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Abstract Line triangulation, a foundational problem in
computer vision, is to estimate the 3D line position from
a set of measured image lines with known camera projec-
tion matrices. Aiming to improve the triangulation’s effi-
ciency, in this work, two algorithms are proposed to find
suboptimal solutions under the algebraic-error optimality
criterion of the Plücker line coordinates. In these proposed
algorithms, the algebraic-error optimality criterion is refor-
mulated by the transformation of the Klein constraint. By
relaxing the quadratic unit norm constraint to six linear con-
straints, six new single-quadric-constraint optimality criteria
are constructed in the new formulation, whose optimal so-
lutions can be obtained by solving polynomial equations.
Moreover, we prove that the minimum algebraic error of ei-
ther the first three or the last three of the six new criteria
is not more than

√
3 times of that of the original algebraic-

error optimality criterion. Thus, with three new criteria and
all the six criteria, suboptimal solutions under the algebraic
error minimization and the geometric error minimization are
obtained. Experimental results show the effectiveness of our
proposed algorithms.
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1 Introduction

In computer vision, triangulation is to determine the 3D po-
sition of a feature given its projections onto multiple images
and the corresponding camera projection matrices. In litera-
ture, the triangulation of 3D points [1–10] has been investi-
gated extensively. As the reconstruction of manmade scenes
has become a hot topic [11–13] in recent years, lines, which
are widely available in manmade scenes and provide more
information about scene geometrical structure, need special
consideration. Compared with point feature, lines have their
own specialties in triangulation [14]. For example, projected
image lines can be extracted more accurately and are less
sensitive to occlusion. And because 3D line has 4 degrees
of freedom to represent, there does not exist any simple rep-
resentation for it [15]. In addition, line triangulation, espe-
cially those involving more than three cameras, is more dif-
ficult to handle in itself than point triangulation.

In recent years, line triangulation has drawn more and
more attention and some algorithms have been proposed
based on different line representations. Early works mainly
focused on triangulation for only three cameras [16, 17],
while recent works addressed the multiple-view line trian-
gulation problem for improving the triangulation’s accuracy.
Based on the Plücker line coordinates and the algebraic-
error cost function, three algorithms were proposed to solve
the multiple-view triangulation problem in [15]. Because the
optimality criteria of these algorithms do not enforce the
Klein constraint, their solutions are sensitive to measure-
ment errors. Also based on the Plücker line coordinates,
an algorithm [18] is proposed to minimize the geometric
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error under the L2-norm, where the solution could satisfy
the Klein constraint, but the introduced algorithm is of high
computational complexity. In addition, in the Gold Stan-
dard algorithm [19], because a complex geometric-error cost
function, which is constructed via projections on two im-
ages and the trifocal tensors, is solved by the Levenberg-
Marquardt method, the involved computational load is large
and the solution seems sensitive to the choice of the two pro-
jections.

To well balance the reconstruction accuracy and the com-
putational efficiency of multiple-view line triangulation, two
suboptimal algorithms are proposed for the algebraic-error
minimization based line triangulation. In this work, the
algebraic-error optimality criterion is reformulated by the
transformation of the Klein constraint. And under the new
formulation, by relaxing the original quadratic unit norm
constraint on the Plücker line coordinates to six simple lin-
ear ones, six new single-quadric-constraint optimality cri-
teria are constructed, where the corresponding optimal so-
lutions satisfy the Klein constraint and can be obtained by
solving polynomial equations. In addition, we give a formal
proof that the minimum algebraic error of either the first
three or the last three of the six new criteria is not more
than

√
3 times of that of the original algebraic-error opti-

mality criterion. Therefore, via either three new criteria or
all the six new criteria, two suboptimal solutions to the al-
gebraic error minimization or the geometric error minimiza-
tion can be obtained. Compared with the linear algorithm,
the quasi-linear algorithms [15], and the Gold Standard al-
gorithm [19], our two new suboptimal algorithms are shown
to be both accurate and efficient with extensive experimental
results.

The remainder of this paper is organized as follows:
Sect. 2 is a short review of the Plücker line coordinates and
the line projection matrix. In Sect. 3, the algebraic-error op-
timality criterion is introduced. Section 4 elaborates our unit
norm relaxation technique, new single-quadric-constraint
optimality criteria construction and the definition of the two
suboptimal solutions. In Sect. 5, the process of solving the
new optimality criteria is presented. Section 6 reports the
experimental results. Section 7 concludes this paper.

2 Plücker Line Coordinates and Associated Line
Projection Matrix

A 3D line has 4 degrees of freedom, it cannot be simply rep-
resented in P3. Among the possible representations in the
literature, Plücker line coordinates [15, 20] is the most pop-
ular one.

