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Abstract: In this paper, a computational goal for a monaural speech
separation system is proposed. Since this goal is derived by maximizing
the signal-to-noise ratio (SNR), it is called the optimal ratio mask
(ORM). Under the approximate W-Disjoint Orthogonality assumption
which almost always holds due to the sparse nature of speech, theoretical
analysis shows that the ORM can improve the SNR about 10log102 dB
over the ideal ratio mask. With three kinds of real-world interference, the
speech separation results of SNR gain and objective quality evaluation
demonstrate the correctness of the theoretical analysis, and imply that the
ORM achieves a better separation performance.
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1. Introduction

Speech separation or enhancement is one of the key problems in speech processing.
Available approaches to this problem include computational auditory scene analysis
(CASA),1,2 noise tracking,3,4 blind speech separation (BSS),5,6 and so on. Since
speech signals are non-stationary, all these algorithms firstly decompose the
time-domain signal into time-frequency (T-F) domain by discrete short-time Fourier
transform (DSTFT) or auditory filtering.7 Then, a binary mask or ratio mask is esti-
mated and further used to estimate the spectrum or cochleagram of the original
speech. Finally, the time-domain speech is synthesized by inverse discrete short-time
Fourier transform (IDSTFT) or the method described in Ref. 8. All these algorithms
can be integrated into a framework which is regarded as a linear mask model in this
paper.

Many CASA based separation systems1,2 and BSS algorithms5,6 set the ideal
binary mask (IBM) as the computational goal, while many noise tracking based
enhancement methods3,4 use the Wiener-type ratio mask. The Wiener-type ratio mask,
which is called the ideal ratio mask (IRM),9 is motivated by the frequency response of
the Wiener filter,10 which achieves the optimal signal-to-noise ratio (SNR) gain for sta-
tionary signals. However, the speech signals and many real-world noises are non-
stationary. The optimality of the IRM in terms of the SNR has not been rigorously
addressed for non-stationary signals.

In this paper, a new ratio mask which achieves the optimal SNR gain over all
the ratio masks is derived analytically. We further find that the IRM is a simplification
of the derived optimal ratio mask (ORM). Furthermore, we theoretically analyze the
SNR improvement from the IRM to the ORM. The expectation of the improvement is
deduced under the approximate W-Disjoint Orthogonality (AWDO) assumption.
Finally, we verify the AWDO assumption with experiments on three kinds of real-
world noise. The separation results show that the average improvement is very close to
the derived expectation.
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The rest of the paper is organized as follows. In Sec. 2, we present some neces-
sary notations and definitions. The SNR gains of the ORM and IRM are discussed in
Sec. 3. Speech separation experiments are further used to verify the discussions in Sec.
4. Section 5 gives some conclusions.

2. Notation and definition

Suppose that the T-length speech and interference signals in time domain are denoted
by xðtÞ and nðtÞ, respectively. The additive mixture yðtÞ is given by

yðtÞ ¼ xðtÞ þ nðtÞ: (1)

The speech separation problem aims to estimate speech signal xðtÞ from the mixture yðtÞ
as accurately as possible. Let S�ðs; f Þ denote the DSTFT of a signal in sth time frame
and f th frequency index. The power spectrum density (PSD) is P�ðs; f Þ ¼ jS�ðs; f Þj2.
With a real and symmetric window function gðtÞ ¼ gð�tÞ, we take the DSTFT of yðtÞ
for example:

Syðs; f Þ ¼
XT�1

t¼0

yðtÞgðt� sÞexp
�
�i2p ft

T

�
: (2)

Since DSTFT is complete and stable, xðtÞ can be reconstructed from Sxðs; f Þ
by IDSTFT.11 In other words, the speech separation problem can be transformed into
the problem of Sxðs; f Þ estimation. Letting Ŝxðs; f Þ denote an estimation of Sxðs; f Þ,
the time domain signal x̂ðtÞ is

x̂ðtÞ ¼ 1
T

XT�1

s¼0

gðt� sÞ
XT�1

f¼0

Ŝxðs; f Þexp
i2p ft

T

� �
: (3)

The mean square error (MSE) is defined as

Lðx̂; xÞ ¼
XT�1

t¼0

½x̂ðtÞ � xðtÞ�2 ¼
XT�1

t¼0

rðtÞ2; (4)

where rðtÞ ¼ x̂ðtÞ � xðtÞ. According to Parseval’s equality,11 the MSE is given by

XT�1

t¼0

rðtÞ2 ¼ 1
T

XT�1

s¼0

XT�1

f¼0

jŜxðs; f Þ � Sxðs; f Þj2: (5)

The SNR is defined as follows:

SNR ¼ 10log10

X
t

xðtÞ2

X
t

rðtÞ2

0
BB@

1
CCA: (6)

Since the total energy of target speech,
P

txðtÞ
2, is a constant, the SNR gain is inver-

sely proportional to the MSE. This means that maximizing the SNR gain is equivalent
to minimizing the MSE.

