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Abstract The need to increase the robustness of a real-time monocular SLAM system raises the important

problem of relocalization; namely, how to automatically recover a SLAM system after tracking failures. We

address this problem by proposing a real-time relocalization algorithm based on a hierarchical bipartite graph

model. When the SLAM system is lost, we use the latter model to find sufficient correspondences between the

detected image and stored map features, thus achieving efficient, real-time relocalization. The model accounts

for both temporal and spatial constraints. Experimental results on both synthetic and real data support the

effectiveness of the proposed algorithm.
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1 Introduction

Recently, there has been a growing interest in the problem of real-time localization and mapping using

only a single camera, known as monocular SLAM in the field of computer vision [1–6]. Davison et

al. [1] first demonstrated real-time monocular SLAM implementation, employing the extended Kalman

filter (EKF) to estimate the camera pose and build a sparse map of point features. Eade et al. [2] used

the FastSLAM algorithm [7] to perform recursive estimation with a Rao-Blackwellized particle filter.

Clemente et al. [3] proposed a monocular SLAM system to build outdoor, closed-loop maps, based on

the Hierarchical Map approach [8]. Klein et al. [4] presented two methods to improve the agility of a

keyframe-based SLAM system, consisting of two separate threads, one for tracking, and the other for

creating and expanding the map from a set of keyframes.

One of the main problems in most existing monocular SLAM implementations is a lack of robustness

for use outside laboratory conditions. In particular, motion blur and occlusion make it difficult to track

features reliably, and may cause tracking to fail and corrupt the estimated map.

There are several proposed solutions for automatic recovery of a SLAM system from tracking failures.

For instance, Williams et al. [9] present a relocalization algorithm for an EKF-based monocular SLAM

system, using correlation to find the candidate feature matches, and using RANSAC to recover the
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camera pose from tracking failures. Unfortunately, these features are view-dependent, and it is difficult

to use exhaustive correlation for obtaining correct feature correspondences. Furthermore, the update rate

becomes slow when the number of the detected features increases. Based on the relocalization algorithm

[9], an improved algorithm using a randomized tree classifier is proposed [10], enabling on-line feature

learning without prior training. Although the latter system matches features more rapidly and accurately

during relocalization, some computational costs have to be sacrificed during normal tracking. Chekhlov

et al. [11] propose an appearance indexing method for SLAM relocalization using low order Haar wavelet

coefficients. Eade et al. [12] extend the graph-based monocular system [13], and present a unified method

for automatic relocalization from tracking failures and closing loops.

In this paper, we propose a hierarchical bipartite graph model (HBGM) for real-time SLAM relocal-

ization. When the SLAM system fails to track features, we describe the similarities between the detected

image and map features with a weighted bipartite graph in the first layer of the HBGM: this decomposes

into a set of the detected features in the current frame and a set of the stored features in the map. We

identify the weight of each edge, which describes similarities between the spatial-temporal neighborhoods

of the two vertices of an edge, using an associated bipartite subgraph in the constructed second layer of

the HBGM. We recover the pose of the lost camera in real time with a set of compatible matches by

calculating the maximum weight maximum cardinality matching of the HBGM.

We organize the remainder of this paper as follows. Section 2 provides an overview of the EKF-

based visual SLAM system. Section 3 presents the proposed relocalization algorithm. Section 4 reports

experimental results in a real environment, and concluding remarks follow in Section 5.

2 EKF-based monocular SLAM implementation

Our proposed automatic relocalization algorithm is implemented as an extensive module to Davison’s

“SceneLib” EKF-based monocular SLAM system [1], and is applicable to other vision-based SLAM

systems. Here, we give a brief review of the EKF-based monocular SLAM system and motivate the need

for a relocalization module. Thereafter, we present details of the algorithm.