Given two 3D points X ∼ (xT ,m)T , Y ∼ (yT , n)T in P3,
the Plücker coordinates of the line joining them is a 6-vector
L ∼ (aT ,bT )T :

a = my − nx

b = x × y
(1)

Note that not all the vectors in the 6-dimensional space are
the Plücker line coordinates. For L ∼ (aT ,bT )T to be a
true line representation, it must satisfy the following bilinear
constraint, called Klein constraint:

aT b = 0 (2)

Under the Plücker line coordinates, the line projection ma-
trix, which describes the central projection mapping from
3D lines to image lines, is defined as:

Definition 1 Given P = (p1,p2,p3,p4) as the point projec-
tion matrix, where pi is the ith column in P. Then, the line
projection matrix Q is given by

Q = (p4 × p1,p4 × p2,p4 × p3,p2 × p3,p3 × p1,p1 × p2).

Therefore, the projection relation between 3D line and im-
age line can be written as

l ∼ QL (3)

3 Algebraic-Error Optimality Criterion

Based on the above-defined line projection matrix, we can
obtain the following two constraints between a 3D line L
and the two endpoints {xi1,xi2} of its projected image line
in the ith image{

xT
i1QiL = 0,

xT
i2QiL = 0,

i = 1,2, . . . , n (4)

where Qi is the line projection matrix of the ith camera.
Since various noises are inevitable, the constraints in (4)
cannot be strictly satisfied in practice, hence we have:{

xT
i1QiL = εi1,

xT
i2QiL = εi2,

i = 1,2, . . . , n (5)

where εi1, εi2 (i = 1,2, . . . , n) are the algebraic errors of
the ith camera. In this paper, the algebraic error, i.e. the L2-
norm of algebraic errors in all the cameras, will be mini-
mized, called under the algebraic-error optimality criterion,
to estimate 3D line coordinates L̄ as:

min
n∑

i=1

ε2
i1 + ε2

i2 min L̄T AT AL̄

s.t. L̄T GL̄ = 0 ⇔ s.t. L̄T GL̄ = 0

L̄T L̄ = 1 L̄T L̄ = 1

(6)



J Math Imaging Vis (2014) 49:611–632 613

where A = (. . . ,QT
i xi1,QT

i xi2, . . .)
T , i = 1,2, . . . , n, G =( 0 I3

I3 0

)
, I3 is the 3 × 3 identity matrix, and L̄T GL̄ = 0 is

equivalent to the Klein constraint (2). L̄T L̄ = 1 is the unit
norm constraint to avoid the trivial solution L̄ = 0 and limit
the solution space to a compact set. Because the algebraic-
error optimality criterion (6) has two quadric constraints on
L̄, it is very difficult to obtain the global optimal solution.
A linear algorithm is proposed in [15] to divide the process
of solving the minimization problem (6) into two steps:

(1) Solve the least-squares problem as follows

min L̄T AT AL̄

s.t. L̄T L̄ = 1

(2) Use the Plücker correction to find a Plücker-coordi-
nates solution, which is the closest Plücker coordinates to
the solution of step 1 under the L2-norm.

Note that the linear algorithm in [15] is shown quite sen-
sitive to noise from our experimental results in Sect. 6.

4 New Optimality Criteria and Suboptimal Solutions

In this section, six linear constraints are introduced to re-
place the unit norm constraint in (6), then the resulting min-
imization problems all contain only a single quadric con-
straint on the estimated Plücker line coordinates. By re-
laxing the unit norm constraint after reformulation of the
original criterion (6), 6 new single-quadric-constraint mini-
mizations are considered, hereinafter called 6 new optimal-
ity criteria. Finally based on the solutions of these 6 new
optimality criteria, two suboptimal solutions of minimiz-
ing either the algebraic error or the geometric error are
provided. In the next, such issues will be discussed in de-
tails.

To avoid the Plücker correction in [15] and ensure that
the obtained solution is a Plücker line coordinates, the Klein
constraint needs to be retained. In this work, the following
six linear constraints are used to replace the unit norm con-
straint in (6)

L̄T ej = 1, j = 1, . . . ,6 (7)

where ej is the unit vector whose j th element is one. Un-
der these constraints, the j th coordinate of L̄ is one and the
rest are still variants, which keeps the vector L̄ from be-
coming zero-vector. By replacing the unit norm constraint
in (6) with the 6 linear constraints in (7), we obtain 6 single-
quadric-constraint optimality criteria whose normalized so-
lutions will still lie in the solution space of (6) and have
a bounded minimum algebraic error compared with the
minimum algebraic error of the original optimality crite-
rion (6).