3. Linear mask model

To simplify the representation, one-dimension coordinate notation, k � ðs; f Þ, is used
in the following discussions. Let PxðkÞ and PnðkÞ denote the PSDs of the target speech
and interference at the kth T-F unit, respectively. In this paper, we are not concerned
with how to estimate PxðkÞ and PnðkÞ, which is the task of noise tracking.4 The main
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purpose is discussing the optimal computational goal and proving the importance of
taking into account the phase information when filtering signals with PxðkÞ and PnðkÞ
as the prior information.

In CASA techniques1,2 and BSS algorithm,5,6 the computational goal is the
IBM estimation which is defined as follows:

BðkÞ ¼
1; if PxðkÞ > PnðkÞ
0; else:

�
(7)

The units labeled by 1 are called reliable or speech dominated units, while the others
are called unreliable or noise dominated units. The work of Li and Wang12 proves
that the IBM achieves the minimum MSE over all binary masks if the T-F decomposi-
tion is orthonormal. The estimation of SxðkÞ is given by ŜxðkÞ ¼ BðkÞSyðkÞ.

The IBM is a simplification form of the IRM which is defined in9

RðkÞ ¼ PxðkÞ
PxðkÞ þ PnðkÞ

: (8)

The IRM is the instantaneous approximation of the Wiener filter10 which is the opti-
mal filtering model for stationary signals in terms of the MSE. Similarly, the estima-
tion of SxðkÞ is given by ŜxðkÞ ¼ RðkÞSyðkÞ. Many speech enhancement systems, such
as the Wiener-type enhancement algorithms,3,4 are based on ratio mask strategy.

These algorithms can be integrated to one framework, ŜxðkÞ ¼ cðkÞSyðkÞ, where
cðkÞ is a real value. In this paper, this framework is regarded as a linear mask model.

3.1 The ORM

The MSE corresponding to the linear mask model is given as follows:

Lðx̂; xÞ ¼ 1
T

X
k

jcðkÞSyðkÞ � SxðkÞj2 ¼
1
T

X
k

jðcðkÞ � 1ÞSxðkÞ þ cðkÞSnðkÞj2

¼ 1
T

�X
k

½ðcðkÞ � 1Þ2PxðkÞ þ cðkÞ2PnðkÞ� þ
X

k

2cðkÞðcðkÞ � 1Þ<ðSxðkÞS�nðkÞÞ
�
;

(9)

where superscript “*” denotes the conjugate operator and <ð�Þ returns the real compo-
nent of a complex number.

Minimize the MSE by the partial derivative of cðkÞ as follows:

@Lðx̂; xÞ
@cðkÞ ¼

2
T
½½cðkÞ � 1�PxðkÞ þ cðkÞPnðkÞ þ ½2cðkÞ � 1�<ðSxðkÞS�nðkÞÞ�: (10)

The ORM, coptðkÞ, is obtained when @Lðx̂; xÞ=@cðkÞ ¼ 0:

coptðkÞ ¼
PxðkÞ þ <ðSxðkÞS�nðkÞÞ

PxðkÞ þ PnðkÞ þ 2<ðSxðkÞS�nðkÞÞ
: (11)

By comparing Eqs. (8) and (11), we can find that the IRM is a simplification of the
ORM. Furthermore, the IRM is equivalent to the ORM if <ðSxðkÞS�nðkÞÞ is equal to 0
for all units. WðkÞ � SxðkÞS�nðkÞ is further used to simplify the representation.

Furthermore, we further find that the ORM can be estimated without phase
information. Since the following equation always holds:

PyðkÞ ¼ PxðkÞ þ PnðkÞ þ 2<ðWðkÞÞ ) 2<ðWðkÞÞ ¼ PyðkÞ � ½PxðkÞ þ PnðkÞ�; (12)
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the ORM given in Eq. (11), coptðkÞ, can be re-written as

coptðkÞ ¼
PyðkÞ þ PxðkÞ � PnðkÞ

2PyðkÞ
: (13)

The two versions of the ORM defined by Eqs. (11) and (13) achieve identical separa-
tion results.

