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Abstract

For speech separation systems, the ideal binary mask (IBM) can be viewed as a simplified goal of the ideal ratio mask (IRM) which is
derived from Wiener filter. The available research usually verify the rationality of this simplification from the aspect of speech intelligi-
bility. However, the difference between the two masks has not been addressed rigorously in the signal-to-noise ratio (SNR) sense. In this
paper, we analytically investigate the difference between the two ideal masks under the assumption of the approximate W-Disjoint
Orthogonality (AWDO) which almost holds under many kinds of interference due to the sparse nature of speech. From the analysis,
one theoretical upper bound of the difference is obtained under the AWDO assumption. Some other interesting discoveries include a
new ratio mask which achieves higher SNR gains than the IRM and the essential relation between the AWDO degree and the SNR gain

of the IRM.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of speech separation which aims to remove
or attenuate interference has been widely studied for dec-
ades. Computational auditory scene analysis (CASA)
which is inspired by research on human auditory percep-
tion (Bregman, 1990) is one promising approach to this
problem (Weintraub, 1985; Cooke, 1993; Brown and
Cooke, 1994; Wang and Brown, 1999; Hu and Wang,
2004; Wang and Brown, 2006). Due to the non-stationary
nature of speech, the time-domain signals are firstly decom-
posed into time—frequency (T-F) domain by using discrete
short-time Fourier transform (DSTFT) (Mallat, 1998) or
auditory filtering (Patterson et al., 1988). Each element of
T-F representation is called as a T-F unit corresponding
to a certain time and frequency index. Then, CASA
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techniques generally approach speech separation by two
main stages: segmentation and grouping. The ideal binary
and ratio masks are two conventional computational
goals in CASA (Barker et al., 2000; Hu and Wang, 2001;
Srinivasan et al., 2000). Several works show that the two
ideal masks have different advantages (Brungart et al.,
2006; Li and Loizou, 2008; Peharz and Pernkopf, 2012;
Liang et al., 2012). However, the difference between the
two ideal masks in terms of signal-to-noise (SNR) has
not been rigorously addressed. In this paper, this difference
is studied analytically and experimentally under approximate
W-Disjoint Orthogonality (WDQO) assumption (Yilmaz and
Rickard, 2004).

The IBM proposed in Hu and Wang (2001, 2004) is a 0—
1 matrix along time and frequency indexes with which we
classify all the time—frequency (T-F) units into reliable
and unreliable classes. The reliable units are dominated
by the target speech, while the unreliable units are domi-
nated by the interference. Several CASA techniques, such
as (Brown, 1993; Brown and Cooke, 1994; Ellis, 1996;
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Wang and Brown, 1999; Hu and Wang, 2001; Kim et al.,
2009), and some blind speech separation techniques (Yil-
maz and Rickard, 2004; Melia, 2007; Sawada et al., 2011)
use the IBM as the computational goal. The IRM defined
in Srinivasan et al. (2006) is a soft masking strategy. It is
closely related to the Wiener filter (Wiener, 1949) whose
frequency response is P,/(P. + P,), where P, and P, are
the energy density of the target and interference signals
respectively. The IBM can also be obtained by quantizing
the Wiener filter at each T-F unit to the closest binary
value. Intuitively, the IRM achieves higher SNR gain over
the IBM because the Wiener filter minimizes the mean-
square error (MSE) for stationary signals.