In order to further reduce the minimum-algebraic-error
upper bound and the computational complexity, we at first

reformulate the optimality criterion (6), and then construct
our new single-quadric-constraint optimality criteria in what
follows.

Let

VG

(
I3 0
0 −I3

)
VT

G

be an eigen-decomposition of G, the Klein constraint can be
transformed into

L̃
(

I3 0
0 −I3

)
L̃ = 0,

where

L̃ = VT
GL̄, VG = 1√

2

(
J J
J −J

)
and

J =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ .

Obviously, the minimization problem (6) is equivalent to the
following minimization problem

min L̃T VT
GAT AVGL̃

s.t. L̃T

(
I3 0
0 −I3

)
L̃ = 0

L̃T L̃ = 1

(8)

To further reduce the complexity of the cost function, let
the eigen-decomposition of the upper left 3 × 3 submatrix
of VT

GAT AVG be V1Σ1VT
1 , and the eigen-decomposition of

the lower right 3 × 3 submatrix of VT
GAT AVG be V2Σ2VT

2 ,
then the criterion (8) can be simplified as:

min L̂T

(
Σ1 B
BT Σ2

)
L̂

s.t. L̂T

(
I3 0
0 −I3

)
L̂ = 0

L̂T L̂ = 1

(9)

where L̂ = ( VT
1 0

0 VT
2

)
L̃, B = (VT

1 0)VT
GAT AVG

( 0
V2

)
. In the

criterion (9), the constraints are meant that the sum of
squares of the first three coordinates of L̃ is equal to 1/2,
and so is the sum of squares of its last three coordinates.
Thus, the transformed solution space in (9) is divided into
two subspaces, i.e., the first three coordinates and the last
three coordinates. Through the following inverse transfor-
mation, the solution of (9) can be transformed back to the
solution space of (6), called the original-space solution of
(9) here, by

L̄ = VG

(
V1 0
0 V2

)
L̂ (10)

Similarity by replacing the unit norm constraint in (9) by
L̂T ej = 1, j = 1, . . . ,6, the following 6 new single-quadric-
constraint optimality criteria are obtained, and the normal-
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Fig. 1 Two typical
configurations used in the
experiments. (Left) Circular
configuration. (Right) Radial
configuration

ized solutions of these new optimality criteria can satisfy the
constraints in (9):

min L̂T

(
Σ1 B
BT Σ2

)
L̂

s.t. L̂T

(
I3 0
0 −I3

)
L̂ = 0, j = 1, . . . ,6

L̂T ej = 1

(11)

Note that in these optimality criteria, since the unit norm
constraint is relaxed, the resulting solution space is no longer
a compact set. But with enough measured endpoints, the cost
function is of a positive definite quadratic form which en-
sures the existence of its minimum. In addition, note that
because of the transformed solution space, the new optimal-
ity criteria in (11) have a different upper bound of the min-
imum algebraic error and different conditions to obtain the
upper bound, which will be stated in the following proposi-
tion.

Proposition 1 The minimum algebraic error under the
3 normalized solutions of either the first three optimal-
ity criteria (j = 1,2,3) or the last three optimality crite-
ria (j = 4,5,6) in (11) is not more than

√
3 times of the

minimum algebraic error of the original optimality crite-
rion (6).

Proof In the transformed solution space of (9), because
its two subspaces, i.e., the first three coordinates and the
last three coordinates, are independent and have similar
constraints, the same upper bounds of the minimum alge-
braic error can be obtained by just calculating their corre-
sponding three criteria in (11). Thus, here we only discuss
the case when the first three criteria (j = 1,2,3) are se-
lected.

Suppose for j = 1,2,3, the optimal solutions of the three
criteria in (11) are L̂opt

j and their corresponding minimum

errors are errj
opt . To satisfy the constraints of the crite-

rion (9), L̂opt
j need to be normalized. Suppose the j th ele-

ment of the normalized L̂opt
j is βj , its algebraic error should

be errj
sopt = |βj |errj

opt . From the constraints of (9), it is

known that |βj | ∈ (0,1/
√

2]. Similarly, suppose the opti-
mal solution L̂opt of the criterion (9) has the algebraic error
erropt and its j th element is αj . Since L̂opt /αj is not neces-

sarily the optimal solution of (11), errj
opt ≤ erropt /|αj |, we

have

erropt ≤ errj
sopt ≤

∣∣∣∣βj

αj

∣∣∣∣erropt .

