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Abstract The convex and concave relaxation procedure
(CCRP) was recently proposed and exhibited state-of-the-
art performance on the graph matching problem. However,
CCRP involves explicitly both convex and concave relax-
ations which typically are difficult to find, and thus greatly
limit its practical applications. In this paper we propose a
simplified CCRP scheme, which can be proved to realize
exactly CCRP, but with a much simpler formulation with-
out needing the concave relaxation in an explicit way, thus
significantly simplifying the process of developing CCRP
algorithms. The simplified CCRP can be generally applied
to any optimizations over the partial permutation matrix, as
long as the convex relaxation can be found. Based on two
convex relaxations, we obtain two graph matching algorithms
defined on adjacency matrix and affinity matrix, respectively.
Extensive experimental results witness the simplicity as well
as state-of-the-art performance of the two simplified CCRP
graph matching algorithms.
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1 Introduction

Graph matching involves identifying correspondences
between the vertices of two graphs in some optimal way.
As a fundamental problem in theoretical computer science,
graph matching is closely related to many problems in com-
puter vision and pattern recognition, including for instance
feature correspondence Maciel and Costeira (2003); Torre-
sani et al. (2008), object recognition Demirci et al. (2006);
Duchenne et al. (2011), and even MAP estimation of Markov
random field where the constraint is a little bit different from
graph matching Ravikumar and Lakerty (2006); Leordeanu
et al. (2012). In this paper, we investigate the graph matching
problem under one-to-one pairwise constraint. The problem
is, however, in nature a NP-hard combinatorial optimization
problem with a factorial complexity. Consequently, many
approximate algorithms have been proposed in literature to
make it computationally feasible.

Among the different types of approximations Conte et
al. (2004), the continuous (relaxation) technique has been
receiving extensive attentions in the past three decades, e.g.,
Fischler and Elschlager (1973); Gold and Rangarajan (1996);
Leordeanu and Hebert (2005); Cour et al. (2007); Leordeanu
et al. (2009); Zaslavskiy et al. (2009); Cho et al. (2010); Liu et
al. (2012); Zhou and De la Torre (2012); Egozi et al. (2013);
Cho et al. (2013); Zhou and De la Torre (2013). It involves
relaxing the discrete combinatorial optimization problem to
be a continuous one. The key point lies in the fact that a
continuous optimization problem is usually more flexible to
be approximated than its discrete counterpart. In particular,
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the objective functions for graph matching can be roughly
categorized into two groups, with the first one defined on
the adjacency matrices Umeyama (1988); Zaslavskiy et al.
(2009); Liu et al. (2012), and the other one on an affinity
matrix which measures pairwise/unary similarity between
graphs Gold and Rangarajan (1996); Leordeanu and Hebert
(2005); Cour et al. (2007); Leordeanu et al. (2009); Suh et
al. (2012); Cho and Lee (2012); Tian et al. (2012). Usu-
ally the first one can be taken as a special case of the latter
one, which in general enjoys a more flexibility to define the
node or pairwise similarity. Though many relaxation tech-
niques have been proposed on both categories, such as lin-
ear, quadratic and spectral relaxations Leordeanu and Hebert
(2005); Zaslavskiy et al. (2009), a common problem encoun-
tered by the relaxation techniques is the back projection Gold
and Rangarajan (1996); Leordeanu et al. (2009); Zaslavskiy
et al. (2009), which needs to project the relaxed continuous
solution back to the original discrete one, and is essential for
the relaxation techniques.

An intuitive but frequently used technique is the maximal
linear assignment (MLA) criterion, which can be efficiently
solved by the Hungarian algorithm but may introduce a sig-
nificant additional error in the final result Zaslavskiy et al.
(2009). Another commonly used schema is the graduated
assignment Gold and Rangarajan (1996), which introduced
a soft-version of iterative conditional modes (ICM) by giv-
ing each matching a soft probability by a softmax controlled
by a parameter. As the parameter is increased to be large
enough, the graduated assignment becomes exactly the max-
imal linear assignment. Recently, by combining both convex
and concave relaxations, the convex-concave relaxation pro-
cedure (CCRP) was proposed to tackle the back-projection
problem Zaslavskiy et al. (2009); Liu et al. (2012); Liu and
Qiao (2012); Zhou and De la Torre (2012). The objective
function of CCRP transfers gradually from a convex relax-
ation to a concave relaxation, whose minima locate exactly in
the original discrete domain. Or equivalently, starting from
the convex relaxation, CCRP can be regarded as a gradual
nonconvexity Blake and Zisserman (1987) like algorithm to
minimize the concave relaxation. It was shown that such a
deterministic annealing technique outperforms significantly
the MLA and some other gradual projection strategies, such
as the graduated assignment Gold and Rangarajan (1996),
and achieved the state-of-the-art performance on matching
accuracy.

However, the convex or concave relaxation can be diffi-
cult to construct. Typical examples include the three types of
concave relaxations proposed in Zaslavskiy et al. (2009); Liu
et al. (2012); Zhou and De la Torre (2012). Here we consider
a more ambitious problem: is it possible to find a general
concave relaxation that is applicable for any types of prob-
lems/graphs? In this paper we will show that, along with a
convex relaxation, a very simple quadratic concave function

can be equivalently used as a concave relaxation in CCRP,
which thus leads to a simplified CCRP. Compared with the
conventional CCRP, the simplified CCRP is much simpler
to construct. Moreover, although this paper is concentrated
on graph matching tasks, the proposed simplified CCRP idea
can be generally applied to solve any similar optimizations
over partial permutation matrix for which the convex relax-
ation can be found.

Specifically, the key contributions of this paper are
twofold. First, given a convex relaxation, the simplified
CCRP offers a much simpler and problem-free way to con-
struct a CCRP algorithm. By contrast, the concave relax-
ation in CCRP is often quite difficult to find Zaslavskiy et al.
(2009); Liu et al. (2012); Liu and Qiao (2012); Zhou and De
la Torre (2012). Second, based on the simplified CCRP two
types of graph matching algorithms are proposed, defined on
adjacency matrix and affinity matrix respectively.

The remainder of this paper is organized as follows.
Sect. 2 gives some explanations on the problem formula-
tion and CCRP, and Sect. 3 presents the simplified CCRP
technique, followed by the resulting graph matching algo-
rithms in Sect. 4. We conduct extensive experiments on both
synthetic data and feature correspondences in Sect. 5, give
a brief review of related works in literature in Sect. 6, and
finally conclude the paper in Sect. 7.

2 Problem Formulation and CCRP

2.1 Problem Formulation

We consider two types of objective function for the graph
matching problem, with the first one defined on the adja-
cency matrices and the second one on affinity matrix. While
the first objective function considers only equal-sized graph
matching, the second one can be used on partial matching
with outliers.

Given two equal-sized graphs G M (Model graph) and G D

(Data graph) to be matched, the first objective function is
defined on the adjacency matrix as follows,

min .Fa(P) = ‖ AD − PAM P� ‖2F , P ∈ P (1)

where AD and AM respectively denote the adjacency matri-
ces of G D and G M , ‖ · ‖F the Frobenius matrix norm, and
P the set of (N × N ) permutation matrices.