Although the IBM is a simplified form of the IRM, how-
ever, many separation systems prefer the IBM as the com-
putational goal due to its three main desirable properties.
First, previous works have demonstrated that the IBM
could improve speech intelligibility significantly (Roman
et al., 2003; Brungart et al., 2006; Li and Loizou, 2008).
Moreover, psychoacoustic experiments in Li and Loizou
(2008) demonstrated that binary masks that deviate from
the IBM degrade the intelligibility performance gradually.
In the work (Loizou and Kim, 2011), they explained why
existing speech enhancement algorithms can not improve
speech intelligibility and provided an analytical proof that
the IBM can maximize the average of the spectral SNRs.
They further proved that maximizing the geometric aver-
age of SNRs is equivalent to maximizing a simplified form
of the articulation index which is an objective measure used
for predicting speech intelligibility (Kryter, 1962). Second,
noise tracking is the fundamental task for the IRM estima-
tion. But the common noise tracking algorithm, such as
(Martin, 2001; Rangachari and Loizou, 2006), can not
track highly non-stationary real world noise well. By con-
trast, many auditory features which are robust to the effects
of noise have been proposed for the IBM estimation, such
as pitch-based features (Brown and Cooke, 1994; Ellis and
Rosenthal, 1995; Seltzer et al., 2004; Hu and Wang, 2004;
Hu and Wang, 2010; Han and Wang, 2012; Liang et al.,
2013) and amplitude modulation spectrum (AMS) (Kim
et al., 2009). Noise tracking is not necessary for the IBM
estimation. Therefore, it can be well generalized to non-sta-
tionary noise. Third, the complex noise spectrum estima-
tion task can be simplified into a binary classification
task with the IBM estimation. While the IRM estimation
requires the relative energy ratio of the two signals, the
IBM estimation is considerably simpler than the IRM esti-
mation (Li and Wang, 2009). Bayesian classifier based IBM
estimation can be traced back to Seltzer et al. (2004).
Recently, many different variations of the Bayesian classi-
fier and other statistical classification methods have been
used in this task (Kim et al., 2009; Hu and Wang, 2010;
Han and Wang, 2012; Liang et al., 2013).

In the IBM based resynthesis, the energy lying in unre-
liable units is totally removed. It may cause too many non-
linear distortions (musical noise) in the extracted signal
(Ma et al., 2010). In practice, some inevitable errors in

the IBM estimation may further increase the distortion.
On one hand, conventional automatic speech recognition
(ASR) systems are extremely sensitive to the distortions.
Using ratio mask in the range [0.0,1.0] is one approach to
minimize the effect of distortions on recognition (Barker
et al., 2000). We should note that the ratio mask defined
in Barker et al. (2000) indicates the degree of confidence
on whether or not the T-F unit is reliable. Therefore, it
is a different concept with the IRM. Other approaches
include missing data imputation techniques (Cooke et al.,
2001; Raj et al., 2004). On the other hand, the separation
results in Peharz and Pernkopf (2012) show that ratio mask
usually results in better perceptual quality, while the binary
mask achieves higher interference suppression. In Liang
et al.’s work (2012), they propose a method for smoothing
the binary mask based speech cochleagram estimation. The
separation results show that the ratio mask achieves better
performance on suppressing artifacts.

Since the SNR measure produces a single ratio making
it easy to evaluate the performance of a separation system,
it remains a widely used performance metric. Theoretically,
the IRM gets higher SNR gain relative to the IBM. Exper-
iments in Li and Wang (2009) showed that the IBM gets
slightly lower SNR results than the IRM even with non-
sparse interference, such as white noise. But they have
not explained why the difference is so small. Furthermore,
there is not yet a rigorous conclusion about the upper
bound of the difference. Strictly speaking, the IBM is
equivalent to the IRM only when the target and interfer-
ence signals subject to W-Disjoint Orthogonality (WDO)
property (Yilmaz and Rickard, 2004). The WDO property
means that the T-F representations corresponding to the
target and interference signals rarely overlap. If both of
the target and interference are sufficiently sparse, such as
speech signal, the energy overlap is very small with high
probability. In this case, the WDO property is approxi-
mately satisfied. Other typical blind speech separation algo-
rithms using the IBM estimation as the computational goal
include (Melia, 2007; Sawada et al., 2011). But the difference
between the two ideal mask frameworks under approxi-
mate WDO property has not been rigorously addressed.

Also in this paper, we do not concerned with how to
estimate the IBM and the IRM. We analytically investigate
the SNR gain of the IBM and the IRM with DSTFT (Mal-
lat, 1998) based T-F representation. With SNR perfor-
mance as the optimal goal, three key points are found
during the analysis. First, the IBM is the optimal binary
mask while the T-F decomposition is orthogonal. This
result is consistent with the theorem given in Li and Wang
(2009). Second, although the IRM is not the optimal linear
mask model in theory, it approximates to the optimal
model under approximate WDO assumption. Third, the
difference of the two ideal masks is no more than
10log,,2dB. Experiments with ten kinds of real world noise
further show the difference is always smaller than 1 dB.
Finally, we propose an explanation why the difference is
so small.
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The paper is organized as follows. In the next section,
some notations and definitions are introduced. SNR gain
is discussed analytically in Section 3. Speech separation
experiments are further used to verify the discussion in Sec-
tion 4. The last section gives some conclusions.

