Like2.

Remark. It is noted that compared with WDLT-Like1, the computation
of weights in WDLT-Like2 has lower computational cost and the initial
value of (n,ω) is not needed in WDLT-Like2. However, WDLT-Like2 has
a little lower accuracy as shown in our experimental results in Section 6.

5. Nonlinear algorithms to reinforce length constraints

5.1. Basic optimization step

As discussed in Section 3.1, the minimal number of segments re-
quired to recover the Euclidean structure by solving polynomial
equations is 9 in theory, but the linear algorithms (C1A, C2A, DLT-
like, WDLT-Like1, and WDLT-Like2) require at least 54 segments. In
2000 3000 0 1000 2000 3000
0

500

1000

1500

2000

(c)

and cameras. (b) Left image. (c) Right image.
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these linear algorithms, severe over-parametrizations are intro-
duced to linearly represent C1, C2, Λ, and Γ. To avoid over-
parametrization reducing the accuracy of Euclidean upgrading, we
introduce a nonlinear optimization step (abbreviated as OS) to rein-
force the length constraints, where the cost function to beminimized
is the total squared residuals of the lengths of the reconstructed seg-
ments,

f n; sK1ð Þ ¼
Xm
i¼1

ϵ2i ¼
Xm
i¼1

sK1ð Þ−1eXpi

1þ nTeXpi

−
sK1ð Þ−1eYpi

1þ nTeYpi

 !�����
�����−di

( )2

: ð29Þ
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Fig. 2. Experimental results on the synthetic images with different noise levels. (a) Error compa
rameters in the first view. (g)–(k) Error comparison on the intrinsic parameters in the second v
(n) Failure percentage comparison.
The cost function (Eq. (29)) can be minimized by the Levenberg–
Marquardt algorithm [5], and the initial value of (n, sK1) needed to
start the iterative minimization is provided by a linear algorithm.
5.2. Weighted optimization step

As discussed in Section 4, the reliabilities of the linear equations
in the DLT-like algorithm are different. Similarly, the reconstruction
residuals ϵi (1 ≤ i ≤ m) in Eq. (29) also have different reliabilities.
Therefore, to further improve the accuracy of the basic optimization
0 1 2 3 4 5
0

100

200

300

400

R
M

S
 e

rr
or

 o
f γ

 in
 K

1

Standard deviation of noise 

DLT−Like
WDLT−Like1
WDLT−Like2
OS
WOS
C1A
C2A

0 1 2 3 4 5
0

100

200

300

400

R
M

S
 e

rr
or

 o
f f

v 
in

 K
1

Standard deviation of noise 

DLT−Like
WDLT−Like1
WDLT−Like2
OS
WOS
C1A
C2A

0 1 2 3 4 5
0

100

200

300

400

R
M

S
 e

rr
or

 o
f f

u 
in

 K
2

Standard deviation of noise 

DLT−Like
WDLT−Like1
WDLT−Like2
OS
WOS
C1A
C2A

0 1 2 3 4 5
0

100

200

300

400

E
rr

or
 o

f γ
 in

 K
2

Standard deviation of noise 

DLT−Like
WDLT−Like1
WDLT−Like2
OS
WOS
C1A
C2A

0 1 2 3 4 5
0

100

200

300

400

R
M

S
 e

rr
or

 o
f v

0 
in

 K
2

Standard deviation of noise 

DLT−Like
WDLT−Like1
WDLT−Like2
OS
WOS
C1A
C2A

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
 E

rr
or

 o
f R

Standard deviation of noise 

DLT−Like
WDLT−Like1
WDLT−Like2
OS
WOS
C1A
C2A

c) (d)

g) (h)

k) (l)

rison on the reconstructed segment lengths. (b)–(f) Error comparison on the intrinsic pa-
iew. (l) Error comparison on the rotation matrix. (m) Error comparison on the translation.
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step, we assign different weights to the residuals ϵi, resulting in a
weighted optimization step (abbreviated as WOS) where the form
of the cost function is

f n; sK1ð Þ ¼
Xm
i¼1

wiϵið Þ2 ¼
Xm
i¼1

wi
sK1ð Þ−1eXpi

1þ nTeXpi

−
sK1ð Þ−1eYpi

1þ nTeYpi

 !�����
�����−di

" #( )2

:

ð30Þ

Since it is necessary to give beforehand an initial value to start an
iterative optimization procedure, the weights wi (1 ≤ i ≤ m) in
Eq. (30) are computed with this initial value of (n, sK1) in the same
manner as WDLT-Like1. Here, the weight on residual ϵi is computed
as

wi ¼
1

std ϵið Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂ϵi
∂eXpi

VeXpi

∂ϵi
∂eXpi

!T

þ ∂ϵi
∂eYpi

VeYpi

∂ϵi
∂eYpi

 !T

;