The second objective function is defined on a large affinity
matrix K as follows,

max .Fk(X) = vec(X)�Kvec(X), X ∈ � (2)

where vec(X) creates a column vector by stacking the column
vectors of X, Kia, jb measures some similarity between the
pairwise feature fi j (or edge attribute) of the first graph and
fab of the second graph, and � denotes the set of (N ×
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M, N ≤ M) partial permutation matrix, which is defined as

� := {X|Xi j = {0, 1},
M∑

j=1

Xi j = 1,

N∑

i=1

Xi j ≤ 1,∀i, j},

taking P as a special case when N = M . It is interesting to
note that, by setting

Kia, jb = −(ADi j − AM ab)
2, (3)

the two objective functions becomes exactly equal to each
other, as described by the following Corollary.

Corollary 1 By constructing K following (3), the two opti-
mizations respectively given by (1) and (2) are equal to each
other.

Proof See Appendix.
Thus, based on Corollary 1, the objective function (1) is

a special case of (2) when the similarity measure takes the
form of square error. Though (2) is much more flexible to
define the pairwise/unary similarity than (1), (1) has its own
advantage on complexity: (1) enjoys a smaller storage com-
plexity (O(N 2) versus O(N 4)) and also generally a smaller
computational complexity (O(N 3) versus O(N 4), see Fig. 6
later).

In practice, however, a more commonly used similarity
measure takes the following exponential form Gold and Ran-
garajan (1996); Zhou and De la Torre (2012),

Kia, jb =
{

0 if either ADi j or AM ab = 0

e−(ADi j−AM ab)2
otherwise

(4)

We then consider the convex relaxations of the two objec-
tive functions. First, the convex hull of � is given by the set
of (N ×M) doubly sub-stochastic matrices denoted by D as
follows Maciel and Costeira (2003),

D := {X|Xi j ≥ 0,

M∑

j=1

Xi j = 1,

N∑

i=1

Xi j ≤ 1,∀i, j}.

Similarly, D takes the set of (N×N ) doubly stochastic matri-
ces (the convex hull of P) as a special case.

For the first objective function Fa(P), as P ∈ P , it can be
derived as

min .Fa
0 (P) = ‖ AD − PAM P� ‖2F=‖ ADP − PAM ‖2F

= vec(P)�Qvec(P), P ∈ P, (5)

where

Q := (I⊗ AD − A�M ⊗ I)�(I⊗ AD − A�M ⊗ I) (6)

is a symmetric positive definite matrix. Therefore, Fa
0 (P) in

(5) is a convex relaxation of (1) when relaxing P ∈ D.

In Zhou and De la Torre (2012), as K takes the form (4) and
by factorizing the K, a convex relaxation of (2) is obtained
as follows 1,

Fk
0 (X) = Fk(X)− 1

2
tr

(
A1

i A1
i XX� + A2

i A2
i X�X

)
(7)

where A1
i = H1diag(ui )H�1 and A2

i = H2diag(vi )H�2 , with
M = UV� =∑c

i=1 ui v�i being a SVD factorization, and M
and H are obtained by factorizing K in the following way

K = (H2 ⊗H1)diag(vec(M))(H2 ⊗H1)
T . (8)

Readers are referred to Zhou and De la Torre (2012) for
detailed formulations of H and M.

2.2 Convex-Concave Relaxation Procedure

The global optimum denoted by PD of the two convex relax-
ations given above can be found in polynomial time, however,
it in general belongs to D instead of P or �. Intuitively, the
following maximum linear assignment (MLA) can be used
to get a discrete solution,

PP = arg max
P∈D

trP�DP, (9)

by inherently assuming that the true discrete solution is close
to PD. However, such an assumption can be quite wrong in
practice, and it may thus introduce a significant additional
error in the final result. In Zaslavskiy et al. (2009), in addi-
tion to the convex relaxation, a concave relaxation was further
introduced to construct the convex-concave relaxation pro-
cedure (CCRP) Liu et al. (2012); Liu and Qiao (2012); Zhou
and De la Torre (2012) as follows,

Fγ (P) = (1− γ )F0(P)+ γ F1(P), P ∈ D, (10)

where F0(·) and F1(·) denote the convex and concave relax-
ations respectively. In implementation, by gradually increas-
ing γ from 0 to 1, the objective function transfers from a con-
vex relaxation to a concave relaxation, and therefore pushes
P from a doubly (sub-)stochastic matrix gradually to a (par-
tial) permutation matrix. It was shown that such a determin-
istic annealing outperforms significantly the maximal lin-
ear assignment criterion and some other gradual projection
strategies, such as the graduated assignment Gold and Ran-
garajan (1996), and achieved the state-of-the-art performance
on matching accuracy.

1 The convex relaxation (7) is derived by adding some dummy nodes
into the smaller graph to obtain an equal-sized matching problem, such
that X is constrained as a permutation instead of a partial permutation
matrix. Such an expansion is appropriate in case K is constructed fol-
lowing (4), because it is straightforward to check that adding dummy
nodes will not change the problem. However, if we define the partial
matching based on objective function (1) by similarly adding some
dummy nodes such that the convex relaxation (5) still holds, it can be
shown that it in general changes the objective function.
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The convex relaxations corresponding to the two types
of objective functions in (1) and (2) are given by (5) and
(7), respectively. A convex (concave) relaxation (on graph
matching problem) denotes a strictly convex (concave) func-
tion F0(P) (F1(P)) that holds the same minima as the original
problem over P or � Maciel and Costeira (2003); Zaslavskiy
et al. (2009), that is

arg min
P∈� F1(P) = arg min

P∈� F0(P) = arg min
P∈� F(P). (11)

Minimization of a strictly concave function with P ∈ D will
result in P ∈ P or �, which implies that by such a definition
a concave relaxation is equivalent to the original problem,
since minimization the concave relaxation can directly get a
graph matching result, without needing a further step of back
projection.

A concave relaxation of Fa(P) in (1) on the undi-
rected graphs without self-loops was figured out as follows
Zaslavskiy et al. (2009):

Fa
1 (P) = −tr(	P)− 2vec(P)�(L�M ⊗ L�D)vec(P), (12)

where 	i j := (DM (i, i)−DD( j, j))2, and for a given adja-
cency matrix A, the diagonal degree matrix Di i :=∑N

j=1 Ai j

and Laplacian matrix L := D− A. Recently, based on (12),
a concave relaxation was proposed for the directed graphs
without self-loops as follows Liu et al. (2012),

Fa
2 (P) = 1

|l|
[
−vec(P)�(L�M ⊗ L�D + LM ⊗ LD − lI)

vec(P)− tr(	P)
]

(13)

where l denotes a lower bound of the smallest eigenvalue of
the matrix L�M ⊗ L�D + LM ⊗ LD .

On the other hand, a concave relaxation of Fk(X) in (2)
was figured out in Zhou and De la Torre (2012) as follows,

Fk
1 (X) = tr

(
K�q (G�1 XG2 ◦G�1 XG2)

)

−tr
(
(G1KqG�2 )�X

)
+ tr

(
K�p X

)
, (14)

in which G ∈ {0, 1} indicates a node-edge incidence matrix,
and the two affinity matrices Kq and Kp measure the simi-
larity of each node and edge pair respectively, for which the
readers are referred to Zhou and De la Torre (2012) for a
detailed explanation.