Here, we use errsopt to represent the smallest value among

errj
sopt (j = 1,2,3), then the following inequalities hold

erropt ≤ errsopt = min
j=1,2,3

errj
sopt

≤ min
j=1,2,3

∣∣∣∣βj

αj

∣∣∣∣erropt

≤ 1/
√

2

maxj=1,2,3 |αj |erropt (12)

As seen from the constraints of criterion (9), the maxi-
mum of |αj | will be not less than 1/

√
6, then errsopt ∈

[erropt ,
√

3erropt ]. Because the minimum algebraic error of
the criterion (6) are equal to that of the criterion (9), the al-
gebraic error errsopt is not more than

√
3 times of the mini-

mum algebraic error of the original criterion (6). �

For the simplified criteria corresponding to the crite-
rion (6), it also can be proven that the upper bound of the
minimum algebraic error under all their six normalized so-
lutions is not less than

√
5 times of the minimum algebraic
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Fig. 2 Experimental results of
the Configuration I. (Left)
Result repeat ratio of the SATa
and the SATg. (Right) RMS of
algebraic error of the LIN, the
SATa and the SATg

error of (6). By contrast, via the simple reformulation of
the criterion (6), a lower upper bound of the minimum al-
gebraic error can be obtained by solving only three of the
six new criteria in (11). Thus, in this paper, the original-
space solution, which corresponds to the smallest-algebraic-
error solution of the three criteria in Proposition 1, is defined
as the algebraic suboptimal solution of the optimality crite-
rion (6). It should be noticed that the solution with a low al-
gebraic error does not always mean a better 3D reconstruc-
tion. Thus, we select the solution from the original-space
solutions of all the optimality criteria in (11) as the geomet-

ric suboptimal solution, which gives the smallest geometric
error (i.e., the sum of squared distances from the measured
image endpoints to the estimated image lines). Experiments
in Sect. 6 show that the geometric suboptimal solution is
more accurate and stable than the algebraic suboptimal so-
lution.

5 Solutions to the New Optimality Criteria

In this section, we only provide the process of solving one of
the 6 criteria in (11), say j = 1, the other 5 can be done sim-
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Fig. 2 (Continued)

ilarly and will not be discussed. For notational convenience,
L̂1 is used to replace the constraint L̂T e1 = 1, which means
its first coordinate is fixed to 1 and the other five coordinates
are variants.

The minimization problem for L̂1 is

min σ1 + L̂T
1,2Σ

′
1L̂1,2 + 2B1L̂1,3 + 2L̂T

1,2B2L̂1,3

+ L̂T
1,3Σ2L̂1,3

s.t. 1 + L̂T
1,2L̂1,2 = L̂T

1,3L̂1,3

(13)

where the vector L̂1,2 contains the second and the third ele-
ment of L̂1, L̂1,3 contains the last three elements of L̂1, σ1 is
the first element of Σ1, Σ ′

1 is the lower right 2×2 submatrix

of Σ1, the vector B1 is the first row of B, the matrix B2 is
the last two rows of B. By the Lagrange’s multiplier method,
the Lagrange’s function of criterion (13) can be formulated
as

F = σ1 + L̂T
1,2Σ

′
1L̂1,2 + 2B1L̂1,3 + 2L̂T

1,2B2L̂1,3

+ L̂T
1,3Σ2L̂1,3 + λ(1 + L̂T

1,2L̂1,2 − L̂T
1,3L̂1,3) (14)

and the Lagrange’s equations are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂F

∂(L̂T
1,2, L̂T

1,3)
T

= M

(
L̂1,2

L̂1,3

)
+

(
0

BT
1

)
= 0

∂F

∂λ
= 1 + L̂T

1,2L̂1,2 − L̂T
1,3L̂1,3 = 0

(15)
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Fig. 2 (Continued)

where

M =
(

Σ ′
1 + λI2 B2

BT
2 Σ2 − λI3

)
,

I2 is the 2 × 2 identity matrix.
Suppose the determinant of M is nonzero, i.e. matrix M

is invertible, then (L̂T
1,2, L̂T

1,3)
T can be computed by the first

equation of (15)

(
L̂1,2

L̂1,3

)
= M∗

det(M)

(
0

−BT
1

)
(16)

where M∗ and det(M) are the adjoint matrix and the deter-
minant of M, respectively. By substituting (16) into the sec-
ond equation of (15), we obtain the following equation of λ

1 +
(0T B1)M∗T

1 M∗
1

( 0
BT

1

)
det(M)2

−
(0T B1)M∗T

2 M∗
2

( 0
BT

1

)
det(M)2

= 0

or equivalently

det(M)2 + (
0T B1

)
M∗T

1 M∗
1

(
0

BT
1

)

− (
0T B1

)
M∗T

2 M∗
2

(
0

BT
1

)
= 0 (17)
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Fig. 3 Experimental results of
the Configuration I. RMS of
geometric error (pixel)

where matrices M∗
1 and M∗

2 are the first two rows and last
three rows of M∗, respectively. Equation (17) is a 10-degree
polynomial equation in λ, the companion matrix method is
used here to solve it. The coefficients of λ in (17) can be
obtained from det(M),M∗

1,M∗
2 as shown in Appendix A.