The goal of a monocular SLAM system is to simultaneously estimate unknown environmental structure

and compute the camera pose based on observations in the captured video. Here, like [1,9], we define

the camera’s state vector xv by a 3D position vector r, orientation quaternion q, velocity vector v, and

angular velocity vector ω:

xv = (r, q,v,ω)T. (1)

Scene structure is defined by a map of N features (f1, . . . , fi, . . . , fN ), assumed to be 3D points in the

scene, i.e.

fi = (xi, yi, zi)
T, i = 1, 2, . . . , N, (2)

where xi, yi, zi denote the world frame coordinates of the feature fi. Hence, we represent the system

state vector x as a 13 + 3N dimensional vector:

x = (xT
v ,f

T
1 , . . . ,fT

i , . . . ,fT
N )T. (3)

We assume that the system satisfies Gaussian statistics and Markov state evolution, and use the EKF

to estimate the mean and covariance of the system state vector with a process model that defines the

state time evolution as well as an observation model that defines the relationship between the system

state vector and the observation vector in the current input frame. Here, 2D image points extracted by

the “FAST” corner detector [14] define the observations, where each point corresponds to the perspective

projection of a 3D point in the map. Fixed-sized image patches describe both observations and map

features. Because of uncertainties in map features and camera pose, a corner point corresponding to

a map feature in the current frame is only searched and recognized using template matching in the

search region determined by the predicted position and innovation covariance of the map feature, but not

searched in the whole frame, in order to speed up the SLAM system.
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Note that it is mainly data association [1,15] (establishing correspondences between observations and

map features) that affects the robustness of the EKF-based monocular SLAM system. When the ex-

perimental settings are strictly constrained, the uncertainties of the map features and the camera pose

are low so that the search regions could be small, which can effectively constrain the spatial search for

matches and reduce the computational cost as well as the likelihood of mismatch. However, for motion

blur or occlusion in real environments, the uncertainties increase, leading to incorrect data associations

and increased search regions, resulting in the ultimate failure of the SLAM system.

The above discussion forms the motivational basis for focusing on the development of a relocalization

module for tracking failures of a monocular SLAM system. The module attempts to obtain successful

data associations in subsequent frames after tracking failures, and relocalizes the moving camera based

on the created map. Thereafter, the filter returns to the normal operation. The following section presents

details of the relocalization algorithm.

3 Real-time relocalization based on the hierarchical bipartite graph model

We base our proposed relocalization algorithm on the HBGM, which associates detected features in the

current frame with stored map features, when the pose information of the moving camera is unavailable,

thus achieving rapid relocalization. There are two main steps in the relocalization algorithm: 1) The

HBGM establishes potential compatible correspondences between the detected image and map features;

2) Based on these matches, the camera pose recovers and the SLAM system returns to the normal process.

3.1 Hierarchical bipartite graph model for potential correspondences

When tracking failures arise, the map building is stopped and the “Fast” corner detector [14] is used

to extract corner points from the subsequent frame. The key issue for relocalizing the camera’s pose

is to find possible correspondences between extracted corners and stored map features. Because of the

lack of constraints on the detected features, current SLAM relocalization matching techniques usually

obtain many unreliable matches. In contrast, bipartite matching results in more accurate matches by

constructing weights based on spatial-temporal constraints on these features. For this reason, we employ

bipartite matching for constructing the HBGM for real-time relocalization.

We construct the HBGM to represent relationships between the observed corners and features in the

map, and obtain possible correspondences by resolving the HBGM. Let us start by defining the concepts

of a bipartite graph and a matching within the context of Graph Theory.

Definition 1. A bipartite graph is a set of graph vertices decomposed into two disjoint sets, such that

no two graph vertices within the same set are adjacent.

Definition 2. A matching on a graph G is a set of edges of G, such that no two of them share a common

vertex.

Let us denote a set of descriptors of m extracted corners in the current frame by X = {x1, . . . , xm},
and a set of descriptors of n stored features in the map by Y = {y1, . . . , yn}. Then, we divide the whole

process of constructing the HBGM and calculating the potential correspondences between X and Y into

the following three steps:

Step 1 Constructing a bipartite graph G: a bipartite graph G(the first layer in the HBGM) is con-

structed with the bipartition {X,Y }, and let ei,j(i = 1, . . . ,m, j = 1, . . . , n) denote a link between xi and

yj in G.

Step 2 Computing the weights: let W denote the weight matrix of G, where each element wi,j refers

to the weight of the edge ei,j(i = 1, . . . ,m, j = 1, . . . , n):

wi,j = wp
i,j × wr

i,j , (4)
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Figure 1 An example of maximum cardinality match-

ing. The thick edges denote maximum cardinality match-

ing.

Figure 2 An example of maximum weight maximum

cardinality matching. The thick edges denote maxi-

mum weight maximum cardinality matching.

where wp
i,j is defined by using the cross correlation value Corri,j between xi and yj as

wp
i,j =

{
exp(Corri,j), Corri,j > 0,

0, Corri,j � 0,
(5)

The definition of wr
i,j is based on a bipartite subgraph Gi,j of G.

