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a b s t r a c t

This paper is about line matching by line–point invariants which encode local geometric information

between a line and its neighboring points. Specifically, two kinds of line–point invariants are

introduced in this paper, one is an affine invariant constructed from one line and two points while

the other is a projective invariant constructed from one line and four points. The basic idea of our

proposed line matching methods is to use cheaply obtainable matched points to boost line matching via

line–point invariants, even if the matched points are susceptible to severe outlier contamination. To

deal with the inevitable mismatches in the matched points, two line similarity measures are proposed,

one is based on the maximum and the other is based on the maximal median. Therefore, four different

line matching methods are obtained by combining different line–point invariants with different

similarity measures. Their performances are evaluated by extensive experiments. The results show

that our proposed methods outperform the state-of-the-art methods, and are robust to mismatches in

the matched points used for line matching.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Feature matching is a fundamental task in computer vision
and has been widely used in many applications [1–6]. It aims to
find corresponding features, such as points and lines, across
images of the same scene. Imaging condition variations, such as
illumination and viewpoint changes, make the feature matching a
challenging task. Although point matching has been well studied
in the past two decades, methods for line matching are less
investigated. Line matching is less successful is mainly due to its
inherent difficulties: inaccurate locations of endpoints, fragmen-
tation of a single line, less distinctive appearance of line segments,
no available global geometric constraint (such as the epipolar
constraint in point matching). However, lines contain more
structural information about scenes and objects than that con-
tained by points. Therefore, line matching is both desirable and
even indispensable in many applications [6,4,7,8].

This paper is focused on line matching through line–point
invariants, i.e., rudimentary matched points are used to leverage line
matching. Specifically, two kinds of line–point invariants are intro-
duced in this paper (Section 4), one is an affine invariant derived
from one image line and two points and the other is a projective
invariant derived from one image line and four points. Although
these invariants are planar ones, they can be used in general non-
planar scenes by computing them from the points in the vicinity of
lines. Meanwhile, in order to deal with the inevitable mismatches in
ll rights reserved.
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the matched points, two line similarity measures, the maximum-
based one and the maximal median-based one, are proposed
respectively (Section 5). Consequently, four different line matching
methods are obtained by combining different line–point invariants
with different similarity measures. These line matching methods
have been extensively evaluated by experiments. The experimental
results show that they can successfully match image lines with high
accuracy under various image transformations, including scale
changes, rotation, partial occlusion, illumination changes, and view-
point changes to some extent. They outperform the state-of-the-art
methods, i.e., Line Signature [9] and MSLD [10]. In addition, although
the proposed methods use matched points to boost line matching,
they are largely insensitive to point matching outliers.

A preliminary version of this work was reported in [11] which
is to use the affine invariant for line matching. The current work is
a largely extended one, including:
(1)
 A more general line–point invariant (projective invariant,
Section 4.2) is introduced and assessed.
(2)
 A maximum-based line similarity measure (Section 5.1) is
proposed and the maximal median-based similarity measure
is extended with the projective invariant.
(3)
 Thorough analysis and experimental evaluation are carried
out for the two kinds of line–point invariants (the affine
invariant and the projective invariant) as well as the proposed
two kinds of similarity measures (the one based on maximum
and the one based on maximal median).
The rest of this paper is organized as follows: Section 2 gives a
brief overview of the related work. The formal problem definition
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is stated in Section 3. The line–point invariants are introduced in
Section 4, followed by the proposed line similarity measures in
Section 5. A fast matching strategy is proposed in Section 6, then
Section 7 gives the proposed line matching algorithm. Extensive
experiments are reported in Section 8. We finally conclude this
paper in Section 9.
1 For a line axþbyþc¼ 0, it is denoted as ða,b,cÞT .
2. Related work

2.1. Point matching

Point matching has received much attention and various
methods have been proposed. Most of the point matching meth-
ods first construct a local descriptor to describe the neighborhood
distribution of a point, then match points by comparing their local
descriptors. Through local descriptors, point matching becomes
robust to many photometric and geometric transformations. One
of the most famous local descriptors is SIFT (Scale Invariant
Feature Transformation) [3]. According to the comparative study
of Mikolajczyk and Schmid [12], SIFT outperforms other local
descriptors including shape context, spin images, differential
invariants, moment invariants and so on. Since SIFT was proposed,
researchers have developed many other local descriptors which
are said to outperform SIFT in some aspect. Ke and Sukthankar
[13] applied PCA (Principal Component Analysis) [14] to gradient
patch of keypoint and introduced the PCA-SIFT descriptor.
Mikolajczyk and Schmid [12] replaced the spatial grid cells of SIFT
with cells in a polar coordinate system. Tola et al. [15] developed a
fast descriptor named DAISY for dense matching. Winder et al.
[16] learned local descriptors with different local features and
different spatial pooling strategies. A DAISY-like descriptor is said
to be the best among all configurations. Then the best DAISY was
picked in [17]. Heikkila et al. [18] used a variant of LBP (Local
Binary Pattern) [19] instead of gradient features to improve SIFT
for illumination changes. To deal with complex brightness
changes, some researchers have proposed local descriptors based
on intensity orders [20–22] since the intensity orders are invariant
to monotonic illumination changes. Besides using local descriptors
for point matching, there are other methods based on geometric
constraints among correctly corresponding points along with the
appearance of the keypoint’s patch [23–27]. These methods can
generally deal with more challenging problems in point matching
such as non-rigid deformation and large viewpoint changes. The
key of this kind of methods is to define a proper measure about
the geometric consistency among point correspondences. Such
geometric constraints are usually formulated as an objective
function so that the correspondence problem can be solved as an
optimization problem. These methods can usually achieve higher
accuracy, but also have higher computational cost, especially
when the set of keypoints is large.