From the roots of Eq. (17), the real roots which do not
make det(M) = 0 are selected to compute the candidates of
(L̂T

1,2, L̂T
1,3)

T by (16).
Next, we consider the case that the determinant of M is

zero. When det(M) = 0, 5 roots, λi (i = 1, . . . ,5), can be

computed by the companion matrix method. By substituting
λi into M, the eigen-decomposition of the matrix M(λi) can
be computed as:

M(λi) = Ui

(
0mi

0
0 Σ5−mi

)
UT

i ,

where 0mi
is the mi ×mi zero matrix, Σ5−mi

(1 ≤ mi ≤ 4) is
a (5 − mi) × (5 − mi) diagonal matrix. Note that the matrix
Ui in the decomposition is not uniquely defined, however,
such a nonuniqueness has no effect on the subsequent com-
puting process. Then, the first polynomial equation of (15)
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Fig. 3 (Continued)

can be rewritten as(
0mi

0
0 Σ5−mi

)
UT

i

(
L̂1,2

L̂1,3

)
= UT

i

(
0

−BT
1

)
(18)

Obviously, Eq. (18) can be solved iff all the first mi ele-

ments of the vector UT
i

( 0
−BT

1

)
are zeros. If this condition is

satisfied, we can use the method in Appendix B to obtain the
candidates of (L̂T

1,2, L̂T
1,3)

T ; otherwise, there is no candidate

of (L̂T
1,2, L̂T

1,3)
T in the case of det(M) = 0.

By evaluating the cost function in (13) at all the candi-
dates of (L̂T

1,2, L̂T
1,3)

T , the optimal solution L̂opt

1 of (13),
which gives the smallest value of the cost function, is se-
lected and its original-space solution L̄opt

1 can be computed
via normalization and the inverse transformation (10).

6 Experiments

The experiments are carried out to evaluate six different
algorithms using MATLAB on a PC with Intel Core i5
3.2 GHz CPU and 4 GB RAM. These six compared al-
gorithms include: LIN (linear algorithm [15]), QLIN1 and
QLIN2 (two quasi-linear algorithms [15]), SATa(suboptimal
algebraic-error triangulation with the algebraic subopti-

mal solution), SATg(suboptimal algebraic-error triangula-
tion with the geometric suboptimal solution), and GS (Gold
Standard algorithm [19] which minimizes the geometric er-
ror), where the GS provides the benchmark of estimation
accuracy. In the GS, we choose the coordinates of lines in
two furthest cameras as the estimated parameters and obtain
the coordinates of the other lines with the trifocal tensors
of corresponding triple views. The initial values of the esti-
mated parameters are obtained by the measured lines in two
cameras whose corresponding 3D line has the smallest geo-
metric error and the time of finding the initial values is not
included in the time cost of the GS.

In our experiments, two typical camera configurations are
considered:

Configuration I (Circular configuration) As shown in
Fig. 1 (left), the endpoints of observed lines lie in a sphere
(dotted line) whose center is O and radius is 2 units. The
nine cameras’ optical axes pass through the center O and
their centers lie on the same circle centered at O with fixed
radius 11 units. The angles between the optical axes of
adjacent cameras (called the optical-axis angle) are set to
the same value. Camera A, B and C are utilized in the
three-camera experiments. In the five-camera and the nine-
camera experiment, camera A, B, C, D, E and all the nine
cameras are utilized, respectively. The optical-axis angle is
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Fig. 4 Experimental results of
the Configuration I.
(Left)Average error of space
angle (radian). (Right) RMS
error of space distance (unit)

respectively set to 15, 5 and 2 degrees in all three experi-
ments.

Configuration II (Radial configuration) As shown in Fig. 1
(right), a sphere (dotted line) with center O and radius
2 units contains the endpoints of all observed lines. Camera
is moved along a ray towards the center O and the distance
of each movement (called the each-movement distance) is
fixed at the same value. The distance between the center
O and the initial position of camera is 11 units. The three-
camera experiments and the five-camera experiments are
utilized to evaluate the performances of the six algorithms,
in which camera is moved twice and four times, respec-

tively. The each-movement distance is respectively set to 2,
1 and 0.2 units in both experiments.