We construct the subgraph Gi,j (the second layer in the HBGM) as follows: For a pair of xi and yj,

the bipartite subgraph Gi,j , with the bipartition {Xi,j, Yi,j}, is extracted from G: Xi,j contains all the

vertices in X except xi, and Yi,j contains such vertices each of which is not only an element in Y , but also

one of yj’s k-nearest neighbors in some frame before the tracking failure. An edge is added between a

vertex xu in Xi,j and a vertex yv in Yi,j , if yv is one of xu’s k-nearest neighbors among all vertices in Yi,j .

Then the maximum cardinality matching Mmax (Figure 1 shows an example of the maximum cardinality

matching), which is a matching with the maximum number of the edges of Gi,j , is calculated by using

Edmonds’ maximum cardinality matching algorithm [16]. With the obtained Mmax, w
r
i,j is defined as

wr
i,j = exp

(
Mmax

m− 1

)
. (6)

Step 3 Computing the maximum weight maximum cardinality matching of G: for the weighted

bipartite graph G with the weight matrix W , we compute the maximum weight maximum cardinality

matching ofG (Figure 2 shows an example of the maximum weight maximum cardinality matching), which

is a maximum cardinality matching with the greatest total weight, using the Kuhn-Munkres algorithm

[17]. We consider the returned correspondences as potential correspondences between the detected corners

and the map features, which we subsequently use to relocalize the system.

Figure 3 shows an HBGM flowchart. In view of Step 2, we note that the item wp
i,j in (5) reflects the

similarity between the corner xi and the map feature yj . The larger the values of wp
i,j , the closer the

similarities between xi and yj . However, since cross correlation lacks spatial-temporal constraints on

features, it is usually less reliable for matching. Therefore, to enhance the reliability of the computed

data association, we introduce the item wr
i,j to the weight function (4), reflecting the similarity between

spatial-temporal neighborhoods of xi and yj .

More specifically, in view of subgraph Gi,j for calculating wr
i,j , the edges in Gi,j provide spatial con-

straints between the neighborhoods of xi and yj . Furthermore, since all the elements in Xi,j are in the

same frame (i.e. in the current frame), each element in Yi,j appears simultaneously with yj in some frame.

The number of the elements in Xi,j is m− 1, the larger the ratio of the maximum cardinality matching

Mmax of Gi,j to m− 1, the larger the values of wr
i,j , the closer the similarity between neighborhoods of

xi and yj , the greater the likelihood of association between xi and yj , thus allowing for efficient exclusion

of incompatible mismatches.

Although the weight matrix W (in Step 2) reflects similarities between the detected corners and the

map features to some extent, because of the lack of global spatial information, W is not sufficiently

reliable to associate a corner with a map feature based only on the weight of the linking edge in the con-
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Figure 3 Flowchart of the hierarchical bipartite graph model.

structed graphG. Therefore, within the context of image-map correspondences, we use the Kuhn-Munkres

algorithm [17] (in Step 3) to calculate a maximum weight maximum cardinality matching of the graph

G. These returned maximum weight and maximum cardinality correspondences generally yield better

global matches.

Note that the proposed HBGM is independent of the features, i.e. the HBGM is also applicable to

other visual SLAM systems where one needs to establish the correspondences of other types of features,

rather than the point features in this paper.

3.2 Camera pose recovery and SLAM system update

After obtaining potential matches, we use the method [18] to estimate the pose of the lost camera based

on a set of four feature correspondences. Unlike [9–11], where RANSAC is used for seeking a consensus

of potential matches, we sort potential matches in descending order of the corresponding weights. As an

additional guard against mismatch, we discard potential matches with weights below a constant threshold,

Tm. Hence, we use only matches with weights larger than Tm for evaluating the pose. We design an

iterative scheme for evaluating the camera’s pose using the fact that a match with larger weight is more

reliable: first, we choose the four candidate matches with the highest relative weight sum to calculate

the potential pose of the camera. Then, we use the latter to calculate the projection locations of other

map features. If there is one or more computed locations satisfying the matches, we consider this pose

as a good pose, thus terminating the iterative process.

After finding a good pose, we reinitialize the EKF filter with the pose and a large artificial covariance,

and use the corresponding four matches as the observations. Thereafter, the system returns to the normal

loop.

4 Experiments

We apply the HBGM-based relocalization algorithm to a multi-player game where each player’s pose is
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Figure 4 An example of successful relocalization after tracking failure caused by occlusion.