2.2. Line matching

Due to the various inherent difficulties, only a few line
matching methods are reported in the literature up to now.
Hartley [28] used the trifocal tensor to match lines across three
views. Schmid and Zisserman [29] proposed to first find point
correspondences on the matched lines by the known epipolar
geometry and then to average the cross-correlation scores over all
the corresponding points as the line similarity for matching. Both
of these two methods need to know the epipolar geometry in
advance. Lourakis et al. [30] used two lines and two points to
construct a projective invariant for matching planar surfaces with
lines and points. But their method can hardly be extended to non-
planar scenes and has high computational complexity. Bay et al. [31]
proposed to match lines based on their appearance and topological
layout. Firstly line segments are matched based on the color
histograms of their neighboring profiles, then the topological
relations among all line segments are used to remove false
matches as well as to find more matches. Since the matching
propagation is an iterative process, this method is computation-
ally intensive. Meanwhile, the initial matches are obtained based
on color histograms which make it less robust to illumination and
other image changes. Recently, Wang et al. [10] proposed a
descriptor named MSLD for line matching. It is analogous to SIFT
by histogramming gradient orientations in pixel support region of
each pixel on a line. Then the MSLD descriptor is constructed by
the mean and standard deviation of these histograms. It only
relies on the neighboring appearance of the line segment. How-
ever, it is less distinctive than local descriptors used for point
matching since line segments usually lack of rich textures in their
local neighborhoods. Moreover, their method cannot handle scale
changes. Wang et al. [9] used Line Signatures to match lines
between wide-baseline images. They used angles and length
ratios between line segments, which are computed by the end-
points of the line segments, to describe a pair of line segments,
and then do the line matching on the basis of pairs of line
segments. Since the descriptor of a pair of line segments relies
on the endpoints of the line segments, their method may fail
when a large error is presented in the location of the endpoints.
3. Preliminaries and problem formulation

In this paper, image points are denoted as Xi and lines are
denoted as pi in the reference image. In the query image, points
are denoted as Y i and lines are denoted as qi. Lines refer to
straight line segments and are represented as 3d vectors.1 Xi and
Y i are represented as 2d vectors.

Given two sets of line segments extracted from a reference
image and a query image, L1 ¼ fp1,p2, . . . ,pMg and L2 ¼ fq1,q2, . . . ,
qNg, and additionally a set of tentative matched points which is
susceptible to mismatches (for example matched points obtained
by SIFT matching), denoted as C¼ fðXi,Y iÞ,i¼ 1,2, . . . ,Kg. The goal
of this work is to match lines in L1 and L2 through matched
points in C. The resulting set of matched lines is represented as

LM¼ fðpgðiÞ,qf ðiÞÞ,i¼ 1,2, . . . ,NLg

where ðpgðiÞ,qf ðiÞÞ represents a pair of matched lines and
gðiÞA ½1,M�,f ðiÞA ½1,N�. Since local descriptors of keypoints usually
contain orientation information to achieve rotation invariance, a
coarse relationship of rotation between the reference and the
query images can be estimated from C. Such a not-so-accurate
rotation relationship can be used to improve the line matching
speed as we will describe in Section 6.
4. Line–point invariants

Here we introduce two kinds of planar line–point invariants
(affine invariant and projective invariant) which are used in our
line matching methods. The affine invariant is calculated by one
line and two points while the projective invariant needs one line
and four points to calculate.

4.1. The affine invariant

As shown in Fig. 1(a), assume that space points Q1, Q2 and line
L all lie on plane P, and Q1, Q2 are not on L. X1, X2, p and Y1, Y2, q



Fig. 1. Illustration of line–point invariants. (a) The affine invariant; (b) the projective invariant.
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are their images taken by two cameras respectively. Since Q1 and
Q2 are coplanar in 3D space, Y i and Xi are related by a homo-
graphy induced by the plane P. Now considering a specific
situation, the homography is an affine transformation which is
approximately held when Q1, Q2 lie in the neighborhood of L. Such
an affine transformation is denoted as Ha. In the image coordi-
nates, we represent X1,X2,Y1,Y2 in homogeneous coordinates as
~X 1, ~X 2, ~Y 1, ~Y 2. By affine transformation, they satisfy

q¼ sH�T
a p ð1Þ

~Y i ¼Ha
~X i, i¼ 1,2 ð2Þ

where s is a scale factor determined by Ha and p. We denote

DðX1,X2,pÞ ¼
pT ~X 1

pT ~X 2

ð3Þ

DðY1,Y2,qÞ ¼
qT ~Y 1

qT ~Y 2

ð4Þ

Substituting Eqs. (1) and (2) into Eq. (4), then the following
equality holds

DðX1,X2,pÞ ¼DðY1,Y2,qÞ ð5Þ

Eq. (5) means that the ratio of distances from two points to a line
is affine invariant. That is to say, DðX1,X2,pÞ is an affine invariant.
For the presentation convenience, ðX2,Y2Þ is named as base pair of
points and ðX1,Y1Þ is named as reference pair of points.

4.2. The projective invariant

In this subsection, we discuss a more general situation, i.e., the
transformation is a projective homography denoted as H. In this
case, Eq. (2) becomes

~Y i ¼ kiH ~X i, i¼ 1,2 ð6Þ

where ki is an unknown scale factor. Thus Eq. (5) becomes

k1

k2
DðX1,X2,pÞ ¼DðY1,Y2,qÞ ð7Þ

Eq. (7) indicates that if the transformation is a projective one,
DðX1,X2,pÞ is not invariant any more. DðX1,X2,pÞ and DðY1,Y2,qÞ
differ in a factor which is determined by X1,X2 and H. In order to
eliminate this factor, we bring in two points Q3 and Q4 in P which
are neither on L nor on the line determined by Q1 and Q2, as
shown in Fig. 1(b). X3,X4 and Y3,Y4 are their projected image
points in the two cameras respectively. Their homogeneous
coordinates are ~X 3, ~X 4, ~Y 3, ~Y 4. Then Q3, Q4 are used to constitute
an auxiliary space line on the plane P and its projection on the
two cameras are r¼ ð ~X 3 �

~X 4Þ and s¼ ð ~Y 3 �
~Y 4Þ respectively. We
denote

ProjðX1,X2,X3,X4,pÞ ¼
pT ~X 1

pT ~X 2

:
rT ~X 1

rT ~X 2

ð8Þ

ProjðY1,Y2,Y3,Y4,qÞ ¼
qT ~Y 1

qT ~Y 2

:
sT ~Y 1

sT ~Y 2

ð9Þ

Since r and s are corresponding lines in the two views, they
satisfy

s¼ kH�T r ð10Þ

where k is an unknown scale factor. Therefore, we have

sT ~Y 1

sT ~Y 2

¼
k1

k2

rT ~X 1

rT ~X 2

ð11Þ

Combining Eqs. (7)–(9) and (11), we have

ProjðX1,X2,X3,X4,pÞ ¼ ProjðY1,Y2,Y3,Y4,qÞ ð12Þ

It is meant that ProjðX1,X2,X3,X4,pÞ is a projective invariant.
Note that such a planar projective invariant has been used in

[30] in the form of two lines and two points. In this paper we
derive it in the form of one line and four points. Such a
modification has several advantages:
(1)
 It makes the invariant applicable for line matching in general
cases, not merely to planar scenes, because the corresponding
space line and space points of one line and four points (these
points are obtained in the neighborhood of the line) are more
likely to be coplanar compared with those of two lines and
two points.
(2)
 It requires combinatorial search for the other corresponding
lines when the invariant associated with ‘two linesþtwo
points’ is directly used for line matching since the tentatively
matched lines are not available. In contrast, our proposed ‘one
lineþfour points’ invariant can be directly used for line
matching without complicated combinatorial optimization,
since the results of point matching are used as the tentatively
matched points. Therefore, with the ‘one lineþfour points’
invariant, all we need is to design a line similarity measure
that is robust to mismatches in the matched points. We will
describe our similarity measures in Section 5.
4.3. Discussion

For either the affine invariant or the projective invariant, all
the points and the line are required to be coplanar. To this end, a
support region for the line is defined to find possible coplanar
points in Section 5. In order to use the affine invariant for line
matching, at least two correctly matched points are required to be
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coplanar with the matched lines while at least four correctly
matched points are required for the projective invariant. Since
there are mismatches in the matched points, say the correct rate
is pr, then pr can be regarded as the probability that a pair of
matched points is correct. If we further assume that for a pair of
matched lines, there exist n pairs of matched points in their
support regions, then the probability that at least two pairs of
matched points are correct is

P2 ¼ 1�ð1�prÞ
n
�C1

n ð1�prÞ
n�1pr ð13Þ

while the probability that at least four pairs of matched points are
correct is

P4 ¼P2�C2
n ð1�prÞ

n�2p2
r�C3

n ð1�prÞ
n�3p3

r ð14Þ

Obviously, P24P4, which means that it is more likely to
construct reliable affine invariants than projective invariants for
line matching. As a result, a line matching method based on the
affine invariant could find more line matches.
5. Similarity measure of two image lines based on line–point
invariants

In order to match two lines pm and qn by the line–point
invariants proposed in Section 4, the first thing we need to do is to
find out matched points from set C so that their corresponding
space points may be coplanar with the corresponding space line
of pm and qn. Note that line segments detected in images seldom
correspond to isolated 3D lines in real world, they usually
correspond to edges of surfaces. Therefore, in the neighborhood
of at least one side of an image line, some coplanar points with
the line could be obtained. The side of an image line is defined by
its gradient, which is defined as the average gradient of the
constituent points of the line. More specifically, if a point is
located on the region directed by the gradient of a line, it is said to
be on the right side of this line, otherwise it is on the left side. For
each side of a line, a support region is defined in order to find
matched points that may be coplanar with the line. The support
region of a line is defined according to its length in order to be
scale invariant. If the distance from a point X to a line l is smaller
than a� lengthðlÞ and the distance from X to the perpendicular
bisector of l is smaller than b� lengthðlÞ, X is said to be in the
support region of l. lengthðlÞ is the length of l, a and b are two
ratios defining the shape of the support region and their values
are set by experiments (see Table 1). Due to the inevitable
localization errors of line endpoints, the support regions of two
corresponding lines may not correspond to each other exactly.
However, our method needs only part of them to be correspon-
dences since we just need to find matched points in these support
regions. The correctly matched points must be located on the
corresponding subregions. We denote

Sright
l ¼ fX : XAregionðlÞ & XArightðlÞg

Sleft
l ¼ fX : XAregionðlÞ & XA leftðlÞg

as the sets of points in the right and left support regions of l
respectively, where regionðlÞ denotes the support region of l while
rightðlÞ and leftðlÞ denote right and left side of l respectively.
Table 1

The parameter settings of a and b in different methods.

Method I Method II Method III Method IV

a 2.0 2.5 2.0 2.0

b 0.5 0.5 0.7 0.7
Then, we denote the set of matched points located in the right
support region of pm and qn as

Grightðpm,qnÞ ¼ fðXkASright
pm

,YkASright
qn
Þ,k¼ 1,2, . . . ,Nrg

where Xk and Yk are a pair of matched points while Nr is the total
number of matched points in the support region. Similarly

Gleft
ðpm,qnÞ ¼ fðXkASleft

pm
,YkASleft

qn
Þ,k¼ 1,2, . . . ,Nlg

represents the set of matched points that are located in the left
support region. For the notation convenience, we denote

gk ¼ ðXk,YkÞ as a pair of matched points. Given Grightðpm,qnÞ or

Gleft
ðpm,qnÞ, two kinds of line similarity measures of pm and qn are

defined in the following subsections. For a pair of lines ðpm,qnÞ, we

first calculate two similarities based on Gright
ðpm,qnÞ and

Gleft
ðpm,qnÞ respectively, then the larger one is served as the final

similarity of pm and qn.