Under each of the two configurations, the internal matri-
ces of the cameras are set as:

K =
⎛
⎝700 0 512

0 700 512
0 0 1

⎞
⎠ .

In each of our experiments, the cameras’ centers are slightly
perturbed to simulate the situation in real practice. 200 ob-
served lines are randomly chosen and projected onto 1024×
1024 image plane. For each image line, 8 random points
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Fig. 4 (Continued)

on it and 2 endpoints are corrupted by Gaussian noise with
zero mean and standard deviation σ . Then, the measured
line is fitted with all the 10 noisy points by the least-squares
method and the measured endpoints are chosen as the clos-
est points on the measured line to the noisy endpoints. The
noise level σ varies from 0.5 to 4 with the steps of 0.5 pix-
els, 200 trials are performed at each noise level to obtain the
statistically meaningful experimental results. The evaluated
performances include: Result repeat ratio of the SATa and
the SATg which is the ratio of the trials with the same re-
sults by them to the total trials; RMS of algebraic error of
the LIN, the SATa and the SATg; RMS of geometric error;

Average error of space angle which is the acute angle be-
tween the tangent vectors of the observed line and the esti-
mated line in space [20]; RMS error of space distance which
is the closest Euclidean distance between the observed line
and the estimated line in space; Average of running time.

6.1 Experimental Results of the Configuration I

Experimental results for the Configuration I are shown in
Figs. 2, 3, 4 and 5. Figure 2 (left) shows the result repeat
ratios of the SATa and the SATg. From Fig. 2 (left), we can
see that the repeat ratios are not more than 55 % for all the
experiments and their curves decline more rapidly with the
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Fig. 4 (Continued)

decrease of the optical-axis angle. However, for the RMS of
algebraic error (Fig. 2 (right)), it can be seen the SATg man-
ifests little difference to the SATa compared with the LIN.
Figure 3 shows the RMS of geometric error. We can see that:
in all the experiments both the LIN and the QLIN1 have
large RMS errors; the RMS error curves of the SATg are
much close to those of the GS and the differences between
their RMS errors are not more than 0.1 pixels; the RMS er-
rors of the SATa and the QLIN2 increase significantly with
the increase of measurement error when the optical-axis an-
gles are 5 degrees and 2 degrees, but when measurement er-
ror is less than 2 pixels the RMS error increase of the SATa

in most cases is not more than that of the QLIN2 whose ini-
tial value is the solution of the LIN.

Figure 4 shows the average error of space angle and the
RMS error of space distance. These results indicate that, for
the space angle and the space distance, the LIN has the worst
estimation accuracy among all the algorithms, whereas the
SATg has comparable estimation accuracy with the GS and
both their estimation accuracies are better than those of the
other four algorithms. For the other three algorithms, from
Fig. 4 (left) it can be seen that, the space angle errors of
the SATa are between those of the QLIN2 and the QLIN1,
and are close to those of the QLIN2 with the decrease of
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Fig. 5 Experimental results of
the Configuration I. Average of
running time (second)

the number of cameras; from Fig. 4 (right) it can be seen
that, although for a near-degenerative configuration, such as
the optical-axis angle equal to 2 degrees, the space distance
errors of the SATa become worse than those of the QLIN2
and even worse than those of the QLIN1 with the decrease
of the number of cameras, the SATa has comparable space
distance error with the GS when the optical-axis angle are
15 degrees or 5 degrees. Figure 5 shows the time costs of
the six algorithms. It is obvious that the time costs of the GS
are the largest and increase with the increase of the number

of cameras, the increase of the measurement error and the
increase of the optical-axis angle. Conversely, the time costs
of the other five algorithms do not change with any increases
mentioned above.

6.2 Experimental Results of the Configuration II

Experimental results of the Configuration II are shown in
Figs. 6, 7, 8, and 9, which are similar to those of the Con-
figuration I. Here, we just give some discussions on the esti-
mation accuracy and the time cost as shown in Figs. 8 and 9.



624 J Math Imaging Vis (2014) 49:611–632

Fig. 5 (Continued)

For the SATg, from Fig. 8, we can see that it has almost
the same estimation accuracy with the GS, but its time costs
are less than those of the GS as shown in Fig. 9. For the
SATa, although its performance become much worse with
the increase of measurement error in the near-degenerative
configuration whose each-movement distance is 0.2 units,
its space angle errors are close to those of the QLIN2 and
its distance errors are less than those of the QLIN2 when the
each-movement distances are 2 units and 1 unit; moreover,
its time costs shown in Fig. 9 are slightly more than those
of the QLIN2. In Fig. 9, the time costs of the LIN and the
QLIN1 are less than those of the other four algorithms, but
their bad performances disqualify them for any real applica-
tions in practice.