Figure 5 An example of successful relocalization after tracking failure caused by motion blur.

Table 1 Successful relocalization rates on the three video sequences

Number of tracking failures Number of correct relocalization Success rates

Sequence 1 12 11 91.7%

Sequence 2 23 21 91.3%

Sequence 3 16 15 93.8%

determined in real time to seamlessly fuse virtual objects with the real environment. We evaluate the

reliability of the proposed algorithm on three captured video sequences of 5 minutes, 5 minutes and

6 minutes in an indoor environment, including tracking failures caused by motion blur or occlusion. The

algorithm is implemented by running the EKF-based SLAM system on a Core 2 Duo 2.53 GHz processor.

Prior to the experiment, we calibrated a handheld camera with a narrow-angled lens. The frame rate is

30 frames per second, and the captured image resolution is 320× 240 pixels. We use an image patch of

size 11× 11 pixels as the descriptor of a feature point.

Figures 4 and 5 show examples of successful relocalization after tracking failures caused by occlusion

and motion blur, respectively. Table 1 lists successful relocalization rates for the three video sequences.

One of the reasons for not achieving correct relocalization in the subsequent frames after tracking failures

could be because of insufficient detected features in these frames. Note that even for these unsuccessful

cases, the algorithm is still able to successfully relocalize the lost camera when it moves from the current

pose to an appropriate pose capturing sufficient map features.

Table 2 shows frame processing times during recovery of the SLAM system during the first 7000

frames of Sequence 1. It can be seen that when the size of the built map is up to 113 features, real-time

relocalization can still be achieved.

Table 3 displays the time for a typical relocalization with 41 features in the map: here, the HBGM

returns 20 matches, with only 9 of them larger than Tm selected as candidate matches. The algorithm

chooses four matches with the largest weight sum for evaluating the camera pose [18], and two of the

computed projections of the other map features satisfy the corresponding matches. It takes 18 ms to

produce the correct pose. Note that, even though there are outliers among the four matches, since the

number of the candidate matches is small, only little computational cost is increased for pose evaluation

by using four correspondences, which does not affect the real-time performance of the proposed algorithm.

Next, we do an off-line comparison of the effectiveness of our algorithm compared with the RANSAC-

based relocalization algorithm [9] using a synthetic video sequence with 50 map features. Table 4 shows

relocalization results for ten randomly generated synthetic test images. The proposed algorithm achieves

successful relocalization for all the ten images, whereas the RANSAC-based relocalization algorithm fails

twice.

For testing the effectiveness of the algorithm for large numbers of map features, we construct a synthetic

video sequence with 978 map features. Table 5 shows relocalization results for ten randomly generated

synthetic test images. We see that the algorithm also works for the map with 978 features.
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Table 2 Processing times of five frames during recovery of the SLAM system

Frame number 1194 1509 2028 3397 6875

Number of the map features 19 23 34 41 113

Processing time (ms) 17 17 18 18 31

Table 3 Time for a typical relocalization

Performance Times(ms)

Corner detection 1

Hierarchical bipartite graph 16

Pose recovery 1

Total 18

Table 4 Relocalization comparison on the synthetic video sequence with 50 map features

Processing time(ms)

Relocalization number 1 2 3 4 5 6 7 8 9 10

RANSAC-basd relocalization [9] 41 Failed 44 17 46 41 Failed 38 31 65

HBGM 21 22 19 22 18 19 18 20 21 20

Table 5 Relocalization times on the synthetic video sequence with 978 map features

Relocalization number 1 2 3 4 5 6 7 8 9 10

Number of the map features 978 978 978 978 978 978 978 978 978 978

Processing time(ms) 28 30 36 31 31 30 31 Failed 35 33

5 Conclusions

In this paper, we propose a new real-time relocalization algorithm for automatically recovering a monoc-

ular SLAM automatically from tracking failures. When the camera is lost, we construct an HBGM for

representing the similarities between the detected features in the current frame and the stored map fea-

tures. Thereafter, we recover the lost camera pose based on a set of four matches by resolving the HBGM.

Experimental results show that the proposed algorithm reliably relocalizes a monocular SLAM system.

The main advantage of our algorithm is that the HBGM is able to achieve global data association, thus

significantly increasing robustness of the relocalization module.

Future studies will focus on using the HBGM for robust relocalization within large maps with more

distinctive descriptors.
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