5.1. The similarity measure based on maximum

Take the right side as an example. Since not all the matched

points in Gright
ðpm,qnÞ are correct ones, we first calculate all

possible similarities with the matched points in Gright
ðpm,qnÞ, then

the maximum is taken as the similarity of pm and qn. The
underlying principle is that if there exist several correctly

matched points in Gright
ðpm,qnÞ when pm and qn are correctly

matched lines, the similarity calculated by these correctly
matched points tends to 1, which is the largest possible similarity
value of a pair of lines. Specifically, the affine invariant needs at
least two pairs of correctly matched points while the projective
invariant needs at least four pairs. If the affine invariant is used

SimAright
ðpm,qnÞ ¼ max

gi ,gj AGright & ia j
fAffSimðgi,gjÞg ð15Þ

AffSimðgi,gjÞ ¼ e�JDðXi ,Xj ,pmÞ�DðY i ,Y j ,qnÞJ ð16Þ

While if the projective invariant is used

SimAright
ðpm,qnÞ ¼ max

gi ,gj ,gk ,gl AGright & ia jaka l
fProjSimðgi,gj,gk,glÞg ð17Þ

ProjSimðgi,gj,gk,glÞ ¼ e�JProjðXi ,Xj ,Xk ,Xl ,pmÞ�ProjðY i ,Y j ,Yk ,Y l ,qnÞJ ð18Þ

Similarly, we can get SimAleft
ðpm,qnÞ and the final similarity of pm

and qn is defined as

SimAðpm,qnÞ ¼maxfSimAright
ðpm,qnÞ,SimAleft

ðpm,qnÞg ð19Þ

Note that in Eq. (18), four pairs of matched points are used to
calculate the similarity of two lines. Given four pairs of matched
points, a straightforward way to calculate the line similarity is to
compute the local homography between the two views from
these four pairs of matched points, and then calculate the
similarity of the query line and the transformed reference line
(according to the computed homography) as the line similarity.
However, this homography-based approach is rather time con-
suming as shown by our experiments (see Table 3).
5.2. The similarity measure based on maximal median

The similarity based on maximum proposed in the proceeding
subsection is a straightforward undertaking, it may be susceptible
to non-robustness. For instance, supposing that:
(1)
 p is a line in the reference image;

(2)
 qn is p’s corresponding line in the query image;

(3)
 qm is a line parallel to qn in the query image;
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(4)
 g1,g2 are two correctly matched point pairs in the support
regions of these lines, i.e.,
fg1,g2gAGðp,qmÞ & fg1,g2gAGðp,qnÞ

in which G represents either Gright or Gleft;
(5)
 DðX1,X2,pÞ �DðY1,Y2,qnÞ � 1, which means that qT
n
~Y 1 � qT

n
~Y 2.
Since qm is parallel to qn and qT
n
~Y 1 � qT

n
~Y 2, thus qT

m
~Y 1 � qT

m
~Y 2.

Therefore, DðY1,Y2,qmÞ � 1. In this case, it may result in a false
match if the maximum is taken as the similarity since both

SimAðp,qnÞ and SimAðp,qmÞ have values near 1. The similar
problem exists for the projective invariant.

In this subsection, the line similarity based on median statistic
is developed which is much more robust, as shown later by our
experiments (Section 8).

5.2.1. The similarity measure based on maximal median with the

affine invariant

Firstly, we select one pair of matched points gkAGright
l as the

base pair of points for constructing affine invariants, then each of
the remaining Nr�1 pairs of matched points is taken as the
reference pair to obtain Nr�1 corresponding affine invariants.
So, Nr�1 similarities can be calculated by

SimBright
k ðiÞ ¼ AffSimðgi,gkÞ, iA ½1,Nr� & iak ð20Þ

Then we can get the median of them as

SimBright
k ¼ median

iA ½1,Nr � & iak
fSimBright

k ðiÞg ð21Þ

Choosing the median can improve the robustness to incorrectly

matched points in Gright
l while preserving good discriminativeness.

Finally, each gkAGright
ðpm,qnÞ, k¼ 1,2, . . . ,Nr is taken as the base

pair of points to obtain Nr medians: SimBright
k , k¼ 1,2, . . . ,Nr . The

maximum of them is then taken as the similarity of pm and qn

with matched points in the right side. That is

SimBright
ðpm,qnÞ ¼ max

kA ½1,Nr �
fSimBright

k g ð22Þ

In a similar way, we can get SimBleft
ðpm,qnÞ for the left side. As we

have said before, the final similarity of pm and qn is the larger one
of these two similarities:

SimBðpm,qnÞ ¼maxfSimBright
ðpm,qnÞ,SimBleft

ðpm,qnÞg ð23Þ
2 Note that the direct use of the median of all the maximums is not a good

choice here. For instance, if there are six matched points in the support region and

four of them are correct, then there are C2
6 ¼ 15 maximums, C2

4 ¼ 6 of them have

values near 1, so the median of them, i.e., the eighth largest one, is incorrect. This

will results in incorrectly matched lines.
5.2.2. The similarity measure based on maximal median with the

projective invariant

In the case of projective invariant, two pairs of matched points

ðgi,gjÞAGright
l are firstly selected to constitute the two auxiliary

lines: r¼ ð ~X i �
~X jÞ and s¼ ð ~Y i �

~Y jÞ. Then, one pair of matched

points gk from the remaining Nr�2 pairs is fixed and so Nr�3
similarities can be obtained as

SimBright
i,j ðk,lÞ ¼ ProjSimðgk,gl,gi,gjÞ, lA ½1,Nr � & laka ia j ð24Þ

Then, we can get the median of them as

SimBright
i,j ðkÞ ¼ median

lA ½1,Nr � & laka ia j
fSimBright

i,j ðk,lÞg ð25Þ

Taking each gkAGrightðpm,qnÞ, kA ½1,Nr � & ka ia j as the fixed pair

of matched points, we can get Nr�2 medians: SimBright
i,j ðkÞ, kA

½1,Nr� & ka ia j. The maximum of these medians is taken as the
similarity of pm and qn when the auxiliary lines are constituted by
ðgi,gjÞAGright
l , denoted as

SimBright
i,j ¼ max

kA ½1,Nr � & ka ia j
fSimBright

i,j ðkÞg ð26Þ

Therefore, by taking each different combination of two pairs ðgi,gjÞ

belonging to Gright
ðpm,qnÞ to constitute the two auxiliary lines, we

can obtain C2
Nr maximums: SimBright

i,j ,i,jA ½1,Nr � & ia j. Since a line

matching method based on the projective invariant requires at
least four correctly matched points in the support regions of the

matched lines, thus there are at least C2
4 ¼ 6 such maximums

having values near 1. Consequently, the median of the top six
maximums is taken as the similarity of pm and qn, i.e., the third
largest one.2 That is

SimBright
ðpm,qnÞ ¼ Third

i,jA ½1,Nr � & ia j
fSimBright

i,j g ð27Þ

Finally, the similarity of pm and qn is defined as

SimBðpm,qnÞ ¼maxfSimBright
ðpm,qnÞ,SimBleft

ðpm,qnÞg ð28Þ

6. Fast matching

Our work uses tentatively matched points to leverage line
matching. Such a set of matched points can be easily obtained
with keypoint matching, such as SIFT. In order to be rotation
invariant, these keypoints are detected along with their orienta-
tions. Therefore, once matched points are obtained, one can use
orientations of the matched points to estimate an approximate
global rotation between the reference and the query images. Here,
we propose a fast matching strategy using such a global rotation
to speed up the matching process.