In addition, through the comparison of space angle er-
rors and space distance errors in different experiments, it is
shown that the number of cameras and the optical-axis an-
gle (or the each-movement distance) are important factors
to affect the estimation accuracy. And from all these exper-
iments in both the configurations, we find that Eq. (18) in
Sect. 5 is always unsolvable, which means that both the sub-
optimal solutions are obtained just via the solving process in
the case of det(M) 	= 0.

7 Conclusions

This paper proposes two suboptimal algorithms for multiple-
view algebraic-error line triangulation. The main contri-
butions include: (1) Via transforming the Klein constraint
and introducing a set of linear constraints, six new single-
quadric-constraint optimality criteria are proposed; (2) In
the transformed solution space, we prove that the upper
bound of the smallest algebraic error from only three of
the six new criteria is just

√
3 times of the minimum al-

gebraic error of the original optimality criterion; (3) Via
converting the new criteria to polynomial equations, two
suboptimal solutions are obtained by non-iterative method.
Experimental results show that our suboptimal solutions un-
der the geometric error minimization always have smaller
space angle errors and space distance errors than those un-
der the algebraic error minimization. Thus, in our future
work, we will focus on efficient geometric-error line trian-
gulation.
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Fig. 6 Experimental results of
the Configuration II. (Left)
Result repeat ratio of the SATa
and the SATg. (Right) RMS of
algebraic error of the LIN, the
SATa and the SATg
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Appendix A

For

M(λ) =
(

Σ ′
1 + λI2 B2

BT
2 Σ2 − λI3

)
,

where λ is unknown, its determinant can be expanded as:

det(M) = −det
((Σ ′

1 −B2

BT
2 −Σ2

)
+ λIn

)

= −λn −
n∑

i=1

[(
Σ ′

1 −B2

BT
2 −Σ2

)]
i

λn−i (19)

where [·]i is the sum of all the i × i principal minors, In is
the n×n identity matrix and n is the order of M. Then, from
(17) we know that just the last three columns of the adjoint
matrix of M are needed. So, here we just discuss the cofac-
tors of the last three rows in M and there are three situations:

(1) Elements on the main diagonal: their cofactors can be
obtained according to (19).
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Fig. 6 (Continued)

(2) Nonzero elements at the ith row and the j th column
(i 	= j ): their cofactors are the determinants of matrices like
the following form, where the matrices are obtained by row
or column exchanges of the submatrices formed by deleting
the ith row and the j th column:∣∣∣∣∣∣∣∣

0 h12 h13 h14

p + λ h22 h23 h24

h31 0 q1 − λ 0
h41 0 0 q2 − λ

∣∣∣∣∣∣∣∣
= −h12λ

3 − h12(p − q1 − q2)λ
2 − (h12h23h31

+ h12h24h41 + h12q1q2 − h13h22h31 − h14h22h41

− h12pq1 − h12pq2)λ + h12h24h41q1 + h12h23h31q2

− h14h22h41q1 − h13h22h31q2 − h12pq1q2

(3) Zero elements at the ith row and the j th column
(i 	= j ): their cofactors are the negative determinants of
matrices like the following form, where the matrices are
obtained by row or column exchanges of the submatices
formed by deleting the ith row and the j th column:∣∣∣∣∣∣∣∣
p1 + λ 0 h13 h14

0 p2 + λ h23 h24

h31 h32 0 0
h41 h42 0 q − λ

∣∣∣∣∣∣∣∣
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Fig. 7 Experimental results of
the Configuration II. RMS of
geometric error (pixel)

= (h13h31 + h23h32)λ
2

+ (h23h32p1 + h13h31p2 − h13h31q − h23h32q)λ

+ h14h23h32h41 + h13h24h31h42 − h13h24h32h41

− h14h23h31h42 − h23h32p1q − h13h31p2q

Appendix B

If the first mi elements in UT
i

( 0
−BT

1

)
are zero, we discuss

how to compute the candidates of (L̂T
1,2, L̂T

1,3)
T from the fol-

lowing two situations.