�r
where the Jacobians of ϵi with respect to eXpi and eYpi are

∂ϵi
∂eXpi

¼ 1
di

eXpi

1þ nTeXpi

−
eYpi

1þ nTeYpi

 !T ω 1þ nTeXpi

� �
I−eXpin

T
h i

1þ nTeXpi

� �2 ;

∂ϵi
∂eYpi

¼ 1
di

 eXpi

1þ nTeXpi

−
eYpi

1þ nTeYpi

!T ω − 1þ nTeYpi

� �
Iþ eYpin

T
h i

1þ nTeYpi

� �2 :

The weighted cost function in Eq. (30) can be minimized in the
same way as in the basic optimization step. Then, the Euclidean
structure is recovered with the obtained estimation of (n, sK1). Sim-
ilar to WDLT-Like1, the weights in the weighted optimization step
are not recomputed with the refined result of (n, sK1) to reduce com-
putational complexity.

6. Experimental results

6.1. Synthetic data

In this experiment, a set of segments of unit length are randomly
generated in a cube of width 4, where the center of the cube is at the
origin of a predefined coordinate frame. The intrinsic parameter ma-
trices of the two synthetic cameras are set to

K1true ¼ K2true ¼
2000 0 1504
0 2000 1000
0 0 1

0@ 1A;

and the extrinsic parameters of the two cameras are also randomly
chosen such that images of the segments are in the range of
[0,3008] × [0,2000]. Fig. 1 shows an example of the left and right
images of 100 segments. Gaussian noise with mean zero and stan-
dard deviation σ is then added to the image of each end point.
The projective reconstruction of the scene is computed by the fol-
lowing steps: First, a projective reconstruction is obtained from
the point correspondences between the two images using the ex-
tended fundamental numerical scheme (EFNS) [27] and the opti-
mal triangulation [28]. Then, a transformation matrix is computed
to change the projective reconstruction to a quasi-affine recon-
struction [5]. At last, the end points are normalized such that
their centroid is at the origin of the coordinate frame and their av-
erage distance from the origin is equal to

ffiffiffi
3

p
[22].

The Euclidean upgrading algorithms C1A, C2A, DLT-like, WDLT-
Like1, WDLT-Like2, OS, and WOS are evaluated. Here, C1S is not evalu-
ated since it was reported to have lower accuracy than C1A in [21]. In
the implementation of C2A, the plane at infinity is extracted as the
polar plane of the center of a sphere with respect to the sphere,
following the implementation in [21]. The initial values of (n, ω) re-
quired in WDLT-Like1, OS, and WOS are provided by DLT-like. LeteXei; eYei

n o
(i = 1,…,m) denote the Euclidean reconstruction of the seg-

ments, and let Rj and Cj (j = 1, 2) denote the rotation matrices and the
translations of the cameras. Then, let R = R2R1

T and C = R1(C2 − C1)
denote the relative rotation matrix and the relative translation of the
second view. The following items of errors are used to evaluate the ac-
curacy of this Euclidean reconstruction: (i) The average error of recon-

structed segment lengths is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m∑

m
i¼1 ∥eXei−eYei∥−di
� �2r

; (ii)

The ten error items of the ten intrinsic parameters (fuj,γ j,fvj,u0
j ,v0

j)
(j = 1, 2) are defined as the differences between themand their ground
truths; (iii) ∥R − Rtrue∥Frob denotes the Frobenius norm of the difference
between R and its ground truth Rtrue; and (iv) ∥C − Ctrue∥ denotes the
norm of the difference between C and its ground truth Ctrue. The
above items of errors of the seven algorithms are evaluated
concerning the effects of the noise level σ, the number m of seg-
ments, and the length d of the segments. Under each configuration
of σ, m, and d, 1000 independent trials of experiments are per-
formed, and then we compute the root-mean-square (RMS) results
of these error items as well as the failure percentages of the linear al-
gorithms, where failure means an algorithm does not provide a pos-
itive definite estimation of the IAC.
6.1.1. Noise level
Here, the length d of the segments is fixed at 1, the numberm of the

segments is fixed at 100, and the noise level σ varies from 0 to 5 pixels
with a step of 0.5 pixel. The experimental results of the seven algo-
rithms are shown in Fig. 2.