The MSE corresponding to coptðkÞ is given by

Lðx̂; xÞ ¼ 1
T

X
k

jcoptðkÞðSxðkÞ þ SnðkÞÞ � SxðkÞj2 ¼
1
T

X
k

PxðkÞPnðkÞ � ½<ðWðkÞÞ�2

PxðkÞ þ PnðkÞ þ 2<ðWðkÞÞ :

(14)

For comparison, we also give the MSE corresponding to the IRM as follows:

Lð~x; xÞ ¼ 1
T

X
k

jRðkÞðSxðkÞ þ SnðkÞÞ � SxðkÞj2

¼ 1
T

X
k

PxðkÞPnðkÞ½PxðkÞ þ PnðkÞ � 2<ðWðkÞÞ�
½PxðkÞ þ PnðkÞ�2

: (15)

3.2 Expectation of the SNR improvement

The SNR improvement from the IRM to the ORM is discussed under the AWDO
assumption. The W-Disjoint Orthogonality (WDO) property is derived from the spar-
sity of speech signal in the T-F domain, where sparsity means that a small percentage
of the T-F units contain a large percentage of the signal energy. The rigorous defini-
tion of WDO5 is given by

SxðkÞSnðkÞ ¼ SxðkÞS�nðkÞ ¼ 0; 8k: (16)

Obviously, the WDO property is a mathematical idealization. In a general case, jWðkÞj
is very small with high probability.5 A more rigorous statement is that jWðkÞj is much
smaller than ðPxðkÞ þ PnðkÞÞ=2 for most units. An experiment will be conducted to
verify this property in Sec. 4. We regard this property as the AWDO property.

On one hand, <ðWðkÞÞ � jWðkÞj. On the other hand, according to the AWDO
assumption 2jWðkÞj is much smaller than PxðkÞ þ PnðkÞ for most units. Therefore, the
MSE of the IRM can be further approximated by

Lð~x; xÞ � 1
T

X
k

PxðkÞPnðkÞ
PxðkÞ þ PnðkÞ

: (17)

Similarly, the MSE of the ORM can be further approximated by the following
equation:

Lðx̂; xÞ � 1
T

X
k

PxðkÞPnðkÞ � ½<ðWðkÞÞ�2

PxðkÞ þ PnðkÞ
¼ 1

T

X
k

PxðkÞPnðkÞsin2ðhðkÞÞ
PxðkÞ þ PnðkÞ

; (18)

where WðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PxðkÞPnðkÞ

p
expðihðkÞÞ and hðkÞ ¼ /ðSxðkÞÞ þ/ðS�nðkÞÞ. Operator

/ð�Þ returns the angle of a complex number. Since we have no prior information on
hðkÞ, it is assumed to be uniformly distributed in the interval ½0; 2p�. SinceÐ 2p

0 sin2ðhðkÞÞdhðkÞ ¼ p, the expectation of Lðx̂; xÞ is given by
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E½Lðx̂; xÞ�hðkÞ �
1
T

X
k

PxðkÞPnðkÞ
PxðkÞ þ PnðkÞ

ð2p

0
sin2ðhðkÞÞ 1

2p
dhðkÞ ¼ 1

2T

X
k

PxðkÞPnðkÞ
PxðkÞ þ PnðkÞ

:

(19)

In other words, the expectation of Lðx̂; xÞ approximates a half of Lð~x; xÞ.
From the definition of the SNR given in Eq. (6), the SNR improvement from

the IRM to the ORM is given by

DSNR ¼ SNRO � SNRI ¼ 10log10
Lð~x; xÞ
Lðx̂; xÞ

� �
; (20)

where SNRO and SNRI correspond to the SNR gains of the ORM and the IRM,
respectively. Therefore, the expectation of DSNR is about 10log102 dB.

4. Experimental results

To verify the above analysis experimentally, 40 s length speech signals are randomly taken
from the training set provided by the Grid speech corpus.13 Three different types of real
world noise which are recorded in cafeteria, square, and subway environments14 are
selected as the interferences. For each type of noise, a 20 s length signal is selected. All the
signals are down-sampled to 16 kHz. The target and interference signals are mixed with
the input SNR ranging from �3 to 9 dB with 3 dB step. To compute the DSTFT, the
noisy time domain signals are divided into frames of 512 samples with an overlap of 50%.

4.1 AWDO test

If both the target and interference signals are speech, the AWDO property has been veri-
fied.5 In this section, we further validate this property while target speech signals mix with
the real world interferences. The WDO degree is measured with the metric proposed in:15

WDOM ¼

X
k

jSxðkÞSnðkÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k

PxðkÞ
X

k

PnðkÞ
r : (21)

A lower WDOM value indicates a higher AWDO degree.
A 20 s length speech signal is assumed to be the target, while the other 20 s length

signal is assumed to be the interference. For comparison, we also compute the WDOM cor-
responding to the real world interferences. The results given in Table 1 show that the
WDOMs of the cafeteria noise and the speech signal are very close to each other.
Therefore, the AWDO property still holds even when the interference is non-sparse.
Particularly, for subway noise, the WDOM is relatively low compared to the other types of
interference. If both the target and interference are non-sparse, the cross term, jSxðkÞSnðkÞj,
may be very high. Consequently, the AWDO property may not hold in this case.