Then, together with the convex relaxations given by (5) or
(7), CCRP, i.e., the (extended) Path following Zaslavskiy et
al. (2009); Liu et al. (2012) and factorized graph matching
Zhou and De la Torre (2012) algorithms, can be constructed
to approximate the global minimum/maximum of the con-
cave relaxations given above, which remains still a NP-
hard problem. However, the above three concave relaxations
Fa

1 (P), Fa
2 (P) and Fk

1 (X) were figured out by rather com-
plicated mathematical derivations Zaslavskiy et al. (2009);

Liu et al. (2012); Zhou and De la Torre (2012), which can
hardly be generalized to other related problems. Below, we
prove that, along with a convex relaxation, a very simple con-
cave function can be used equivalently as a general concave
relaxation in CCRP and thus propose a simplified CCRP.

3 Simplified CCRP

3.1 Formulations

Below along with a convex relaxation a general concave
relaxation F∗3 (P) over D is firstly constructed. Then, we
prove that, in CCRP F∗3 (P) can be equivalently realized by a
very simple quadratic concave function (F3(P)), and finally
we propose the simplified CCRP.

Given any convex relaxation F0(P) over � (of size N ×
M), and by introducing a constant η ∈ [0, 1), F0(P) can be
equivalently derived as follows 2,

arg min
P∈� F0(P) = arg min

P∈� [(1− η)F0(P)− ηN ]

= arg min
P∈�

[
(1− η)F0(P)− ηvec(P)�vec(P)

]
. (15)

We then define

F3(P) := −vec(P)�vec(P),

F∗3 (P) := (1− η)F0(P)+ ηF3(P). (16)

The Hessian matrix H∗3 (P) of F∗3 (P) is then found as

H∗3 (P) = (1− η)H0(P)− ηI

where H0(P) denotes the Hessian matrix of F0(P). It is then
straightforward to show that, to make F∗3 (P) strictly concave,
the constant η should satisfy

η >
λmax

1+ λmax
, (17)

where λmax denotes the maximal eigenvalue of H0(P). For
instance, for Fa

0 (P), H0(P) = Q in (6).
Thus, given a convex relaxation F0(P), we propose a gen-

eral concave relaxation as follows,

F∗3 (P) = (1− η)F0(P)+ ηF3(P),

P ∈ D, 1 > η >
λmax

1+ λmax
. (18)

2 For convenience sake and without loss of generality, we consider
minimization problem here, since the maximization problem such as
(2) can be transferred to be a minimization one by setting K←−K.
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Fig. 1 Illustration of the
convergence of the Simplified
CCRP, where the dotted line
denotes the convergence path
(Color figure online)
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Then, based on the convex relaxation F0(P) and concave
relaxation F∗3 (P), we can construct a CCRP as follows:

Fγ (P) = (1− γ )F0(P)+ γ F∗3 (P)

= (1− γ η)F0(P)+ γ ηF3(P)

= (1− ζ )F0(P)+ ζ F3(P), (19)

where we define ζ := γ η, and its value range is [0, η].
Below we show that the value range of ζ can be equivalently
expanded from [0, η] to [0, 1], thus avoiding the trouble of
finding λmax , the largest eigenvalue of H0(P) which is a huge
matrix of size N M × N M .

To justify the equivalence between [0, η] and [0, 1] for ζ ,
we need just to show that the resulted P by minimizing (19)
when ζ = η will remain unchanged by gradually increasing
ζ from η to 1. We justify this point from two different per-
spectives. First, to make F∗3 (P) a concave relaxation, η can
be chosen to be arbitrarily close to 1. From the viewpoint
of implementation in practice, it can be simply set to be 1
without deteriorating the final result. Second, as ζ reaches η,
the objective function Fγ (P) becomes F∗3 (P), which results
in P ∈ �. According to the simplified CCRP algorithm (as
given in Algorithm 4.1 later), P ∈ � will terminate the algo-
rithm. Thus, though we expand the range of ζ from [0, η]
to [0, 1] to avoid finding η explicitly, the algorithm will still
stop as ζ reaches η, but in an implicit way3.

3 Actually, if ζ is further increased from η to be 1, the resulted P ∈ �

will retain since it remains to be a local minimum of the concave function
Fζ (P).

Finally, we have the following CCRP objective function,
though F3(P) itself is not a concave relaxation:

Fζ (P)=(1− ζ )F0(P)+ζ F3(P), P ∈ D, ζ ∈ [0, 1]. (20)

Thus, given a convex relaxation F0(P), we can easily con-
struct a CCPR as (20), without resorting a concave relaxation
in an explicit way. We thus name it the simplified CCRP.

3.2 Interpretation and Discussions

It is worth noting that the above derivation is applicable on
any convex relaxation over �, that is, the simplified CCRP
can be generally applied to tackle those optimization prob-
lems over � whose convex relaxation is available. It thus
greatly simplifies the process of developing a CCRP algo-
rithm to solve similar problems in a new application. By con-
trast, the concave relaxation in the original CCRP Zaslavskiy
et al. (2009); Liu et al. (2012); Zhou and De la Torre (2012)
is problem dependent and should be constructed specifically,
which is typically a difficult task and consequently makes it
difficult to generalize to other related problems. It is needed
to point out that the concave relaxation, i.e., F∗3 (P), of sim-
plified CCRP is also inherently problem dependent, but it
can be equivalently realized by a problem independent con-
cave term, i.e., F3(P) in the simplified CCRP. Actually, as
indicated by (19), the simplified CCRP will always converge
before ζ reaches 1.

Based on the objective function (1), a simple illustra-
tion of the convergence process of the simplified CCRP
(20) is given in Fig. 1, which shows how Fζ (P) changes
gradually from the convex relaxation to a concave relax-
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ation as ζ increases, and thus pushes P from a doubly sto-
chastic matrix to a permutation one. It is also worth not-
ing that when ζ > 0.37 ≈ λmax

1+λmax
, the objective function

Fζ (P) becomes concave; it consequently makes the result
obtained by minimizing Fζ (P) a discrete one (p = 1 with
P := [p, 1− p; 1− p, p] in this example), implying that the
simplified CCRP is terminated when ζ reaches 0.37.

The simplified CCRP also provides an explanation for the
results shown in Liu et al. (2012), where it was found that
different estimations (even a quite loose one) of the lower
bound l in the concave relaxation Fa

2 (P) given by (13) has
little effect on the final results. This is because even in the
extreme case l →−∞, Fa

2 (P)→ F3(P)makes the extended
PATH following algorithm become a simplified CCRP.

4 Graph Matching Algorithms Based on Simplified
CCRP

Below we first give the algorithmic framework of the sim-
plified CCRP algorithm, and then give two graph matching
algorithms targeting at the two objective functions, i.e., (1)
and (2).

Algorithm 4.1 presents the details of the proposed sim-
plified CCRP algorithmic framework, where for each fixed
ζ , we adopt the Frank-Wolfe algorithm Frank and Wolfe
(1956) to minimize the objective function based on the result
obtained from the previous step as the starting point. In the
algorithm, the linear program, i.e.,

Y = arg min
Y

tr(∇Fζ (P)�Y), s.t. Y ∈ D (21)

can be solved by applying the well-known Hungarian algo-
rithm Kuhn (1955), and α can be found using a backtracking
algorithm Boyd and Vandenberghe (2004) or in some cases
by a closed form. For instance, the α in the two SCCRP
algorithms below can be obtained analytically.