As seen in Fig. 2(a)–(m), the errors of the evaluated algorithms ap-
proximately grow linearlywith the increase of noise level. The proposed
linear algorithm DLT-like consistently outperforms C1A and C2A. The
two weighted algorithms WDLT-Like1 and WDLT-Like2 achieve higher
accuracies than DLT-like, and WDLT-Like1 performs better than
WDLT-Like2. In addition, OS provides more accurate results on both
the reconstructed segment lengths and the camera parameters than
all the linear algorithms. Moreover, the weighted nonlinear algorithm
WOS estimates the intrinsic and extrinsic parameters more accurately
than OS, which demonstrates the effectiveness of weighting in WOS.
However, its performance on the reconstructed segment lengths is
slightly worse than OS, which is because the used evaluation criterion
on the reconstructed segment lengths in the experiments is the same
as the designed cost function of OS. As seen from Fig. 2(n), C1A and
C2A are prone to failure, whereas the other linear algorithms have
zero failure rate in the experiments.
6.1.2. Number of segments
Here, the length d of the segments is fixed at 1, the noise level σ is

fixed at 3 pixels, and the number m of the segments varies from 65 to
120 with a step of 5. The experimental results of the seven algorithms
are shown in Fig. 3.

As seen in Fig. 3(a)–(m), the errors of the linear algorithms gen-
erally decrease with the increase of segment number m, and the er-
rors of OS and WOS do not change significantly. The accuracy of
DLT-like is consistently higher than those of C1A and C2A. It is also
observed that the two weighted linear algorithms WDLT-Like1 and
WDLT-Like2 successfully improve the accuracy of DLT-like, and the
improvements on accuracy by the weighting in WDLT-Like1 and
WDLT-Like2 become more obvious when more segments are used.
Besides, the accuracy of WOS in terms of the intrinsic and extrinsic
parameters is consistently higher than the accuracy of OS. Fig. 3(n)
shows that C1A and C2A are prone to failure, and the proposed linear
algorithms DLT-like, WDLT-Like1, and WDLT-Like2 have no case of
failure in the experiments.
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Fig. 3. Experimental results on the synthetic images with different numbers of segments. (a) Error comparison on the reconstructed segment lengths. (b)–(f) Error comparison on the
intrinsic parameters in the first view. (g)–(k) Error comparison on the intrinsic parameters in the second view. (l) Error comparison on the rotation matrix. (m) Error comparison on
the translation. (n) Failure percentage comparison.
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6.1.3. Length of segments
In this subsection, the effects of the segment lengths on the ac-

curacies of all the referred algorithms are tested. The experimental
configuration is constructed as follows: The noise level σ is fixed
at 3 pixels, the number m of the segments is fixed at 100, and the
length d of the segments varies from 0.4 to 2 with a step of 0.2
while keeping the centers and orientations of the segments fixed.
The experimental results of all the referred algorithms are shown
in Fig. 4.
As seen in Fig. 4(a)–(m), for all the referred algorithms, the errors of
the reconstructed segment lengths do not change significantly with the
increase of segment length d, whereas the errors of camera parameters
decrease with the increase of d. Moreover, it has to be pointed out that
in our experimental setup, the coordinates of the images of some seg-
ments exceed the range of [0,3008] × [0,2000] when d is larger than
1, and the images of these segments are still used for Euclidean
upgrading. In addition, the proposed DLT-like algorithm consistently
outperforms C1A and C2A. The two weighted linear algorithms WDLT-
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Fig. 4. Experimental results on the synthetic images with different lengths of the segments. (a) Error comparison on the reconstructed segment lengths. (b)–(f) Error comparison on the
intrinsic parameters in the first view. (g)–(k) Error comparison on the intrinsic parameters in the second view. (l) Error comparison on the rotation matrix. (m) Error comparison on the
translation. (n) Failure percentage comparison.
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Like1 andWDLT-Like2 improve the accuracy of DLT-like further. The es-
timations on the intrinsic and extrinsic parameters by WOS are more
accurate than those by OS. Fig. 4(n) shows that the failure rates of
C1A and C2A decrease with the increase of d, whereas the proposed
DLT-like, WDLT-Like1, and WDLT-Like2 have no case of failure in the
experiments.

6.2. Real image data

In this experiment, a stick with two balls is used as the calibration
object, where the distance between the centers of the two balls is
0.505 m. And the locations of two Nikon D40 cameras with resolution
of 3008 × 2000 pixels are fixed during the experiment. The two cam-
eras are calibratedwith the 2D calibration algorithm [12], where the ob-
tained ground truth of the two intrinsic matrices are

K1true ¼
5829:4 0:1 1554:2

0 5832:8 1030:3
0 0 1

0@ 1A;

K2true ¼
5038:2 0:3 1545:0

0 5042:6 1029:0
0 0 1

0@ 1A:
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Fig. 7. The poses of the cameras and the reconstruction of the 146 segments.