For each pair of matched points in C, an angle between the
point in the query image and its matched point in the reference
image can be calculated by their orientations. Then with K (the
number of matched points in C) angles, an angle histogram can be
obtained. The angle corresponding to the largest peak in the
histogram is taken as the global rotation between the reference
and the query images. Note that for real images taken at different
viewpoints, different matched points may have different rota-
tions, and there does not exist a global rotation between two
images in theory. Therefore, in our work the estimated global
rotation is not used as a hard constraint, but is only used to
discard those line pairs that are obviously impossible matches.
Suppose the estimated global rotation is y. Given a pair of lines to
be matched, if 9y0�y94ty in which y0 is the orientation difference
between the two lines, this line pair is simply considered to be a
non-match without further calculating their similarity by Eq. (19)
or (23) or (28). This can in practice filter out most of the non-
matches, thus speeding up the matching process substantially.
Here ty is a pre-set threshold to decide whether the angle
between the two lines violates y too much. The lower the
threshold is, the faster the matching process will be, but the
number of line matches will be reduced if it is set too low. If it is
set too high, then it will have no effect on speeding up. We found
in our experiments that ty setting is not a delicate matter and our
line matching methods perform stably with ty in a wide range. In
all experiments in Section 8, ty is set to 201.



Fig. 2. Some image pairs from the dataset used for c

3 For image pairs shown in Fig. 3, we tested a¼ f1:0,1:5,2:0,2:5g and

b¼ f0:4,0:5,0:6,0:7g for the four line matching methods. a and b are then set to

those values that lead to the best matching results.
4 http://www.robots.ox.ac.uk/�vgg/data.
5 http://lear.inrialpes.fr/people/mikolajczyk/Database/index.html.
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7. The algorithm

Given a reference image and a query image, firstly, two sets
of line segments L1 ¼ fp1,p2, . . . ,pMg and L2 ¼ fq1,q2, . . . ,qNg

are extracted. Secondly, a set of matched points C¼
fðXi,Y iÞ,i¼ 1,2, . . . ,Kg is obtained by a keypoint matching method.
In the experiments of this paper, we used DAISY [17] to describe
keypoints and then matched them by the nearest neighbor
distance ratio (NNDR) [12]. The threshold of NNDR is set to 0.8.
Then the global rotation y is estimated as described in Section 6.
Along with the threshold ty which is used for fast matching, all of
these are served as input to the line matching algorithm outlined
in Algorithm 1. In Algorithm 1, line matching is conducted under
the uniqueness constraint. Here, the uniqueness of matching is
meant that if pm and qn are a pair of matched lines and
SimLðpm,qnÞ is their similarity, then there is no other line in L2

such that its similarity to pm is larger than SimLðpm,qnÞ and there
is no other line in L1 such that its similarity to qn is larger than
SimLðpm,qnÞ either. It allows many-to-one matches which happen
when a line in one image is split into multi-segments.

Algorithm 1. LineMatching

Input:
line set from reference image L1, line set from query image

L2, corresponding point set C, the estimated global rotation

between the two images y, threshold for rotation ty.
Output:

A set of corresponding lines LM.

1: Initialization: LM¼ |.
2: for each piAL1 do
3: for each qjAL2 do

4: if 9angleðpi,qjÞ�y94ty then

5: SimLðpi,qjÞ ¼ 0

6: else
7: Calculate SimLðpi,qjÞ according to Eq. (19) or (23) or

(28).
8: end if
9: end for
10: Find the line in L2 with the largest similarity to pi

according to SimLðpi,qjÞ,jA ½1,N�. Such a line is

represented as qk.

11: if SimLðpi,qkÞZ0:95 then
12: Check whether pi is the line with the largest similarity

to qk in L1

13: if TRUE then
14: LM¼LM

S
fðpi,qkÞg

15: end if
16: end if
17: end for
18: Output: LM
8. Experimental results
Line segments extraction: In our experiments, line segments are
extracted based on Canny [32] edge detector similar to [31].
Firstly, edges are detected from images by Canny detector. Then
they are split at points with high curvature. Finally for each set of
connected edge points, a line is fitted by the least-squares
method. In our experiments, the high and low thresholds of
Canny detector are set to 0.2 and 0.1 respectively. The standard
deviation of the Gaussian filter in Canny detector is set to 1.0. In
order to reduce the influence of noise and errors in line segments
extraction, only the line segments whose length are larger than 20
pixels are used for line matching.

8.1. Line matching results

In this paper, two line–point invariants and two kinds of
similarity measures are proposed. Therefore, four different com-
binations could be formed, and each could act as a method for line
matching. They are as follows:

Method I: The affine invariantþthe similarity measure based
on maximum (Section 5.1).
Method II: The affine invariantþthe similarity measure based
on maximal median (Section 5.2.1).
Method III: The projective invariantþthe similarity measure
based on maximum (Section 5.1).
Method IV: The projective invariantþthe similarity measure
based on maximal median (Section 5.2.2).

In these methods, parameters a and b which define the support
region of a line are set by experiments3 as shown in Table 1.