Algorithm 4.1: Simplified_CCRP()

ζ ← 0, P← 1N×M/M
repeat
repeat
Y = arg minX tr(∇Fζ (P)�Y), s.t. Y ∈ D
α = arg minα Fζ (P + α(Y− P)), s.t. 0 ≤ α ≤ 1
P← P + α(Y− P)

until P converged
ζ ← ζ + dζ

until ζ ≥ 1 ∨ P ∈ �

return (P)

The gradient ∇Fζ (P) takes the form

∇Fζ (P) = (1− ζ )∇F0(P)− 2ζP, (22)

where∇F0(P) denotes the gradient of the convex relaxation.
Specifically, when taking (1) as the objective function and

(5) as its convex relaxation, ∇Fa
0 (P) can be computed as

follows,

∇Fa
0 (P) = 2

[
A�DADP − A�DPAM − ADPA�M

+PAM A�M
]

(23)

The graph matching algorithm is denoted latter as SCCRP_A.
To use the simplified CCRP Algorithm 4.1 to maximize

the objective function (2), we first set K ← −K to transfer
it to be a minimization problem. Then, when using (7) as
the convex relaxation, the simplified CCRP algorithm can be
directly used by finding ∇Fk

0 (X) as follows Zhou and De la
Torre (2012),

∇Fk
0 (X) = 2H1(H�1 XH2 ◦M)H�2 −H1(H�1 H1 ◦ UU�)

×H�1 X− XH2(H�2 H2 ◦ VV�)H�2 . (24)

The algorithm is denoted as SCCRP_K.
For the SCCRP, if the matching problem involves also

the similarity between nodes, which is measured by a node
affinity/similary matrix C ∈ RN×M , it can be directly incor-
porated into the objective function (1) or (2) by just adding
one linear term tr(C�X). Consequently, the SCCRP algo-
rithms including SCCRP_A and SCCRP_K need only to be
modified by adding the constant C into ∇F0(P).

Without considering sparsity (of the adjacency matrices),
the computational complexity of the SCCRP_A is roughly
O(N 3) , and the space complexity is O(N 2). It is possible to
further improve the time and space complexity by exploiting
the properties (e.g., sparsity) of the adjacency matrices in
a real-world application, which is beyond the scope of our
focus in this paper. The complexity of GNCCP_K is roughly
O(|E |3), dominated by the number of edges E , and generally
bigger than that of SCCRP_A.

5 Experimental Evaluations

5.1 Overview

We have conducted two sets of experiments to evaluate the
efficacy of the proposed simplified CCRP algorithms for
graph matching. The first experiment is on synthetic data
and the second one is on feature correspondence in computer
vision and pattern recognition. We compare the two pro-
posed simplified CCRP algorithms with a number of existing
popular and state-of-the-art algorithms for graph matching,
including
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– the algorithm based on convex relaxation (5) along with
a maximal linear assignment (9) (denoted as “QCV” for
short);

– the graduated assignment algorithm (denoted as “GA” for
short) Gold and Rangarajan (1996);

– the spectral graph matching algorithm Leordeanu and
Hebert (2005) (denoted as “SM” for short);

– the reweighted random walks matching algorithm Cho et
al. (2010) (denoted as “RRWM” for short);

– the integer projected fixed point matching algorithm
Leordeanu et al. (2009) (denoted as “IPFP” for short);

– the probabilistic spectral graph matching algorithm Egozi
et al. (2013) (denoted as “PGM” for short);

– the PATH algorithm Zaslavskiy et al. (2009) which can be
applied only for undirected graphs;

– the extended PATH (denoted as “EPATH” for short) for
directed graph only Liu et al. (2012),

– the factorized graph matching algorithm Zhou and De la
Torre (2012) (denoted as “FGM” for short);

– the simplified CCRP algorithm minimizing (1) (denoted
as “SCCRP_A”);

– the simplified CCRP algorithm maximizing (2) with K
given by (4)(denoted as “SCCRP_K”).

Some of the above algorithms were conducted on adja-
cency matrices of the graphs, including QCV, (E)PATH, and
SCCRP_A, while the remainder seven attempt to maximize
the objective function (2).

Some algorithms targeting at maximizing (2) requires a
symmetric affinity matrix K. Thus, in case of asymmetric
affinity matrix such as on directed graph, we rewrite the
objective function as follows,

F(x) = x�Kx = 1

2
x�(K +K�)x, (25)

and then simply take the symmetric matrix 1
2 (K+K�) as the

new affinity matrix. As shown in Fig. 2, such a simple opera-
tion can significantly enhance the performance of some algo-
rithms, including SM, RRWM, IPFP and PGM, when used
on an asymmetric K. Thus, in all of the following experi-
ments involving an asymmetric K (on directed graphs), we
utilized (25) instead of (2).

The algorithms were evaluated on both objective func-
tions, i.e., (1) and (2). Specifically, QCV, (E)PATH and
SCCRP_A were directly implement to minimize (1), while
by setting K following (3) and according to Corollary 1, SM,
RRWM, IPFP and PGM were implemented equivalently to
minimize (1). On the other hand, GA, SM, RRWM, IPFP,
PGM, FGM, and SCCRP_K were used to maximize (2) by
setting K following (4).
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Fig. 2 The comparative matching scores on directed graphs by using
asymmetric and symmetric affinity matrix, where ”-A” denotes using
asymmetric matrix, ”-S” denotes using symmetric matrix in (25), and
the graph types are as described in Sect. 5.2. It is observed that, except
for GA and FGM, ”-S” outperforms ”-A” significantly (Color figure
online)

The four algorithms, SM, RRWM4, FGM5, and IPFP6

were implemented by the public codes, and the remainder
seven algorithms were implemented by us7. SM, RRWM
and FGM were largely implemented by C codes, and the
remainder eight algorithms by Matlab. All of the algorithms
adopted the the same initial P, i.e., P0 = 1N×M/M (M =
N in case of equal-sized matching), and the dζ in SCCRP
and CCRP was updated following the schema proposed by
PATH Zaslavskiy et al. (2009), that is, dζ is chosen to make
|Fζ+dζ (P)− Fζ (P)| just below a preset constant.

5.2 Experiments on Synthetic Data

The synthetic graphs were generated according to three
options:

– undirected (U) or directed (D);
– the degree distribution is uniform (F) or power-law (P);
– the weight distribution is uniform (F) or absolute normal

(N).

Thus, there are a total of 8 types of graphs used in the experi-
ments and below we will use a sequential three-character rep-
resentation of the graph types. For instance, “UFF” denotes
the undirected uniform graph with a uniform weight distrib-
ution. A uniform graph model is generated as follows: Given

4 Codes of SM and RRWM are available at http://cv.snu.ac.kr/research/
~RRWM/.
5 http://www.f-zhou.com/gm.html.
6 http://109.101.234.42/code.php.
7 All of the codes of the ten algorithms are available at http://www.
escience.cn/people/zyliu/SCCRP.html.
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a density s ∈ [0, 1], for each entry Ai j generate a random
number r uniformly distributed within [0, 1]; if r < s, assign
Ai j a random weight, or otherwise Ai j = 0. The power-law
degree distribution of the scale-free graph takes the form
p(k) ∝ k−α and the interval for the uniform weight distrib-
ution is [0, 1].