2. Notation and Definition

Let x(¢) and n(¢) denote the T— length speech and inter-
ference signals in time domain, respectively. In the classical
additive noise model, the noisy speech is given by:

(1) = x(1) + n(2). (1)

Speech separation systems attempt to estimate the original
speech x(¢) from mixture y(¢) as accurately as possible.

Since speech and many real world noises are non-sta-
tionary, the time domain signal has to be decomposed into
time—frequency domain by DSTFT (Mallat, 1998) or audi-
tory filtering (Patterson et al., 1988). Suppose that S.(z, f)
denotes the DSTFT coefficient of a signal in 7 ’th time
frame and f’th frequency index. With a real and symmetric
window function, g(¢) = g(—t), the DSTFT of y(¢) is given
by:

5,(6.) = et - dexp( 7). @

=0

The power spectrum density is P,(z, f) = |S,(z, f)|*.

Since DSTFT is complete and stable, x(¢) can be recon-
structed from S,(t, /) by inverse discrete short-time Fou-
rier transform (IDSTFT) (Mallat, 1998). In other words,
both of speech separation and enhancement tasks can be
transformed into the problem of S,(z, f) estimation. Sup-
pose that S,(t, f) is an estimation of S,(z,f) , the estima-
tion in time domain x(¢) is:

10 = 3 3 et~ 03 S eww (7). o)
=0 =0

2.1. Ideal binary and ratio mask

Let P.(t,f) and P,(z, /') denote the power spectrum den-
sities of the target speech and the interference, respectively.
The IBM is defined as follows:

(1), if Px(r,f)—Pn(T;f)>07 (4)

where 0 is a threshold. If Mp(t,f) =1, the T-F unit is
called reliable; otherwise it’s called unreliable. With the
binary mask matrix, the estimation of S,(z,f) can be fur-
ther written as S,(t, f) = Mp(t,1)S,(t,f) (Yilmaz and Ric-
kard, 2004). Ideal ratio mask which is closely related to
Wiener filter (Wiener, 1949) is defined as follows (Sriniva-
san et al., 2006):

Mafe.s) = {

else

3

PX(‘C’f)

Mg(z, f) :Px(‘[’f) +P,(1,f) .

(5)

Similarly, S.(t,f) = Mg(t,f)S,(t,f). Fig. 1 shows an
example of the IBM and IRM for a speech signal mixed
with white noise at 0 dB input SNR. The spectrograms of
a male utterance and white noise are shown in Fig. 1 (a)
and (b), while the IBM with 6 = 0 and the IRM matrices
are shown in (¢) and (d). Many speech enhancement algo-
rithms, such as the Wiener-type speech-enhancement algo-
rithm (Hu and Loizou, 2004; Rangachari and Loizou,
2006), are based on ratio mask strategy. From the two def-
initions, we can find that quantizing the IRM to the closest
binary mask will result in the IBM. Ellis (2006) proposes an
argument to the optimality of the IBM. Since the IBM with
0 dB threshold is the closest binary value to the Wiener fil-
ter which achieves the minimum mean square error
(MMSE) for stationary signals (Wiener, 1949), it may be
the optimal binary mask in terms of the mean square error
(MSE) and the SNR gain.

2.2. W-Disjoint Orthogonality (WDO)

The WDO property is derived from the sparse nature of
speech signal in the T-F domain, where sparse means that
a small percentage of the T-F units contain a large percent-
age of the signal energy. As shown in Fig. | (a), a large per-
centage of the speech energy is contained in the harmonic
structure. If both of the target and interference signals
are sparse, the T-F units containing significant energy of
the two signals rarely overlap. A rigorous definition of
WDO is given by Yilmaz and Rickard (2004):

S(t, )Su(z, /) =0, Vr, f. (6)

Obviously, the WDO property is a mathematical idealiza-
tion. Previous work (Yilmaz and Rickard, 2004) showed
that the energy overlap, |S.(z, f)S,(z, f)|, is a very small va-
lue with high probability while the interference is a different
speech signal. A more rigorous statement is that
IS:(t, £)S, (1, )] is much smaller than P,(z,f) if this unit
is reliable, and P,(t,f) otherwise. This property is called
as approximate WDO (AWDO) in this paper. A general
metric has been proposed (Melia, 2007) to measure the
WDO degree:

Zr,f|Sx(Taf)Sn(T;f)| )
VE P ) Pale. )

Lower WDOM value indicates higher AWDO degree.