Fig. 5. Images of a segment under two views. (a) Left image. (b) Right image.
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Define the world coordinate frame as the camera coordinate frame
of the first view, and then the extrinsic parameters of the second view
are

Rtrue ¼
0:97492 0:03328 0:22005
−0:02470 0:99883 −0:04163
−0:22117 0:03515 0:97460

0@ 1A;Ctrue ¼
0:6803
0:0213
0:0886

0@ 1A:

A total of 146 poses of the stick are randomly generated and the cor-
responding images of the stick are captured by the two cameras. Fig. 5
shows two example images of the stick under a pose. The centers of
the two balls in each image are detected as the images of the end points
of the segment. Then,we obtain the detected projections of the 146 seg-
ments, as shown in Fig. 6. With the ground truth of the intrinsic and ex-
trinsic parameters of the two cameras, the 146 segments are then
reconstructed and shown in Fig. 7.

The experiments on Euclidean upgrading from segment
lengths are performed as follows. For each m in {65, 70, …,
120}, a subset of m segments is randomly selected from the
total set of segments. The procedure to obtain the projective re-
construction of the m segments is the same as in the experiments
on the synthetic data. Then, we test the accuracies of the algo-
rithms: C1A, C2A, DLT-like, WDLT-Like1, WDLT-Like2, OS, and
WOS. Here, the used criteria to evaluate the seven algorithms
are the same as those in the experiments on the synthetic data.
Fig. 8 shows the experimental results of the seven evaluated
algorithms.

As seen from Fig. 8, the experimental results on the real image data
are generally similar to those on the synthetic data, but there are also
two slight differences. In the real image data experiments, no failure
occurs for all the seven evaluated algorithms possibly because of the
well-controlled experimental condition. Besides, the advantages of the
(a) (

Fig. 6. Detected projections of the 146 segm
nonlinear algorithms OS and WOS over the linear algorithms are more
obvious with the real image data.

In addition, the bundle adjustment method that minimizes the
reprojection error of a set of segments with exact lengths is tested.
Here, three different initializations for the bundle adjustment method
are provided by DLT-like, OS, and WOS respectively, and the resulting
Euclidean upgrading methods are denoted as DLT-like + BA, OS + BA,
and WOS + BA. The corresponding experimental results including the
results by OS and WOS are shown in Fig. 9. It is observed from Fig. 9(a)
that OS has slightly lower error in terms of the reconstructed segment
lengths than WOS, whereas DLT-like + BA, OS + BA, and WOS + BA
have zero errors on the reconstructed segment lengths because the
lengths of the segments are parametrized in the bundle adjustment
method. As can be seen in Fig. 9(b)–(m): (i) WOS has higher accuracy
than OS in estimating the intrinsic and extrinsic parameters. (ii) The ac-
curacy of DLT-like + BA is lower than those of OS and WOS especially
when the number of segments is small. (iii) OS + BA has slightly higher
b)

ents. (a) Left image. (b) Right image.
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Fig. 8. Experimental results on the real images by all the referenced algorithms. (a) Error comparison on the reconstructed segment lengths. (b)–(f) Error comparison on the intrinsic pa-
rameters in the first view. (g)–(k) Error comparison on the intrinsic parameters in the second view. (l) Error comparison on the rotation matrix. (m) Error comparison on the translation.
(n) Failure percentage comparison.
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accuracy thanOS, but its accuracy is still lower than that ofWOS. (iv) The
accuracy of WOS + BA is very close to that of WOS.

7. Conclusion

With a very simple mathematical treatment, we have presented a
DLT-like algorithm for Euclidean upgrading from segment lengths. We
have also shown that the intermediate results of the DLT-like algorithm
are equivalent to the QoS, but the DLT-like algorithmhas higher accura-
cy than the existing linear algorithms derived from the QoS because of a
more accurate way to extract the plane at infinity. Two weighted DLT-
like algorithms have also been proposed, which successfully achieve
higher accuracy. Furthermore,we have developed aweighted nonlinear
algorithm based on a basic nonlinear algorithm to refine the results of
the linear algorithms. The experiments on both the synthetic data and
the real image data have demonstrated the effectiveness of the pro-
posed algorithms.

It is noted that although the proposed nonlinear algorithms re-
quire at least 9 segments, all the referred linear algorithms to pro-
vide initializations in this paper require at least 54 segments. In the
future, we will investigate how to use fewer segments to perform
Euclidean upgrading.

image of Fig.�8
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Fig. 9. Experimental results on the real images by the nonlinear algorithms. (a) Error comparison on the reconstructed segment lengths. (b)–(f) Error comparison on the intrinsic param-
eters in the first view. (g)–(k) Error comparison on the intrinsic parameters in the second view. (l) Error comparison on the rotation matrix. (m) Error comparison on the translation.
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