On equal-sized matching we have conducted four differ-
ent experiments to evaluate the performance of the ten algo-
rithms in varied settings: (i) evaluation on randomly gen-
erated graphs, (ii) evaluation of their noise resistances, (iii)
evaluation on the graphs with different density levels, and (iv)
evaluation of their scalability with respect to different graph
sizes. On partial graph matching, we evaluated the seven
algorithms on graph pairs with the smaller graph generated
by adding some noises on the bigger one.

In the first experiment, 20 pairs of the 8 types of graphs
with size N = 20 are randomly generated. The density s
for the uniform graphs was set as 0.5 and α = 1.5 for
the scale-free graphs. The experimental results on the two
objective functions are listed in Tables 1 and 2, respectively.
It is observed that on both objective functions, the SCCRP
algorithms, i.e., SCCRP_A and SCCRP_K, exhibited quite
promising performance. Specifically, on both objective func-
tions SCCRP_A and SCCRP_K achieved four best results

out of the eight graph types. Meanwhile, on the first objective
function RRWM, PGM and (E)PATH respectively achieved
one, two, and one best, while on the second one, FGM
achieved also four best results. In the tables the criterion
”ADB” denotes the average deviation from the best result,
reflecting the average performance of the algorithm. Specifi-
cally, denoting by r {i} the best result, i.e., the minimal for
the first objective and maximal for the second, obtained
by different algorithms on graph type i , the ”ADB” (Aver-
age Deviation from Best) of algorithm j is calculated by
ADB j = 1

m

∑m
i=1(r

{i}
j − r {i})/r {i} (on the first objective

as in Table 1) or ADB j = 1
m

∑m
i=1(r

{i} − r j {i})/r {i} (on

the second objective as in Table 2) where r {i}j denotes the
result of algorithm j on graph type i . We can observe that in
terms of ADB, on the first objective function the SCCRP_A
achieved the best result, and (E)PATH, PGM, and IPFP exhib-
ited slightly worse but still quite promising performances;
on the second objective function, the SCCRP_K exhibited a
comparable performance to FGM, and both of them outper-
formed the five competitors.

The second experiment is to test the noise resistance of the
algorithms. For each graph pair, the second graph was gener-
ated based on the first one by adding some edges controlled

Table 1 Comparative experimental results of the seven algorithms on minimizing (1) by using random synthetic graph

Graph type QCV SM RRWM IPFP PGM (E)PATH SCCRP_A

UFF 59.8138 67.2794 34.4401 39.2331 36.5020 35.2917 35.0733

UFN 179.1208 232.7750 195.9828 118.5279 112.8901 109.7163 108.282

UPF 29.3888 37.8726 26.1485 21.0325 19.5174 19.1531 19.2473

UPN 85.3349 102.2174 92.8245 53.7769 47.6693 49.4849 51.3808

DFF 63.0127 72.2175 60.4988 47.5529 47.2501 46.0678 45.9765

DFN 214.4420 245.4640 229.8141 162.2196 163.1717 155.8804 152.8135

DPF 33.1539 33.1508 29.0047 22.0202 20.8692 22.5778 21.1685

DPN 96.1069 109.0729 103.2193 68.8688 69.5422 71.0895 65.5589

ADB 0.5680 0.8318 0.4883 0.0827 0.0347 0.0330 0.0144

The best result is shown in bold face

Table 2 Comparative experimental results of the seven algorithms on maximizing (7) with K given by (4) by using random synthetic graph

Graph type GA SM RRWM IPFP PGM FGM SCCRP_K

UFF 123.5550 92.0693 123.9663 125.9298 123.3539 129.9033 129.9155

UFN 112.5168 80.4336 106.4767 113.5049 110.3012 116.4575 115.9953

UPF 58.0686 47.1001 63.5702 63.6977 53.7354 65.3023 65.2606

UPN 42.9694 31.7521 44.1167 45.0439 37.7354 47.2658 47.2659

DFF 112.2337 88.7486 115.7447 112.4110 111.4211 116.5019 116.2281

DFN 96.2857 71.4531 97.7637 96.1769 94.7641 99.8361 99.9680

DPF 36.8796 25.8628 38.7678 38.3836 32.1910 39.5037 39.6536

DPN 31.6412 24.4481 34.2227 33.6833 29.2977 35.7917 35.0095

ADB 0.0680 0.2995 0.0399 0.0364 0.1184 0.0006 0.0036

The best result is shown in bold face
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Fig. 3 Matching errors on the eight types of graphs with respect to noise levels. The results were obtained by averaging over 20 random runs on
each noise level, and the error bar denotes its standard error (Color figure online)

by a noise level β. Specifically, denoting by |ED| the number
of edges in G D , the second graph G M is then generated by
randomly adding β|ED| edges into G D . In the experiment,
β increases from 0 to 1 by a step size 0.1, and on each noise
level, 20 graph pairs with N = 20 were generated. The exper-
imental results are shown in Fig. 3, and the number of best
result achieved out of the 88 settings by different algorithms
are listed in Tables 3 and 4.

The third experiment is to evaluate the algorithms on the
graphs with different density levels. For the graphs with uni-
form degree distributions, the parameter s that control its
density was increased from 0.1 to 1 by a step size 0.1, and
for the scale-free graph, α was decreased from 5.5 to 1 by a
step size 0.5. On each level of density, 20 graph pairs with
N = 20 were randomly generated. Fig. 4 shows the exper-
imental results and Tables 3 and 4 list the numbers of best
result achieved by different algorithms.

The fourth experiment is to evaluate the scalability of the
algorithms with respect to graph size. For each of the eight
types of graphs, 5 groups of graph pairs were generated,
with the sizes increasing from 12 to 60 by a step size 12, and
for each group 20 graph pairs are randomly generated. The
experimental results are plotted in Fig. 5, and also listed in

Tables 3 and 4. It is noted that in this experiment, due to a
heavy computational load, the PGM was tested only up to
the size N = 24.

From the above four experiments on equal-sized graph
matching, we can draw two main observations. First, on both
objective functions, the performance of the proposed SCCRP,
i.e., SCCRP_A and SCCRP_K are at lease comparable to the
other state-of-the-art graph matching algorithms, including
the CCRP algorithms with more complicated concave relax-
ations, i.e., PATH, EPATH, and FGM. More specifically, as
shown in Tables 3 and 4, on objective function (1), SCCRP_A
got 75 best results out of the total 208 experiments, higher
than the 70 of (E)PATH, 54 of PGM, and 56 of IPFP, while
on objective function (2) with K given by (4), SCCRP_K got
118 best results, comparable to the 121 of FGM, and higher
than those of the PGM, IPFP, GA, and RRWM. Second, the
CCRP algorithms including SCCRP, (E)PATH and FGM got
in general better results than the other competitors. Third,
some interesting points could also be noticed on the four
algorithms, SM, RRWM, IPFP, and PGM when using differ-
ent K. For instance, PGM seemed to be more competitive by
setting K following (3), while IPFP remained a quite stable
performance on both objective functions. On the other hand,
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Table 3 The numbers of best
results achieved by the seven
algorithms on minimizing (1)

Experimental settings QCV SM RRWM IPFP PGM (E)PATH SCCRP_A

on 88 noise levels 12 4 10 14 34 37 39

on 80 density levels 0 0 3 24 15 20 19

on 40 scale levels 0 0 0 18 5 13 17

total number 12 4 13 56 54 70 75

Table 4 The numbers of best
results achieved by the seven
algorithms on maximizing (2)
with K given by (4)

Experimental settings GA SM RRWM IPFP PGM FGM SCCRP_K

on 88 noise levels 56 7 73 51 55 72 80

on 80 density levels 18 0 10 13 6 23 18

on 40 scale levels 4 0 6 4 2 26 20

total number 78 7 89 66 63 121 118
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Fig. 4 Matching errors on the eight types of graphs with respect to density. The results were obtained by averaging over 20 random runs on each
density level, and the error bar denotes its standard error (Color figure online)

though RRWM averagely got much better results by setting
K as (4) than (3), by (3) it got the best result on UFF.

