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Integrating Binary Mask Estimation With MRF Priors
of Cochleagram for Speech Separation

Shan Liang, Wenju Liu, and Wei Jiang

Abstract—In present binary masking based speech separation
systems, it is almost impossible to obtain the ideal binary mask
(IBM). The error in IBM estimation usually results in energy
absence in many speech-dominated time-frequency ( - ) units.
It violates smooth evolution nature of the speech signal and
creates great artefacts. Markov random field (MRF) is one of the
promising approaches to model smooth evolution nature which
has been extensively applied to image smoothing applications. In
this letter, an MRF prior for modeling the spatial dependencies
in audio cochleagram is introduced. With this prior model, we
further smooth the binary mask based cochleagram and gen-
eralize binary mask to ratio mask via a Bayesian framework.
Our algorithm is systematically evaluated and compared with
other counterpart methods, and it yields substantially better
performance, especially on suppressing artefacts.

Index Terms—Ideal binary mask, ideal ratio mask, iterated con-
ditional modes (ICM), Markov random field.

I. INTRODUCTION

M ONAURAL speech separation from interference is one
of the key problems in speech processing. Researches

on human auditory perception inspire one promising approach
which is called Computational auditory scene analysis (CASA)
[1]–[6]. The main computational goal of CASA has been set
as the ideal binary mask (IBM) estimation [2], [3]. The IBM
is a two-dimension 0–1 matrix along time and frequency index
which classifies all the - units into reliable and unreliable
classes. Reliable class consists of the units in which speech en-
ergy exceeds the interference, while unreliable class consists
of the rest. To synthesize the waveform signal, the energy in
reliable units is retained and the energy in unreliable units is
rejected totally. This means that IBM transforms the complex
noise spectrum estimation problem into a binary classification
problem which is simpler to achieve. Since most of the speech
energy is contained in a very small amount of units, IBM ap-
proximates to the ideal spectrum estimation closely.
Meanwhile, the - representations of speech and many

real world noises show high temporal correlation and evolve
smoothly. However, there are many abrupt changes in the
binary mask based speech spectrum. Besides, it’s almost
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impossible to estimate the IBM with one-hundred-percent
accuracy in practice. The error in IBM estimation may greatly
violate smooth evolution nature and result in huge artefacts. To
the best of our knowledge, suppressing this distortion has not
been received much attention up to now.
In image processing problems, MRFs have been extensively

applied for smooth applications via modeling the spatial depen-
dencies [10]. In speech separation area, MRFs have not widely
used to date. Recently, Probhavalkar et al. introduce the theory
of Discriminative Random Fields (DRFs), which are closely
related to MRFs, into the IBM estimation problem for voiced
speech separation [6]. The use of DRF allows them to take the
spatial dependencies into account via an interaction potential
function. The results suggest that CASA techniques may ben-
efit from the DRF framework.
A major contribution of this letter is the introduction of a

common MRF, Gaussian MRF, based prior model of audio
cochleagram for smoothing the artefacts. To construct an MRF,
a set of conditional density functions is defined for representing
the correlation between neighbors. The neighborhood defines
the interactions between two units in the spatial representations.
Since the local temporal correlation is taken into account, a
smoother speech cochleagram is obtained and artefacts are
suppressed to some extent. The letter is organized as follows.
An overview of the proposed framework will be presented in
the next section. Follow by discussions on prior models and
the smoothing algorithm in Section III. The proposed algo-
rithm is evaluated in Section IV. The last section gives some
conclusions.

II. FRAMEWORK OVERVIEW

The mixture signal is decomposed into - domain firstly
by 64-channel gammatone filters from 50 Hz to 8000 Hz [14].
Then, the response of each channel is divided into 20 ms time
frames with 10 ms overlap. The resulting - representation is
called cochleagram [2].
After that, we estimate the IBM in the continuous voiced

frames with a state-of-art voiced speech separation model pro-
posed by Hu and Wang [3]. Let , and denote the energy
of mixture, speech and interference at the ’th - unit respec-
tively. As in [4], binary mask based estimations of speech
and noise energy are given by:

if
if

(1)