Firstly, we conducted experiments to compare the perfor-
mances of these four methods. To this end, 30 pairs of images
are selected for experiments, which contain both planar and non-
planar scene images, including various image transformations:
viewpoint changes, scale changes, illumination changes, image
rotation and occlusion. In order to make the evaluation repre-
sentative, some of these images are from images used in [10], and
some are from the publicly available dataset on the Internet4,5

while others are captured by ourselves. Fig. 2 shows some image
pairs in the database. For each pair of images, keypoints are
described by DAISY and matched with the NNDR to obtain the set
of tentatively matched points used for line matching. The thresh-
old of NNDR is set to 0.8 as described in Section 7. Then we

omparison of different line matching methods.

http://www.robots.ox.ac.uk/~vgg/data
http://www.robots.ox.ac.uk/~vgg/data
http://lear.inrialpes.fr/people/mikolajczyk/Database/index.html
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conducted line matching according to Algorithm 1. We have
recorded the matching results for each image pair and averaged
them as shown in Table 2. In all experiments of this paper,
whether a line match is correct or not is assessed one by one
manually.

From Table 2 we can see that:
(1)
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By fixing the invariant (the affine invariant or the projective
invariant), the line matching methods using the maximum-
based similarity measure (i.e., Method I and Method III) are
not as good as the ones using the maximal median-based
similarity measure (i.e., Method II and Method IV). This
indicates that the maximum-based similarity measure is less
robust, which is consistent with the analysis in Section 5.1.
e 2
parison of different line matching methods.

thod Total matches Correct matches Matching accuracy (%)

62.7 55.8 89.0

65.1 61.9 95.1

52.5 46.2 88.0

61.1 57.0 93.3

Fig. 3. Images with vario

e 3
matching results (total matches, correct matches) of image pairs in Fig. 3.

(a) (b) (c)

thod II (92,92) (15,14) (148,148)

e (s) 1.18 0.34 0.82

thod IV (91,82) (16,14) (152,149)

e (s) 73.60 0.40 110.08

mo (92,84) (12,10) (147,147)

e (s) 2699 2.4 3531

Fig. 4. Scale change. Extracted lines: 182,194
(2)
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(
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(
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By fixing the similarity measure (the maximum based or the
maximal median based), the line matching methods based on
the affine invariant are superior to the ones based on the
projective invariant, i.e., Method I is better than Method III
and Method II is better than Method IV. This is consistent
with the analysis in Section 4.3.
Since the similarity measure based on maximal median is much
more robust than the similarity measure based on maximum, in
the following experiments, only the line matching methods using
the maximal median-based similarity measure are evaluated, i.e.,
Method II and Method IV.

Then experiments are conducted on image pairs with specific
transformations. Seven pairs of images are used as shown in
Fig. 3, including five types of transformations: scale, rotation,
illumination, occlusion and viewpoint changes. The matching
results are shown in Table 3, and Figs. 4–10 show the matched
lines with Method II, where matched lines are shown with the
same color, with labels at their middle points. The incorrect
matches are shown in blue. For better viewing, please see original
color pdf file and zoom in to check the line matches.

It can be seen from Table 3 that both Method II and Method IV
perform fairly well to all kinds of the tested image transforma-
tions and Method II performs slightly better than Method IV.
ansformations.

d) (e) (f) (g)

182,177) (97,97) (44,44) (241,239)

.18 0.55 0.27 3.19

183,177) (99,98) (43,43) (239,236)

24.14 34.54 77.51 188.69

183,171) (103,96) (40,40) (243,241)

911 1468 3650 6432

l matches: 92. Correct matches: 92.



Fig. 5. Large-scale changeþrotation. Extracted lines: 380,100. Total matches: 15. Correct matches: 14. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Fig. 6. Rotation. Extracted lines: 209,179. Total matches: 148. Correct matches: 148.

Fig. 7. Rotation. Extracted lines: 385,241. Total matches: 182. Correct matches: 177. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 8. Illumination change. Extracted lines: 211,131. Total matches: 97. Correct matches: 97.
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Such a good performance may largely attributes to our introduced
line–point invariants which are derived from one line and several
neighboring points. Since such line–point invariants are good
descriptors of the local geometric configuration between line and
points, our proposed methods are robust as well as distinctive. For
image pair in Fig. 3(b), the large-scale change makes a low
repeatability of the extracted line segments in these two images.
Meanwhile, the obtained point matching results that are used for
line matching are not good due to large-scale change in Fig. 3(b),
so there are many matched lines that do not have enough



Fig. 9. Partially occlusion. Extracted lines: 159,95. Total matches: 44. Correct matches: 44.

Fig. 10. Viewpoint change. Extracted lines: 347,292. Total matches: 241. Correct matches: 239. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Table 4
Line matching results (total matches, correct matches, matching accuracy) of our

methods and LS. The line segment extracting method of LS is used for extracting

line segments.

Image pair Method II Method IV LS

(a) Extracted lines: 3000, 3000

(307,280,91.2%) (257,232,90.3%) (154,137,89.0%)

(b) Extracted lines: 3000, 3000

(150,120,80.0%) (114,72,63.2%) (31,24,77.4%)

(c) Extracted lines: 1929, 1861

(285,275,96.5%) (245,239,97.6%) (245,234,95.5%)

(d) Extracted lines: 3000, 2970

(478,449,93.9%) (424,402,94.8%) (227,207,91.2%)

(e) Extracted lines: 3000, 2358

(372,352,94.6%) (329,307,93.3%) (256,243,94.9%)

(f) Extracted lines: 1406, 676

(69,61,88.4%) (68,62,91.2%) (36,36,100%)

(g) Extracted lines: 3000, 3000

(553,528,95.5%) (506,485,95.8%) (273,260,95.2%)
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correctly matched points in their support regions. Thus cannot
obtaining correctly line–point invariants for these matched lines.
These might be the reasons why the obtained line matches of
Fig. 3(b) are not as many as that of other image pairs in Fig. 3.
Note that the line segments can be matched correctly even their
endpoints are very different such as matches 3, 35, etc., in Fig. 4
and most of the matches in Fig. 9 (the occlusion makes the
endpoints of corresponding line segments do not correspond).
This is because Method II does not critically rely on endpoints,
thus it can successfully cope with the incorrect localization
problem of endpoints. Method IV has a similar performance. For
comparison, Table 3 also gives the matching results by the
homography-based method (see the last paragraph in Section
5.1). Although it can also obtain satisfactory results, its computa-
tional load is too high.