WDOM =

()

3. SNR gain of the ideal binary and ratio masks

The SNR gain which is closely related to the MSE is
defined as:

() —x(O) =D _r(0)”. (8)

According to Parsevals equality (Mallat, 1998), the MSE is
given by:
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Fig. 1. An example of the IBM and IRM. (a) The spectrogram of the target speech, (b) The spectrogram of the white noise, (¢) The IBM, (d) The IRM.
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The definition of SNR is given by:

SNR = 10log (fo(’)j>
2.r(0)

= 10log,, (Zx(t)2> — 10log,, (Zmﬁ). (10)

t

Since the total energy of target speech, Z,x(l)z, is a con-
stant, the SNR gain is inversely proportional to the MSE.

3.1. SNR gain of the ideal binary mask
To simplify the representation, one-dimension coordi-

nate, k=(z,f), is used in the following discussions. The
MSE corresponding to the IBM can be written as:

L(i,x) = Z ZIS
_ _Z|MB k) + 8,(k)] — S.(k) [

:—ZP ZP (11)

ke U keR

where U and R denote the unreliable and reliable T-F sets,
respectively. We can find that the IBM with 6 =0 is the
optimal binary mask in terms of SNR gain under DSTFT
based T-F representation. For a random reliable unit
where P,(ko) > P,(ko), ie., if we flip the IBM to
Mp(ko) = 0, the new MSE will be updated to:

Obviously, the MSE corresponding to the IBM, L(%,x), is
always smaller than L(%,x). Moreover, similar result can be
obtained for any unreliable units where P,(ky) < P,(ko).
Therefore, the IBM minimizes the MSE over all binary
masks. This result is consistent with the conclusion given
in Li and Wang (2009).

We should note that the optimality may not hold if the
T-F transform is non-orthogonal. In previous work, Li
and Wang (2009) showed several counterexamples with
gammatone filtering (Patterson et al., 1988) based T-F
representation.

3.2. SNR gain of the ideal ratio mask

The MSE corresponding to the IRM, L(%,x), is given by
(Appendix A):
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As shown in Appendix A, L(X,x) can be further approxi-
mated by the following equation under WDO or AWDO
condition:
I | P.(k)P,(k) 1
~ 1 Fal) N _ 2 . 14
Zt:r(’) Tzk: Po(k) + Pok) 72.0%) (14)

[P

Particularly, “~” can be re-written to “=" under WDO
condition. From Eq. (14), we can find that the MSE of
the IRM, Zt?(t)2, will increase with the increasing of
energy overlap. Since the energy overlap is directly corre-
lated with AWDO metric which is defined in Eq. (7), the
SNR gain of the IRM also hinges upon the AWDO degree.

In this paper, we regard the framework,
S.(k) = y(k)S,(k), as linear mask model (LMM) where
(k) is a real value. We can find that the IRM is the optimal
linear mask model in the SNR sense if the cross term is
totally ignored. To verify this conclusion, we firstly give
the MSE of a general LMM as follows:

SH0 = 2 S S, (6) — S0

- ZI(V(k) = D)S.(k) + 7(k)Su (k)" (15)

T

As in Appendix A, the MSE can be re-written as:

S =2 3 [0) ~ 1°Pk) 8P (R)
F2(0(8) — DR(S.0)5,8)]. (16)

Minimize the MSE by partial derivative of y(k) as follows:

o(xr’) -
o T (Pu(k)[y(k) — 1] + Py (k)y (k)
+ [29(k) = 1R (S:(k)S, (K))) = 0. (17)

The optimal LMM, y,,(k), is given by:

Po(k) + R(S.(4)S,(K))
P.(k) + P, (k) + 2R (S.(k)S, (k)
If R(S,(k)S:(k)) is equal to O for Vi, the IRM is equivalent
to 7, In other words, the optimality of the IRM is also
closely related to the degree of the AWDO property.

The following theorem summarizes above analytical
results:

Vopt(K) = (18)

Theorem 1. The IRM minimizes the MSE and consequently
maximizes the SNR over all linear mask models under WDO
condition. Under AWDO assumption, the IRM approximates
to the optimal model. The increasing of |Sy(k)S,(k)| will
degrade the SNR gain gradually.