As the discussion in - unit level [4], accurate binary mask
results in a good approximation to the true energy, while wrong
mask leads to a great error.
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Since pitch is the key cue, HuWang model couldn’t handle
unvoiced speech. Recently, Hu and Wang combine CASA and
spectral subtraction [7] for the IBM estimation in unvoiced
speech frames [5]. The spectral subtraction based noise en-
ergy estimation is the main cue to generate unvoiced speech
dominated units using simple thresholding or Bayesian classifi-
cation. In this stage, we just aim to generate initial estimations
of noise and speech energy. Therefore, no further classification
of the reliable and unreliable units is required. The average
value over several preceding and succeeding frames is used to
approach the noise energy. The speech energy is obtained by
subtracting the average value from the mixture energy. The
voiced/unvoiced classification of frames is carried out with the
RAPT pitch tracking algorithm [15].
Then, a Bayesian framework is proposed to smooth the error

in cochleagram estimation:

(2)

The prior models, and , which are modeled by
two Gaussian MRFs capture the spatial dependencies in the
cochleagram. The maximum a posterior (MAP) estimation is
approached by the ICM algorithm [11].
We then generalize the IBM estimation to ideal ratio mask

(IRM) estimation, , which is defined in [4]:

(3)

Finally, the waveform signal is resynthesized by weighting
the cochleagram with ratio mask and correcting phase shifts [2],
[3].

III. MRF PRIOR MODELS AND IRM ESTIMATION

A. MRF Prior Models

The Gaussian MRF defines a sequence of conditional density
functions:

(4)

(5)

where and control the scaling of the two densities.
The parameters and determine the influence between the
neighbors and . The neighborhoods, and , define
the interaction between the ’th unit and the others.
Suppose subscript denotes the unit at the ’th frame and the
’th frequency channel, . As previously mentioned,
the cochleagrams of speech and noise evolve slowly along time
frames. Additionally, units which are adjacent in frequency
within a time frame are also highly correlated due to the fact
that adjacent gammatone filters overlap heavily. Therefore, the
four nearest units, ,

are selected as the neighbors for both the speech and inter-
ference. It is worth to mention that the units which lie on the
edge of cochleagram have less than four neighbors. Besides,
the production mechanisms of voiced and unvoiced speech
are nominally very different, so some irregular and abrupt
changes inherent in the border of voiced and unvoiced frames.
Therefore, we add a constraint that the voiced and unvoiced
units can’t be neighbors for speech particularly. We assign
equal-weight to all the neighbors. The mean of each conditional
density is given by:

(6)

where and represent the number of the
neighbors.
For speech andmany real-world sounds, the energy unequally

distributes in - representation. In order to provide an equal
scaling for all units, and are normalized as:

(7)

where and are smoothing factors which are determined
experimentally. The lower the factors are, the smoother the
cochleagrams are. Given observations, the maximum likeli-
hood (ML) estimations of the two factors are given by:

(8)

B. Dependence Among , and

To model the dependence among , and , we define a
random variable which subjects to the following constraint:

(9)

Since the speech and interference are statistically independent
with each other, is approximately equal to the sum of and
. This means that distributes in a narrow range around

1. With the short-time Fourier transform based - represen-
tation, Batina et.al point out that the reciprocal of obeys to an
exponential distribution with mean and variance equal to 1 [12].
In each ICM iteration, however, the joint function of exponen-
tial distribution with the priors given in (4) and (5) is so complex
that the MAP estimation is difficult to be solved. Therefore, it
is replaced with a Gaussian distribution with mean equal to 1:

(10)

As the discussion in the following subsection, the MAP es-
timation can be obtained by a convex quadratic optimization
problem.

C. ICM Based Optimization Algorithm

It is very difficult to solve the global optimization problem
given in (2) directly due to the large scale dependencies. To sim-
plify the computation complexity, we apply the Iterated Con-
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TABLE I
PSEUDOCODE OF THE MRF BASED SMOOTHING ALGORITHM

ditional Modes (ICM) algorithm [11] which maximizes local
conditional probabilities sequentially to approach the MAP es-
timation. Given observation and the neighbors , ,
ICM algorithm updates and sequentially by maximizing
the following local conditional probability:

(11)
Discard the constant components, (11) can be transformed

into a convex quadratic optimization problem:

(12)

The optimal solution of (12) is given by:

(13)

where

(14)
Besides, and are limited to be greater than in

implementation. The algorithm is summarized in Table I.