8.2. Comparison with the state-of-the-art methods

Here, we conducted experiments to compare our line match-
ing methods with two state-of-the-art methods : Line Signature
(LS) [9] and MSLD [10]. The implementations of them are
provided by their authors. Both of them have their own methods
for line segments extraction as described in [9,10]. Since matching
results may vary with different line segment extracting methods
even for the same test images, we compare our methods to them
with the line segments extracted by their methods respectively,
i.e., the line segments extracted by LS are used for comparing our
methods with LS while the line segments extracted by MSLD are
used for comparing our methods with MSLD.

Comparison with LS: Table 4 shows the matching results of our
methods and LS for image pairs in Fig. 3. For each image pair in
the table, the top row shows the number of extracted line
segments by LS while the bottom row gives the line matching
results (total matches, correct matches, matching accuracy). It can
be seen from Table 4 that LS tends to extract a large number of
line segments owing to its multi-scale scheme. Except for image
pair (f), Method II and Method IV not only have more matched
lines than LS, but also have higher accuracy. Although Method II
and Method IV are less accurate than LS for image pair (f), they
have more correct matches, i.e., 61 correct matches of Method II
and 62 correct matches of Method IV compared with 36 correct
matches of LS.

Comparison with MSLD: The matching results of image pairs in
Fig. 3 by Method II, Method IV and MSLD are presented in Table 5.
Note that the results of MSLD shown here are slightly different
from [10]. This is due to the fact that different extracted line
segments are used for line matching owing to different parameter
settings. Although we cannot extract the same line segments as in
[10], all the evaluated methods are tested with the same line
segments. In addition, we also tried several other parameters to
extract line segments for matching. The ranking of the evaluated
methods does not change. Therefore, such a comparison is mean-
ingful and representative. It can be seen from Table 5 that MSLD
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has bad matching results for image pairs (a) and (b). This is due to
its inability to deal with scale changes. While for other image
pairs, MSLD can achieve high accuracy. Compared with MSLD,
Method II and Method IV not only obtain good results for image
pairs (a) and (b), but also have better performance than MSLD for
the other image pairs. It demonstrates that, besides the ability to
deal with scale changes, our line matching methods also outper-
form MSLD under other image transformations.
Table 5
Line matching results (total matches, correct matches, matching accuracy) of our

methods and MSLD. The line segment extracting method of MSLD is used for

extracting line segments.

Image pair Method II Method IV MSLD

(a) Extracted lines: 170, 171

(68,68,100%) (68,63,92.6%) (30,14,46.7%)

(b) Extracted lines: 305, 70

(11,9,81.8%) (11,9,81.8%) (22,0,0%)

(c) Extracted lines: 165, 140

(120,120,100%) (115,115,100%) (98,94,95.9%)

(d) Extracted lines: 279, 162

(109,107,98.2%) (100,97,97%) (91,81,89.0%)

(e) Extracted lines: 161, 86

(69,67,97.1%) (67,65,97%) (57,55,96.5%)

(f) Extracted lines: 107, 71

(40,40,100%) (38,38,100%) (31,31,100.0%)

(g) Extracted lines: 259, 221

(178,176,98.8%) (178,174,97.8%) (155,151,97.4%)

Table 6
Line matching (Method II) results with different sets of matched points. For each image

shows line matching results with these matched points. See text for detail.

Threshold of NNDR 0.9 0.85

Image pair (a) (1388,67.0%) (1114,75

(93,92,98.9%) (92,91,98
Image pair (b) (717,13.1%) (326,31.9

(18,16,88.9%) (16,15,93
Image pair (c) (849,70.9%) (712,81.9

(150,149,99.3%) (149,148

Image pair (d) (2316,73.3%) (1981,76

(184,173,93.5%) (178,171

Image pair (e) (997,68.3%) (852,77.9

(98,98,100%) (97,97,10
Image pair (f) (266,25.6%) (163,46.6

(46,45,97.8%) (46,46,10
Image pair (g) (1448,77.6%) (1315,83

(240,236,98.3%) (240,237

Table 7
Line matching (Method IV) results with different sets of matched points. For each imag

shows line matching results with these matched points. See text for detail.

Threshold of NNDR 0.9 0.85

Image pair (a) (1388,67.0%) (1114,75

(94,85,90.4%) (92,84,91
Image pair (b) (717,13.1%) (326,31.9

(22,15,68.2%) (18,16,88
Image pair (c) (849,70.9%) (712,81.9

(152,149,98.0%) (153,150

Image pair (d) (2316,73.3%) (1981,76

(178,168,94.4%) (182,176

Image pair (e) (997,68.3%) (852,77.9

(102,100,98.0%) (100,98,9
Image pair (f) (266,25.6%) (163,46.6

(44,44,100%) (43,43,10
Image pair (g) (1448,77.6%) (1315,83

(237,234,98.7%) (239,236
8.3. Robustness to mismatches in matched points

Since our line matching methods use matched points to boost
line matching, in this subsection we performed experiments to
show that our methods are not sensitive to mismatches in the set
of matched points. As we have said in Section 7, in the experi-
ments of this paper, the matched points used for line matching
are obtained by firstly describing points with DAISY and then
matching them by NNDR. By changing the threshold of NNDR,
different sets of matched points that have different matching
accuracy and total matches can be obtained. For each image pair
in Fig. 3, we varied the threshold of NNDR from 0.9 to 0.7 and
then conducted line matching with the obtained matched points.
Line matching results are reported in Tables 6 and 7, in which the
top row of each image pair presents the obtained sets of matched
points (total matches, matching accuracy) used for line matching
while the bottom row shows our line matching results (total
matches, correct matches, matching accuracy). Table 6 gives the
matching results of Method II and Table 7 gives the matching
results of Method IV. RANSAC [33] is used to find inliers among
matched points, and the matching accuracy is computed as

accuracy¼
number of inliers by RANSAC

total number of matched points
ð29Þ

Note that here RANSAC is only used to compute the accuracy of
the matched points, it is the whole set of matched points
including mismatches used for line matching.
pair, the top row presents different sets of matched points while the bottom row