3.3. The difference between the IBM and the IRM in SNR
gain

PX(,S”&)” 5 is always no more than 1 for any unreliable
unit, whi(le Pilk) g always no more than 1 for any

Pu(k)+Pn(k)

reliable unit. Therefore, Y°7(¢)° < 3.,#(¢)°. This means
that the IRM gets higher SNR gain than the IBM. Let
ASNR denotes the difference:

(zﬂrf)

ASNR = SNR[RM — SNR[BM = lOloglo — |- (19)

2.7(1)

Under strict WDO condition given in Eq. (6), P, (k) is equal

to zero for any reliable unit, while P, (k) is equal to zero for

any unreliable unit. Therefore, the IBM and IRM get the

same MSE and SNR results which means ASNR = 0 dB.
Under AWDO condition, combine Egs. (11) and (14):

SR - S H0) & % <Z¢1 (k) + Z‘f’z(k))’

___ Pk _ PR
I Y TGRSR YRS AN

According to the definition of the IBM with § = 0, the fol-
lowing inequality can be derived:

0.< ¢1(k)/g(k) = P(k)/P,(K) <1, VK€U,

0< oK)/ (k) = P(K)[P(K) < 1, VK €R. (21)
Therefore,

D k) + Y da(k) <D oK),

= ) =D H) <Y o)’ (22)
=) 1)’ <2) He)

According to Eq. (19), ASNR is no more than 10log,,2 dB.
The following theorem summarizes above analytical result:

Theorem 2. The IBM is equivalent to the IRM in strict
WDO condition. In AWDO condition, the IRM obtains
higher SNR gain over the IBM. But the difference, ASNR, is
no more than 10log,,2 dB.

Experiments in Li and Wang (2009) have showed that
ASNR is around 0.7 dB (10log,,2 = 3.01) even with white
interference. As is well known, white noise is non-sparse
because the energy density is a constant. That is, the energy
equally lies on all T-F units. However, it is very difficult to
further quantify the upper bound of ASNR in theory. Here,
we give a brief discussion about 0 dB input SNR condition
which means that ) ,P.(k) =) ,P,(k). A relative MSE
measure is defined as follows:

AMSE = (qul(k) + Z@(k)) /Do) (23)
keU keR k

We can find that P, (k) is much smaller than P, (k) for most

unreliable units due to the sparse nature of speech. Simi-

larly, P,(k) is much smaller than P,(k) for most reliable

units. This conclusion can be convinced by experiments

in Section 4.1. Therefore, AMSE may be much smaller than

1 and consequently 3 #(¢)° < 237 7(¢)*. This result also
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S F(2) than
S H(6)* = 32,7(¢)” with the increasing of energy overlap.
We suspect that this is the main reason why the ASNR is
so small.

implies  that increases much faster

4. Experimental results

The above discussions are verified experimentally with
different kinds of background interference. 40s-length
speech signals are randomly taken from the training set
provided by the Grid corpus (Cooke et al., 2006). The sig-
nals are down-sampled to 16 kHz before mixing interfer-
ences. The interference signals are collected by Cooke
(1993), which includes 10 different types of real world
noise. The speech and noise signals are mixed with 0 dB
input SNR. To compute the DSTFT, the noisy time
domain signals are divided in frames of 512 samples with
an overlap of 50%.

4.1. Distributions of ¢,(k)/ (k) and ¢,(k)/p(k)

To simplify the representation, we define a random var-
iable as follows:

e(k) = { 1 (k) /p(k) = P.(k) /Py (F),
&, (k) /o(k) = P,(k)/P:(k),

As given in Eqgs. (19) and (23), e(k) is closely related to
AMSE and ASNR. In this paper, we use histogram model
to describe the probability density function (PDF), p(e).
We still take white noise with 0 dB input SNR as an exam-
ple. 160625 T-F units which are randomly selected are
firstly classified into reliable and unreliable sets. Then,
two histograms with 30 bins are estimated for the two sets,
respectively.

The two histograms are shown in Fig. 2. We can find
that e(k) < 1 for most reliable and unreliable units. We
further use exponential distribution with parameter
A =1/E(e(k)) to fit the histogram where E(-) denotes the
expectation. As shown in Fig. 2, the two histograms can
be approximated by exponential distributions. In addition,
the expectation corresponding to unreliable units is much
smaller than reliable units (1/25.41 <« 1/3.43). We suspect
that this is due to the fact that target speech is quite sparse.
Therefore, only a small percentage of speech energy is

if keU

. 24
if keR @4

Reliable T-F Units

2=3.43

Probabilty Density
- N w 5O

o

02 04
(a)Reliable T-F units

e 06 08

contained in unreliable units, while relatively more noise
energy is contained in reliable units.