Figure 6 illustrates the comparisons of average time costs
of the ten algorithms with respect to different graph sizes.
Empirically, the result reveals that the time complexities
of the three algorithms defined on adjacency matrices, i.e.,
QCV, PATH, and EPATH are around O(N 2.8±0.3), and those

defined on affinity matrix, i.e., GA, SM, RRWM, IPFP, PGM,
FGM, and SCCRP_K are around O(N 4.2±0.5).

The final experiment on synthetic data was conducted to
evaluate the seven algorithms defined on the affinity matrix
on partial matching with outliers. The size of the smaller
graph was fixed at 20, and the bigger one is increased from
25 to 40 by 5. For each graph type, 20 graph pairs were gen-
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Fig. 5 Matching errors on the eight types of graphs with respect to graph sizes. The results were obtained by averaging over 20 random runs on
each size, and the error bar denotes its standard error (Color figure online)
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results were obtained by averaging over 20 random runs on each size
(Color figure online)

erated in the following way. In each pair, the bigger one was
randomly generated, and the smaller one was generated based
on the bigger one by randomly extracting out 20 nodes and
adding some noises following the second experiment with
the noise level β = 0.2. The experimental results are plotted
in Fig. 7, where the GA, SM, RRWM, IFPF, PGM, FGM,

and SCCRP_K respectively achieved 12, 0, 14, 13, 11, 19,
and 20 best results out of the total 32 settings (on 8 differ-
ent graph types and 4 levels of number of outliers). Thus,
the FGM and SCCRP_K still achieved slightly better results
than the competitors, and meanwhile, SCCRP_K exhibited
a comparable performance to FGM.

5.3 Experiments on Feature Correspondence

In the following, we first formulate the Feature Correspon-
dence task in computer vision as a Graph Matching Problem,
followed by presenting our experimental results on different
datasets.

5.3.1 Overview

Feature correspondence (or point pattern matching) is a fun-
damental problem in computer vision and pattern recogni-
tion. Recently, feature correspondence involving pairwise
constraint between the feature points has been becoming a
popular topic in literature, e.g. Philbin et al. (2011), and con-
sequently the task can be formulated as a graph matching
problem Maciel and Costeira (2003); Torresani et al. (2008).
Here we consider different types of pairwise constraints such

123



180 Int J Comput Vis (2014) 109:169–186

5 10 15 20

120

140

160

180

# outliers

sc
or

e
UFF

5 10 15 20

100

120

140

160

180

200

# outliers
sc

or
e

UFN

5 10 15 20

40

50

60

70

80

90

# outliers

sc
or

e

UPF

5 10 15 20
40

50

60

70

80

90

100

# outliers

sc
or

e

UPN

5 10 15 20

120

140

160

180

# outliers

sc
or

e

DFF

5 10 15 20

100

120

140

160

180

# outliers

sc
or

e
DFN

5 10 15 20
40

50

60

70

80

90

# outliers
sc

or
e

DPF

5 10 15 20

30

40

50

60

70

80

# outliers

sc
or

e

DPN

GA
SM
RRWM
IPFP
PGM
FGM
SCCRP_K

Fig. 7 Matching errors on the eight types of graphs with respect to graph sizes. The results were obtained by averaging over 20 random runs on
each size, and the error bar denotes its standard error (Color figure online)

as distance and direction between two feature points. Thus,
different from the graph matching discussed previously espe-
cially objective (1) where each graph is represented by one
adjacency matrix, each feature set in the feature correspon-
dence involves m adjacency matrices, where m denotes the
number of constraints. Fortunately, the ten algorithms eval-
uated above can be straightforwardly generalized to tackle
the problem. Meanwhile, because the pairwise features used
in the experiment are all symmetric, which implies the prob-
lem is basically an undirected graph matching problem, the
EPATH is excluded in the experiment.

Specifically, denoting by f {1}i j , . . . , f {m}i j the m pairwise
features under consideration, the K in (3) and (4) become
respectively

Kia, jb = −
m∑

l=1

αl( f {l}Di j
− f {l}Mab

)2, (26)

Kia, jb =
{

0 ADi j or AM ab = 0

e
−σ

∑m
l=1 αl ( f {l}Di j

− f {l}Mab
)2

otherwise
(27)

where αl is a positive constant weight with the constraint∑m
l=1 αl = 1, and σ is a scaling factor, which was set as σ =

1
0.15 , following some algorithms Cho et al. (2010); Zhou and
De la Torre (2012). For those algorithms defined on adjacency
matrices including QCV, PATH and SCCRP_A, the convex
relaxation of the objective function becomes now

F0(P) =
m∑

l=1

αl ‖ A{l}D P − PA{l}M ‖2F , (28)

where the adjacency matrix A{l}i j := f {l}i j . For the PATH, the
concave relaxation can also be obtained similarly as

F1(P) = −
m∑

l=1

αl

[
tr(	{l}P)

+2vec(P)�(L{l}M

� ⊗ L{l}D

�
)vec(P)

]
(29)

The proposed SCCRP_A can be directly used on the con-
vex relaxation (28) without needing any changes. Also it is
straightforward to show that Corollary 1 still holds for the
two objective functions (2) (by setting K as (26)) and (28).

Below we evaluated the two proposed SCCRP algorithms
based feature correspondence on three data-sets, the CMU
house sequences8, the Chinese Character dataset Liu et al.
(2011), and the Pascal object class dataset9. In all of the
three experiments, on both objective functions the algorithms
are compared in two terms: the matching error/score and
accuracy rate, i.e., the number of correct matchings.

5.3.2 Results on House Sequence

The CMU house sequence dataset was frequently used for
testing the correspondence algorithms, see e.g., Cho et al.
(2010); Zhou and De la Torre (2012); Egozi et al. (2013). We
labeled manually the same 30 nodes for all of the 111 frames,
and linked every pair of them to construct a complete graph,

8 http://vasc.ri.cmu.edu/idb/html/motion/.
9 http://109.101.234.42/code.php.
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Fig. 8 The matching error of
the ten algorithms on House
sequence. The top two
sub-figures show the results on
minimizing (1), and the bottom
two on maximizing (2) by
setting K as (4) (Color figure
online)
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which suffers mainly a rotation distortion and also a slight
perspective distortion. Thus, the correspondences between
them is a graph matching problem which is close to graph
isomorphism. Similar to the setting in Zhou and De la Torre
(2012) we tested the algorithms on all of the possible frame
pairs with the separation between them increasing from 0 to
80 by a step size 10. Two types of pairwise constraints with
the same weights, i.e., α1 = α2 = 0.5, were used in the
experiment, distance (normalized by the maximal one for
each object) as well as the angle between the edge and the
main axis of the structure, where the main axis is calculated
by d = ∑

i=1···n
li �=l

li−l
‖li−l‖ , where l = 1

n

∑
i=1···n li is taken as

the center of the object, and ‖li − l‖ is the distance between
point i and the center.