0.8 0.7

.7%) (962,82.2%) (794,89.4%)

.9%) (92,92,100%) (91,91,100%)

%) (183,48.6%) (94,70.2%)

.8%) (15,14,93.3%) (13,12,92.3%)

%) (633,88.0%) (546,93.0%)

,99.3%) (148,148,100%) (147,147,100%)

.8%) (1787,85.3%) (1469,89.1%)

,96.1%) (182,177,97.3%) (181,177,97.8%)

%) (739,85.5%) (622,93.1%)

0%) (97,97,100%) (97,97,100%)

%) (122,65.6%) (84,75%)

0%) (44,44,100%) (44,44,100%)

.2%) (1225,87.8%) (1110,93.3%)

,98.8%) (241,239,99.2%) (243,240,98.8%)

e pair, the top row presents different sets of matched points while the bottom row

0.8 0.7

.7%) (962,82.2%) (794,89.4%)

.3%) (91,82,90.1%) (89,81,91.0%)

%) (183,48.6%) (94,70.2%)

.9%) (16,14,87.5%) (10,5,50.0%)

%) (633,88.0%) (546,93.0%)

,98.0%) (152,149,98.0%) (148,145,98.0%)

.8%) (1787,85.3%) (1469,89.1%)

,96.7%) (183,177,96.7%) (180,176,97.8%)

%) (739,85.5%) (622,93.1%)

8.0%) (99,98,99.0%) (100,99,99.0%)

%) (122,65.6%) (84,75%)

0%) (43,43,100%) (41,41,100%)

.2%) (1225,87.8%) (1110,93.3%)

,98.7%) (239,236,98.7%) (240,238,99.2%)



Table 8
Comparison of the fast matching and the normal matching.

Image pair (a) (b) (c) (d) (e) (f) (g) Ave.

Method II (affine invariantþmaximal median-based similarity measure)

Time (s) Fast 1.18 0.34 0.82 7.18 0.55 0.27 3.19 1.93
Normal 3.30 0.62 2.50 15.82 2.02 0.60 12.30 5.31

Total matches Fast 92 15 148 182 97 44 241 –

Normal 92 15 148 181 98 44 241 –

Correct matches Fast 92 14 148 177 97 44 239 –

Normal 92 14 148 175 97 44 238 –

Method IV (projective invariantþmaximal median-based similarity measure)

Time (s) Fast 73.60 0.40 110.08 224.14 34.54 77.51 188.69 101.28
Normal 133.41 0.67 194.96 384.22 66.62 203.75 589.93 224.79

Total matches Fast 91 16 152 183 99 43 239 –

Normal 89 17 149 183 98 44 237 –

Correct matches Fast 82 14 149 177 98 43 236 –

Normal 81 14 149 176 96 43 235 –
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It can be found that although the total matched points and
matching accuracy are varied under different NNDR thresholds
for a given image pair, both the total matched lines and matching
accuracy of our line matching results do not change too much as
shown in Tables 6 and 7 except for image pair (b). Since the
projective invariant requires at least four correctly matched
points in the support regions of matched lines to construct, it is
harder to satisfy than the affine invariant which only requires at
least two correctly matched points to construct, thus Method II is
slightly better than Method IV. For image pair (b), the large-scale
change makes it a challenging one for point matching, where the
number of the matched points is small and the matching accuracy
is low. Consequently, many matched lines do not have enough
correctly matched points in their support regions, and it is more
pronounced for the projective invariant-based method, i.e.,
Method IV. Therefore, as shown in Table 7, Method IV does not
work well when the point matching accuracy is too low (NNDR
threshold is 0.9) or the number of matched points is too small
(NNDR threshold is 0.7). It works well in other cases. To sum up,
although our proposed methods use matched points for line
matching, they are rather robust to mismatches and can achieve
very good performance even when the percentage of point
matching outlier is as high as 50%.

8.4. The effectiveness of fast matching

In order to validate the effectiveness of the fast matching
strategy proposed in Section 6, we performed experiments to
compare the running time on matching lines with or without the
fast matching strategy. Normal matching (without the fast
matching strategy) needs to calculate all the similarities between
two lines, while fast matching only calculates some of them, thus
speeding up the matching process. For image pairs in Fig. 3, we
recorded running time for line matching, with the fast matching
strategy and without it respectively, denoted as Fast and Normal

in Table 8. Besides running time, line matching results are listed
in Table 8 too.

It can be seen from Table 8 that with the fast matching
strategy, the running time of Method II for line matching is about
three times faster than that with normal matching strategy, and
the fast matching strategy contributes to two times of speed-ups
when applied to Method IV. The running time differs with image
pairs is due to different numbers of extracted line segments and
different numbers of matched points. When using the projective
invariant for line matching, it needs to search for all the combina-
tions of four matched points in the support regions of matched
lines while the affine invariant-based method only needs to
search for the combinations of two matched points, so the
computational complexity of Method IV is much higher than
Method II, as indicated in Table 8. What is more, it is worth noting
that the proposed fast matching strategy also reduces the search-
ing space of line matching, thus the line matching method with
the fast matching strategy performs slightly better than that
without the fast matching strategy as shown in Table 8.
9. Conclusion

In this paper, we have proposed line matching methods based
on a set of matched points susceptible to a significant ratio of
mismatches using two kinds of line–point invariants, i.e., an affine
invariant derived from one line and two points and a projective
invariant derived from one line and four points, which encode
local geometric information between a line and its neighboring
points. In order to deal with the inevitable mismatches in the set
of matched points, the maximum-based and the maximal med-
ian-based similarity measures are proposed to calculate line
similarity. Since the affine invariant requires less points to
construct than the projective invariant, it has a higher probability
to encode correct local geometric information of matched lines,
thus the affine invariant-based method is generally better than
the projective invariant-based method. On the other hand, com-
pared with the maximum-based similarity, the maximal median-
based similarity is more robust to outliers in the matched points
used for line matching, so the line matching method using the
maximal median-based similarity measure is better than that
using the maximum-based similarity measure. Extensive experi-
ments under various image transformations have validated the
effectiveness of our proposed line matching methods as well as
their superiorities to the state-of-the-art methods.
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