4.2 Separation results of the IRM and ORM

The average SNR results of the IRM and the ORM are shown in Table 2. As shown in
Table 2, the ORM always achieves a higher SNR gain over the IRM with respect to differ-
ent types of noise and input SNR conditions. The average of the DSNR, about 3.61 dB, is
very close to the expectation ð10log102 � 3:01 dBÞ which is derived analytically.

Table 1. Average WDOM (%) with respect to different kinds of interference. Sp: Speech signal; Ca: Cafeteria;
Sq: Square; Su: Subway.

Noise type Sp Ca Sq Su

WDOM (%) 34.1 34.9 24.9 14.3

Liang et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4824632] Published Online 16 October 2013

EL456 J. Acoust. Soc. Am. 134 (5), November 2013 Liang et al.: The optimal ratio mask

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  124.16.131.65 On: Tue, 12 Apr 2016 07:13:00



The algorithm proposed by Hu and Loizou16 is further used to evaluate the
objective quality of the separated speech signals. This algorithm converts several com-
posite objective measures to a mean opinion score-like listening quality score, which
ranges from 1 to 5. The higher the score, the better the perceptual quality. Let OQSI
and OQSO denote the quality scores corresponding to the IRM and ORM, respec-
tively. The average results are presented in Table 3. Under all the noise types and
input SNR conditions, the ORM achieves consistently higher objective quality scores
than the IRM. Especially, we can see that the improvement is very significant under
low input SNR conditions. Six files of the mixture and the separated speech signals by
the IRM and ORM are given in Mm.1–Mm.6, respectively.

Mm. 1. A speech signal mixing with cafeteria noise at �3 dB input SNR. This is a file of
type “wav” (313 Kb).

Mm. 2. The speech signal separated from Mm. 1 by the IRM. This is a file of type “wav”
(313 Kb).

Mm. 3. The speech signal separated from Mm. 1 by the ORM. This is a file of type “wav”
(313 Kb).

Mm. 4. A speech signal mixing with square noise at �3 dB input SNR. This is a file of type
“wav” (313 Kb).

Mm. 5. The speech signal separated from Mm. 4 by the IRM. This is a file of type “wav”
(313 Kb).

Table 2. Average SNR gain (dB) under different kinds of interference. Ca: Cafeteria; Sq: Square; Su: Subway.

Input SNR Noise Ca Sq Su Avg.

�3 dB SNRI 9.30 11.83 15.18 12.10
— SNRO 11.70 14.62 19.46 15.26
0 dB SNRI 10.97 13.51 16.65 13.72
— SNRO 13.54 16.53 21.43 17.16
3 dB SNRI 12.76 15.30 18.13 15.39
— SNRO 15.48 18.45 23.31 19.09
6 dB SNRI 14.61 17.10 19.61 17.10
— SNRO 16.82 19.59 23.97 20.12
9 dB SNRI 16.54 18.91 21.10 18.85
— SNRO 19.68 22.39 26.99 23.00

Table 3. Average scores of objective quality under different kinds of interference. Ca: Cafeteria; Sq: Square; Su:
Subway.

Input SNR Noise Ca Sq Su Avg.

�3 dB OQSI 3.75 3.93 4.28 3.99
— OQSO 4.33 4.44 4.59 4.45
0 dB OQSI 3.91 4.07 4.39 4.12
— OQSO 4.40 4.51 4.64 4.52
3 dB OQSI 4.06 4.20 4.50 4.25
— OQSO 4.47 4.56 4.69 4.57
6 dB OQSI 4.20 4.33 4.59 4.37
— OQSO 4.54 4.62 4.75 4.64
9 dB OQSI 4.33 4.44 4.67 4.48
— OQSO 4.62 4.67 4.81 4.70
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Mm. 6. The speech signal separated from Mm. 4 by the ORM. This is a file of type “wav”
(313 Kb).

In this experiment, both the IRM and ORM are computed using Px and Pn as
prior information. While the precisely accurate PSDs of the speech and noise are given,
the phase difference can be easily derived by Eq. (12). We should note that it is impos-
sible to achieve precisely accurate PSDs by the actual estimator. The error in PSD esti-
mation will weaken the performance of the two ratio masks to some extent. Since the
IRM and ORM are directly based on the PSD estimation, a substantial effort is
needed in the future to analyze the robustness of the error in PSD estimation.

5. Conclusion

In this paper, we propose the ORM in terms of the SNR. Under the AWDO assump-
tion, we further derive an approximate expectation of the SNR improvement from the
IRM to the ORM. Separation experiments show that the average SNR improvement
is very close to the theoretical expectation. The results also show that the ORM can
improve the speech quality, especially for low input SNR conditions. We think that
the phase information, which has not received much attention in many present speech
separation and enhancement systems, is the main reason for the improvement. This
work implies that the phase estimation may be a valuable research topic in the future.
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