IV. EXPERIMENTAL RESULTS

We evaluate the proposed algorithm with 40 sentences which
are randomly taken from the training set in Speech Separation
Challenge (SSC, 2006) [17]. All the sentences are subsequently
merged into five 10 s-length signals and down-sampled to 16
kHz before noises are added. Three types of real world noises
recorded in cafeteria, square and subway environments [18] are
used as the interference. For each type of noise, two 10 s-length
signals are selected. The mixture signals are generated with the
SNR in the range of 0 to 9 dB with 3 dB steps.
According to (8), smoothing factors and are equal to

0.33 and 0.24 respectively with a quarter of all the units in the
test corpus as observations. Since our main focus is smoothing
the speech cochleagram, the two factors are appropriately ad-
justed to 0.3 and 0.3. With the same observations, the ML es-
timation of is equals to 0.4 which is obtained by

.

Fig. 1. SDR, SIR and SAR results for different noise types and input SNR
levels. Ca: cafeteria, Sq: square, Su: subway, Avg.: the average result.

Let , and denote the clean speech, addi-
tive interference and separated speech. Three measures,
SDR(signal-to-distortion ratio), SIR(signal-to-interference
ratio), and SAR(signal-to-artifact ratio), proposed by Vincent
et al. [13] are used to evaluate the performance. The measures
are calculated by projecting the separated or enhanced speech
signal onto the subspaces expanded by the speech and inter-
ference. SIR and SAR measure the interferences and artifacts
terms respectively, while SDR measures the total distortion.
The artifact term is defined as [13]:

(15)

where and . To isolate
the amplification and distortion effects brought by the gamma-
tone filters, the ground truth is resynthesized by the original
speech with all-one mask [3]. We compare the performance of
the proposed algorithm with HuWang model [3] combined with
spectral subtraction method [7] (HW+SS) and two well-known
speech enhancement methods, the Log Spectral (LS) amplitude
scheme [8] and the minimum statistics noise estimator (MS) [9].
The average SDR, SIR and SAR results of the four algo-

rithms are shown in Fig. 1(a)–(c) respectively. We can see from
Fig. 1(a) that our algorithm achieves consistently higher SDR
results than HW+SS algorithm. On average, the SDR improve-
ments are 0.43, 1.74 and 2.19 dB for the three types of noise re-
spectively. Compared to LS and MS, the proposed and HW+SS
algorithms show a great advantage on the square and subway
noises. The main reason is that both of the LS and MS couldn’t
effectively track the highly non-stationary noise.
As is shown in Fig. 1(b) and (c), HW+SS algorithm achieves

relatively high SIR results and relatively low SAR results at
most conditions. By contrast, the proposed algorithm improves
SAR results effectively. One minor disadvantage of the pro-
posed smoothing algorithm is that it may decrease the SIR re-
sults slightly. This is due to the fact that the speech energy in
some units may be overestimated. Overall, the improvement on
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TABLE II
PERCENT PREFERENCE (%) FOR THE PROPOSED ALGORITHM COMPARED

TO OTHER METHODS FOR DIFFERENT NOISES

SAR results is more significant than the SIR decreasing, about
2.37 dB higher on average.
As in [16], we use formal listening tests for evaluating the

quality of speech separated by the proposed algorithm. In the
test, pairs of sentences, one processed by our method and one
processed with one of the other methods, are presented to six
normal-hearing listeners. The order of the sentences is random-
ized. Then, the listeners select from the pair which is more nat-
ural and includes fewer background noises. The preference re-
sults are presented in Table II. From the results, we can find that
the proposed algorithm has higher preference ratio compared to
HW+SS algorithm under all noise conditions. This mainly re-
sults from the better artefacts suppression of our algorithm.

V. CONCLUSION

In this letter, the Gaussian MRF prior models of cochlea-
gram are jointed with one binary mask estimation based speech
separation algorithm. As the temporal correlation is taken into
account, the two prior models could smooth the binary mask
based cochleagrams and suppress the artefacts effectively. Ex-
periments on three real-world noises show that the proposed al-
gorithm outperforms previous systems in the terms of SDR and
SAR results.
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