B.1 Situation mi = 1

(
L̂1,2

L̂1,3

)
= Ui

(
μi

vi

)
(20)

where μi is an unknown, vi = (0 Σ−1
4 )UT

i

( 0
−BT

1

)
is a

constant vector. Substituting (20) into the second equation
in (15), we obtain a quadratic equation. The candidates of
(L̂T

1,2, L̂T
1,3)

T can be obtained by real roots of the quadratic
equation.
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Fig. 8 Experimental results of
the Configuration II. (Left)
Average error of space angle
(radian). (Right) RMS error of
space distance (unit)

B.2 Situation mi > 1(
L̂1,2

L̂1,3

)
= Ui

(
μi

vi

)
(21)

where μi is an mi -dimensional unknown vector, vi =
(0 Σ−1

5−mi
)UT

i

( 0
−BT

1

)
is a constant vector when mi ≤ 3 or

a constant when mi = 4. Substituting (21) into the second
equation in (15), a quadratic equation of mi variants is ob-
tained, which has infinitely many solutions. To reduce the
number of the candidates of (L̂T

1,2, L̂T
1,3)

T from the quadratic
equation, we select the candidate that gives the smallest
value of the cost function in (13), which is equivalent to the

optimal solution to the minimization problem of mi -vector
μi constructed by substituting (21) into the criterion (13)

min
μi

(μT
i ,vT

i ,1)D

⎛
⎝μi

vi

1

⎞
⎠

s.t.
(
μT

i ,vT
i ,1

)
S

⎛
⎝μi

vi

1

⎞
⎠ = 0

or equivalently

min μT
i D11μi + 2d1μi + d2

s.t. μT
i S11μi + 2s1μi + s2 = 0

(22)
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Fig. 8 (Continued)

where

D =
(

UT
i 0

0 1

)⎛
⎝Σ ′

1 B2 0

BT
2 Σ2 BT

1
0 B1 σ1

⎞
⎠(

Ui 0
0 1

)
,

S =
(

UT
i 0

0 1

)⎛
⎝ I2 0 0

0 −I3 0
0 0 1

⎞
⎠(

Ui 0
0 1

)
,

d1 = (vT
i ,1)DT

12, d2 = (vT
i ,1)D22

( vi

1

)
, s1 = (vT

i ,1)ST
12,

s2 = (vT
i ,1)S22

( vi

1

)
,D11 and S11 are the upper-left mi ×mi

submatrix of D and S,D12 and S12 are the upper-right

mi × (6 − mi) submatrices of D and S,D22 and S22 are
the lower-right (6 −mi)× (6 −mi) submatrices of D and S,
respectively.

By Lagrange’s multiplier method, we obtain the follow-
ing Lagrange’s equations according to (22):{

(D11 + γ S11)μi + d1 + γ s1 = 0

μT
i S11μi + 2s1μi + s2 = 0

(23)

where γ is a multiplier. Here, three cases need to be consid-
ered respectively and the optimal solution is selected from
the candidates of μi in these three cases.
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Fig. 9 Experimental results of
the Configuration II. Average of
running time (second)

Case A: det(D11 + γ S11) 	= 0
According to the first equation in (23), we obtain

μi = − (D11 + γ S11)
∗(d1 + γ s1)

det(D11 + γ S11)
(24)

where (D11 + γ S11)
∗ is the adjoint matrix of D11 + γ S11.

Substituting (24) into the second equation of (23), an equa-
tion of degree 2mi (2 ≤ mi ≤ 4) is obtained

(d1 + γ s1)
T (D11 + γ S11)

∗T S11(D11 + γ S11)
∗(d1 + γ s1)

− 2 det(D11 + γ S11)s1(D11 + γ S11)
∗(d1 + γ s1)

+ s2 det(D11 + γ S11)
2 = 0 (25)

Because the order of the square matrix D11 + γ S11 is not
more than 4, its determinant and adjoint matrix can be com-
puted easily. By choosing real roots of (25) which do not
make det(D11 +γ S11) = 0 and substituting them into (24),
we can obtain the candidates of μi .
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Case B: A root γ ′ of det(D11 + γ S11) = 0 makes the first
equation in (23) solvable and only one eigenvalue of matrix
D11 + γ ′S11 is zero.
Referring to Situation mi = 1, by the eigen-decomposition
of D11 +γ ′S11, an equation like (20) is obtained. Substitut-
ing the equation into the second equation of (23), if there
exists real roots, like Situation mi = 1 the candidates of μi

can be obtained with the real roots.
Case C: A root γ ′′ of det(D11 + γ S11) = 0 makes the first
equation in (23) solvable and more than one eigenvalue of
the matrix D11 + γ ′′S11 are zero.
The problem returns to Situation mi > 1. By the eigen-
decomposition of D11 + γ ′′S11, an equation like (21) is
obtained, then a minimization problem like (22) is con-
structed, which can be solved just like Case A, Case B and
Case C. Because the Case C is similar to Situation mi > 1,
the details to obtain the candidates of μi will be skipped
here.
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