The experimental results are shown in Fig. 8, and one
typical matching result is given by Fig. 9. It is observed that
while the matching error on (1) increases or score on (2)
decreases along with the number of separation, both SCCRP
algorithms achieved totally correct matchings on all of the
9 baselines. On the other hand, RRWM, PGM, GA, PATH,
and FGM also exhibited quite promising performance.

5.3.3 Results on Chinese Characters

In this experiment we conducted the feature correspondence
on four hand-written Chinese characters shown in Fig. 10,
where each character consists of 10 samples Liu et al. (2011).

QCV GA

SM RRWM

IPFP PGM

PATH SCCRP−A

SCCRP−KFGM

Fig. 9 A typical matching result by the ten algorithms on house
sequence (baseline = 80), where red lines denote wrong matchings
(Color figure online)

We manually labeled 28, 23, 28, and 23 feature points respec-
tively, and constructed their structure representations roughly
following their skeletons. The normalized distance and direc-
tion between the edge and horizontal axis with equal weights,
i.e., α1 = α2 = 0.5, were used as the pairwise cues. We
tested the algorithms on all of the possible sample pairs, i.e.,
45 pairs for each character.
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Fig. 10 The four hand-written Chinese characters used in the experi-
ment, where each character consists of 10 samples

The experimental results are shown in Table 5, and one
typical correspondence obtained by the two SCCRP algo-
rithms is shown in Fig. 11. It is observed that on accuracy rate,
by using objective function (1), the SCCRP_A and PATH
achieved 3 and 2 best results respectively, while by objective

function (2), the GA and SCCRP_K got 3 and 1 best results
respectively. Thus, the SCCRP algorithms got a comparable
or even slightly better result than their original CCRP algo-
rithms, i.e., PATH and FGM. On the other hand, the RRWM,
IPFP, PGM, and FGM got much better results on accuracy
by using (4) than using (3).

5.3.4 Results on Pascal Image Dataset

In the experiment we used the 30 pairs of car images and 20
pairs of motorbike images used in Leordeanu et al. (2012),
which were selected from Pascal 2007. The number of manu-
ally labeled nodes of each image varies from 15 to 52, and we
used the Delaunay triangulation to construct their structure
representation. Three types of pairwise constraints used in
Leordeanu et al. (2012) were used in the experiment, includ-
ing the normalized distance, the angle1 between the edge
and horizontal axis, and angle2 between the normal of points
i and j , with the weights being α1 = 0.5, α2 = α3 = 0.25,
respectively.

Both equal-sized and partial correspondence were con-
ducted on the Pascal dataset. Firstly we evaluated the ten

Table 5 Comparative experimental results of ten algorithms on feature correspondence on the Chinese character dataset and Pascal image dataset

data obj. results QCV GA SM RRWM IPFP PGM PATH SCCRP_A FGM SCCRP_K

character1 (1) accuracy (%) 37.8 − 21.7 32.7 30.3 38.2 82.1 82.4 − −
average error 8.97 − 15.57 11.90 4.69 11.93 1.51 1.53 − −

(2) accuracy(%) − 70.3 31.3 43.3 56.7 47.1 − − 60.1 68.9

average score − 43.8 13.9 20.8 40.3 23.9 − − 43.5 43.7

character2 (1) accuracy (%) 80.4 − 46.8 61.3 64.7 62.6 88.2 90.3 − −
average error 4.15 − 17.0 11.6 3.55 11.9 0.69 0.69 − −

(2) accuracy(%) − 87.2 62.1 87.9 83.9 80.6 − − 86.5 89.1

average score − 47.7 28.3 47.2 47.0 40.7 − − 47.2 48.3

character3 (1) accuracy (%) 45.6 − 24.5 30.6 33.8 25.4 91.4 91.4 − −
average error 12.20 − 24.41 22.25 5.56 23.43 1.56 1.56 − −

(2) accuracy(%) − 83.3 39.9 58.2 65.3 53.2 − − 77.9 82.1

average score − 64.6 19.8 36.8 56.5 30.3 − − 59.5 63.9

character4 (1) accuracy (%) 60.8 − 31.1 43.7 60.4 43.8 99.4 98.3 − −
average error 5.87 − 13.83 10.62 2.76 10.58 1.15 1.17 − −

(2) accuracy(%) − 94.8 67.5 75.4 81.5 77.4 − − 89.8 92.0

average score − 42.35 30.0 35.9 37.9 38.5 − − 40.2 40.9

car (1) accuracy (%) 96.2 − 29.3 50.2 97.2 88.4 100 100 − −
average error 10.20 − 46.9 33.5 6.84 14.9 4.82 4.82 − −

(2) accuracy(%) − 95.9 59.5 92.6 96.1 96.7 − − 98.2 96.5

average score − 106.5 74.3 102.7 107.1 108.1 − − 110.2 106.9

motorbike (1) accuracy (%) 90.4 − 18.9 50.7 90.2 78.9 100 100 − −
average error 5.60 − 40.1 30.1 4.38 9.99 3.98 3.98 − −

(2) accuracy(%) − 92.4 63.2 88.0 98.7 90.9 − − 92.3 93.1

average score − 130.9 89.9 126.0 135.0 130.4 − − 130.7 131.9

The best result is shown in bold face
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Fig. 11 One typical totally correct correspondence obtained by
SCCRP_A and SCCRP_K on Chinese characters, where the yellow
lines show their structure representations (Color figure online)

QCV

SCCRP−KFGM

PATH SCCRP−A

PGMIPFP

SM RRWM

GA

Fig. 12 A typical correspondece result obtained by the ten algorithms
on motorbike images, where yellow lines denote their structure repre-
sentation and red lines denote wrong matchings (Color figure online)

algorithms on equal-sized feature correspondence, and then
evaluated the seven algorithms on partial correspondence in
the presence of outliers. On the partial correspondence, the
number of outliers was increased from 5 to 20 by 5.

The results of the first experiment are listed in Table 5, and
one typical correspondence result is shown in Fig. 12. We can
observe that, by using objective function (1), the PATH and
SCCRP_A got perfectly correct correspondence on both cat-
egories, and by using (2) with K given by (4), while FGM
and IPFP got one best result respectively, all the seven algo-

rithms except SM also got promising results. Meanwhile,
the SCCRP_K showed a comparable performance to FGM.
It is once againg to notice that SM, RRWM, IPFP, and PGM
got higher accuracies by using exponential measure (4) than
using square error (3).

The results of the partial correspondence with outliers are
plotted in Fig. 13 and one typical result with 10 outliers is
shown in Fig. 14. We can observe that on matching accuracy,
the IPFP, FGM and SCCRP_K respectively got 2, 4, and 2
best results out of the 8 settings. On the other hand, the FGM
outperformed SCCRP_K on 4 settings, and SCCRP_K beat
FGM on the remaining 4 settings. Thus, the partial corre-
spondence results also revealed a comparable performance
of SCCRP_K to FGM.