4.2. SNR results under AWDO condition

The average values of SNRjzy;, ASNR, WDOM and AMSE
are shown in Table 1. Overall, the difference, ASNR.is
always smaller than 1 dB over the ten kinds of interference.
Besides, we get three interesting findings from Table 1.
First, the WDOM corresponding to NO, N2, N5 and N6
are much smaller than others. The four types of noise are
typical impulse noise which is sparser than speech signal.
Second, SNRp,, decreases with the increasing of WDOM.
This result implies that MSE, Zt?(t)z, increases under
non-sparse interference. It is consistent with Theorem 1.
The last point is that all the AMSE lies on a narrow interval
0.2~0.4 although WDOM lies on a wide range. Since
AMSE is directly related to ASNR, ASNR always lies on a
narrow interval no matter that the interference is sparse
or not. This result is agreement with the discussion in last
paragraph in Section 3.3. Besides, ASNR is nearly propor-
tional to AMSE , as is shown in Fig. 3.

4.3. SNR results of the optimal linear mask model

The average SNR results corresponding to the IRM and
the optimal linear mask model (OLMM), v,,(k) =
Pe(k)+R(Sc(K)S} (k)
Pr(k)+Py ()+2R (< (K)S; (k) )

, are shown in Table 2. Compared to

Table 1

Average SNR gain with respect to different types of noise. Noise types:
NO, 1-kHz pure tone; N1, white noise; N2, noise bursts; N3, cocktail party
noise; N4, rock music; NS5, siren; N6, trill telephone; N7, female speech;
N8, male speech and N9, female speech.

Noise Type  SNRjry (dB)  ASNR (dB) WDOM (%) AMSE (%)
NO 24.61 0.52 3.33 24.70
N1 13.66 0.65 20.41 29.36
N2 17.82 0.61 8.54 28.96
N3 9.24 0.71 43.64 38.03
N4 14.04 0.65 19.14 33.23
NS5 21.08 0.82 5.04 32.30
N6 23.79 0.65 3.76 26.66
N7 16.09 0.68 12.80 33.95
N8 15.32 0.62 14.04 32.25
N9 12.93 0.88 23.28 35.51
% 15 Unreliable T-F Units
&
g 10
3 2=25.41
©
g 5
a

0

02 04 « 06 08 1

(b)Unreliable T-F units

Fig. 2. Histograms of e for reliable and unreliable units. Thick line represents the probability density of exponential distribution.
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Fig. 3. Representation of the correlation between AMSE and ASNR. The line is the least-square error (LSE) rule based estimation.

Table 2
Average SNR results of the IRM and the optimal linear mask model (OLMM).
Mixture NO NI N2 N3 N4 N5 N6 N7 N8 N9
IRM 24.61 13.66 17.82 9.24 14.04 21.08 23.79 16.09 15.32 12.93
OLMM 27.10 16.18 20.38 11.44 16.27 23.17 26.32 18.23 17.62 15.28
19 17 -
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Fig. 4. Average WDOM and separation results with various room reverberation times.

the IRM, the OLMM obtains relatively higher SNR results
for all types of noise. According to the AWDO assump-
tion, R(S,(k)S:(k)) is relatively minor compared to P, (k)
for most reliable units. However, this simplification is no
longer valid for unreliable units. We suspect that this is
the main reason for the difference.

4.4. Separation results in reverberation environments

Obviously, the reverberation in real world environment
may weaken the AWDO degree to some extent. Since the
AWDO degree is directly correlated with the SNR gains
of the IBM and the IRM, we provide qualitative compari-
sons between the two masks under reverberation condi-
tions. The reverberation impulse response is generated by
the image-source method (ISM) described in Lehmann
and Johansson (2008). The sound propagation is simulated
for a small room with 3 mx4 mx4 m size. The reverbera-
tion time (7Tg) ranges from 0 to 500 ms with 100 ms step.
The mixture is generated with 0 dB input SNR. The aver-

age values of the WDOM and SNR gains are shown in
Fig. 4 (a) and (b), respectively. We can find that the
AWDO degree is weakened gradually with the increase of
T¢. Furthermore, both of the SNR gains corresponding
to the IRM and the IBM decrease gradually. This result
is consist with Theorem 1 that the decreasing of AWDO
degree will degrade the SNR gain of the IRM. Specifically,
the average value of WDOMs is about 15.4% with
Tso =0 ms. While T, increases to 500 ms, it only increases
to 18.0%. This result indicates the AWDO assumption still
hold even in room reverberation environments. Conse-
quently, the difference, ASNR, has not increased or
decreased too much.