6 Related Works

The proposed simplified CCRP in this paper is a type of deter-
ministic annealing technique, which is thus related to other
deterministic annealing methods, e.g., Geiger and Yuille
(1991); Rose (1998), in that all of them typically begin with
a rough approximation of the original problem which is usu-
ally much easier to solve (usually a convex program), and
then gradually transfer to the original problem. More directly,
the proposed method has its root in the CCRP Zaslavskiy et
al. (2009); Liu et al. (2012); Liu and Qiao (2012) in that
both methods approximate the global solution of an opti-
mization over permutation matrix by combining both convex
and concave relaxations. However, the concave relaxation
in CCRP was constructed in a problem-specific way, which
is typically difficult to figure out in practice. By contrast,
combined with the convex relaxation the SCCRP provides a
problem-independent method to construct the concave relax-
ation, though the concave relaxation in SCCRP is inherently
problem dependent. Some intuitive discussions between the
two types of concave relaxations are given as follows. Any
relaxation (concave or convex) will certainly reshape the
originally relaxed objective function when P ∈ D. Both the
convex and concave relaxations of CCRP, i.e., (E)PATH and
FGM, reshape the original function; on the other hand, the
SCCRP takes the same convex relaxation as (E)PATH/FGM,
but with the different concave relaxation in (18), which is
further simply realized by combining the convex relaxation
and vec(P)T vec(P). vec(P)T vec(P) reshapes the function
in a symmetric manner, implying somewhat that the bias
of SCCRP comes mainly from the convex relaxation. Thus,
we may get a rough feel that if the concave relaxation of
(E)PATH/FGM provides more biases than its convex relax-
ation, SCCRP should be better than (E)PATH/FGM, and vice
verse. However, the concave relaxation of (E)PATH/FGM
takes a quite complicated form, and it is thus difficult to the-
oretically or even intuitively analyze it.
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Fig. 13 A typical partial
correspondece result obtained
by the seven algorithms on car
images, where the image on the
right-hand in each pair contains
10 outliers (Color figure online)
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Fig. 14 A typical partial correspondece result obtained by the seven
algorithms on car images, where the image on the right-hand in each
pair contains 10 outliers (Color figure online)

In terms of back projection, our work is related to grad-
uated assignment Gold and Rangarajan (1996), which also
approaches the original discrete solution in a gradual way,
and was also adopted by some other graph matching algo-
rithms Cho et al. (2010). Instead of resorting to a con-
cave relaxation, the graduated assignment introduced a soft-
version of iterative conditional modes (ICM) by giving each

matching a soft probability by a softmax controlled by a para-
meter. As the parameter is increased to be large enough, the
graduated assignment becomes exactly the maximal linear
assignment (9). However, unlike the concave relaxation, the
softmax strategy cannot guarantee an equivalence to the orig-
inal discrete problem, and this is probably the main reason
that makes CCRP in general exhibit a better performance than
graduated assignment Liu et al. (2012); Liu and Qiao (2012).
The recently proposed integer-projected fixed point (IPFP)
algorithm Leordeanu et al. (2009) provided also a graduated
discretization technique. Similar to the Frank-Wolfe algo-
rithm Frank and Wolfe (1956) adopted by CCRP and SCCRP,
the IPFP iterates the same two steps, but further takes the best
discrete solution found in the first step, i.e., the linear pro-
jection (21) as the final solution. A major difference between
IPFP and SCCRP or CCRP is that IPFP attempts to optimize
the originally relaxed function, but the objective function
of SCCRP or CCRP changes gradually by (10), and finally
becomes a concave relaxation of the original problem. Thus,
the final discrete solution of SCCRP or CCRP is obtained
naturally by this concave program, which is equal to the orig-
inal discrete program. Regarding to the complexity, because
SCCRP or CCRP needs two loops with the inner loop being
a Frank-Wolfe algorithm and outer loop for the parameter ζ

(or λ in CCRP), SCCRP or CCRP seems to be more compu-
tational demanding than IPFP (graduated assignment needs
also an outer loop for the control parameter). However, spe-
cific to graph matching, the IPFP and some other algorithms

123



Int J Comput Vis (2014) 109:169–186 185

defined on the affinity matrix in general involves a O(N 4)

complexity, heavier than the O(N 3) of SCCRP or CCRP, as
also revealed by the previous experimental results.

Besides CCRP, there is very limited work in literature that
involves concave relaxation, in which Maciel and Costeira
(2003) is probably the most related one. It introduced a con-
cave relaxation by constructing a strictly diagonally dom-
inant negative definite Hessian matrix by subtracting N 2

number of large enough constants. Specifically, it introduces
a constant εi for each element qi of q := vec(P) where εi

satisfies

εi ≥ 1

2

⎡

⎣max
q

⎛

⎝
N 2∑

j=1, j �=i

|Hi j (q)|
⎞

⎠+max
q

(Hii (q))

⎤

⎦ ,

and then construct the concave relaxation as

Fc(q) = F(q)− εi

N 2∑

i=1

q2
i + εi

N 2∑

i=1

qi .

Therefore, such a construction involves not only an explicit
Hessian matrix, but also a O(N 4) complexity. By contrast,
the concave relaxation of SCCRP is realized in an implicit
way without needing to figure out the Hessian matrix or the
constant explicitly.

7 Conclusions and Future Work

As a state-of-the-art optimization algorithm, the CCRP
showed superior performance but has difficulties in find-
ing convex or concave relaxation, which greatly limits its
practical applications. This paper proposed the simplified
CCRP scheme, which needs only convex relaxation, and thus
greatly simplifies the process of developing a CCRP algo-
rithm. When being applied to the graph matching problem,
two simplified CCRP algorithms were proposed based on two
convex relaxations defined respectively on adjacency matri-
ces and affinity matrix. Extensive experimental results vali-
date the efficacy of the two simplified CCRP graph matching
algorithms. Future efforts will address the evaluation of the
simplified CCRP scheme on some other related problems,
such as the MAP inference of the Markov Random Field
(MRF).
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Appendix: Proof of Corollary 1

To prove Corollary 1, we prove −x�Kx =‖ AD −
XAM X� ‖2F , where K is given by (3), and x = vec(X).
Writing the partial permutation matrix X ∈ R

N×M as

X� = [eπ(1), eπ(2), . . . eπ(N )]
where eπ(i) denotes a column vector of length M with 1 at
the position π(i) and 0 every other position, it can be then
shown that

− x�Kx = −
N∑

i=1

N∑

j=1

Kiπ(i), jπ( j)

=
N∑

i=1

N∑

j=1

(ADi j − AM π(i)π( j))
2 (30)

On the other hand, the term XAM X� can be equivalently
written as {AM π(i)π( j)}N×N , and consequently,

‖ AD − XAM X� ‖2F = ‖ AD − {AM π(i)π( j)}N×N ‖2F

=
N∑

i=1

N∑

j=1

(ADi j − AM π(i)π( j))
2

(31)

Thus, −x�Kx =‖ AD − XAM X� ‖2F , and the proof is
accomplished. ��
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