Besides, three types of real world noises which are
recorded in cafeteria, square and subway environments'
are used to test the AWDO assumption. For each type of

! Signal Separation Evaluation Campaign, 2011. Online: http://sisec.
wiki.irisa.fr/tiki-index.php?page=Two-channel+mixtures+of+speech+
and+real-world-+background-+noise.
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Table 3
Separation results in real world environments. Ca: cafeteria, Sq: square,
Su: subway.

Noise ~ WDOM (%)  SNRmy (dB)  SNRuy (dB)  ASNR (dB)
Ca 33.0 10.98 10.43 0.55
Sq 235 13.54 12.89 0.65
Su 14.0 16.64 16.15 0.49

noises, a 20 s-length signal is selected. The average WDOM
value and SNR result are shown in Table 3. Overall, the
WDOM values of the three types of noise are lower than
the value corresponding to cocktail party noise. Therefore,
the AWDO assumption still holds in the three classical
environments. Furthermore, all the values of ASNR are
lower than 1 dB. This result implies that the IBM can be
considered as an effective simplification of the IRM even
in many real world environments.

5. Conclusions

In this paper, we investigate the SNR gain of the IBM
and the IRM, respectively. Due to the sparse nature of
speech, the WDO or AWDO property is valid under many
real world noises. Under WDO and AWDO conditions, we
prove two theorems to describe the SNR gains of the IBM
and the IRM. Then, we find that one upper bound of the
difference between the two ideal masks is 10log,,2 dB.
Experimental results on a speech separation database fur-
ther show that the difference is smaller than 1 dB. We
believe that the sparse nature of speech is the fundamental
reason that the difference is so small. Therefore, the IBM is
a reasonable approximation of the IRM even in the SNR
sense.

It is worth reminding that both of the two ideal masks
are derived from precisely accurate estimations of power
spectrum which are almost impossible to be achieved in
practice. The SNR gains of binary and ratio masks will cer-
tainly degraded by the error in spectrum estimation. It is no
denying that the spectrum estimation is not necessary in
many present binary mask estimators. But, only from the
perspective of spectrum estimation, the IBM seems to be
more robust to the spectrum errors. Take a reliable units
as example, all the spectrum estimations which subject to
P.(k) > P,(k) result in correct binary mask. In other
words, precisely accurate spectrum is not necessary in
the IBM estimation. By contrast, the ratio mask is more
sensitive to the spectrum estimation. Substantial effort
is needed in our future work to further quantify the
degradation.
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Appendix A.
written as:

The MSE corresponding to the IRM can be

:Eymhﬁéjiw—&%w
,Z|MR

According to the definition of the IRM, L(X, x) is given by:

(k) + 8, (k)] = S, (b)- (A1)

L) =7 3 (5.00)-+5,(00] - 5.0
1 =|P.(k)S, (k) = P, (k) S (k) |?
*?Z P, (k)+P,(k)

k

|
|
_ I Pulk)P (k) [Po(k) + Pu (k) — (Sx(K)S, (k) + 5, (K)S, (k)
_Tz
(Po(k) + P, (k))*
)—

Py (k) + P, (k) — 2R(S.(k)S; (k)]
(am+mwf

_ ZP k)P, (k | &2
where superscript “x” denotes the conjugate operator and
R(-) returns the real component of a complex number.

Under WDO assumption, |S,(k)S; (k)| is equal to 0 for
any units. Under AWDO assumption, it is much smaller
than P, (k) and P, (k) for most of the reliable and unreliable
units, respectively. Moreover, R(S,(k)S. (k) < |S.(k)S, (k)|.
This means that the cross term, R (S, (k)S}(k)), is relatively
smaller compared to P, (k) + P, (k). Therefore, L(X,x) can be
approximated by the following equation:
L) = L5 P00

T 4= Py(k) + P, (k)

(A.3)
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